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The chain rule

» Suppose that y depends on u, and u depends on x. Then

dy _dydu
dx  dudx

» If x changes to x + dx, then u changes to v+ du and y changes to

y + dy. Clearly
o0y by du
ox  dudx’
In the limit, éx, du and dy all approach zero, and we get
dy dydu
dx  dudx’

> Alternative notation: suppose that f(x) = g(h(x)). Then

| F(x) = g'(h(x))H (x) |
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Q

< (sin(x)®) = 5sin(x)*cos(x)
< (log(x)®) = 3log(x)’x "' = 3log(x)?/x
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The inverse function rule

> If x and y are interdependent variables, then
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(Take limits in the obvious relation $¥ =1/%~.)

v

Consider y = log(x), so x = ¢€”.

dx o — Qzldx

1
dy dx dy  x

v

Alternative notation: if y = g(x) then x = f(y), where f = g~ and
g="F"1 Then

8'() = 1/ (g(x)) ]

v

log/(x) = 1/ exp/ (log(x)) = 1/ exp(log(x)) = 1/x.
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> If f(x) is a trigonometric polynomial, so is f'(x).

> Eg f(x) = sin(x) + sin(3x)/3 + sin(5x)/5;
f'(x) = cos(x) + cos(3x) + cos(5x).
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If f(x) is a polynomial, then so is f'(x).
> Eg f(x) = x + x10 4 x100; f’(x) = 1+ 10x° + 100x%°
> Eg f(x) = (x — D)* + (x + 1)% fl(x) =4(x —1)3 +4(x+1)3
If f(x) is a rational function, then so is f'(x).
2
» Egf(x) =57 f(x)= iy
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If f(x) is a trigonometric polynomial, so is f'(x).
> Eg f(x) = sin(x) + sin(3x)/3 + sin(5x)/5;
f'(x) = cos(x) + cos(3x) + cos(5x).
> Eg f(x) = sin(3x) + cos(3x); f’(x) = 3 cos(3x) — 3sin(3x).
If f(x) is a polynomial times €*, so is f'(x).
> Eg f(x) = (x + x2)e~; f/(x) = (1 + 3x + x?)e~.
> Eg f(x) = (x* — 4x3 4+ 12x% — 24x + 24)e¥; f(x) = x*eX.
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the derivative involving dy/dx. Rearranging gives dy/dx in terms of x and
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Implicit differentiation

» Suppose that x and y are related by an equation such as y* + xy = x>.
We cannot write y as a function of x, but we can still find dy/dx.

> Differentiate both sides. Terms in the equation involving y give terms in
the derivative involving dy/dx. Rearranging gives dy/dx in terms of x and

y.
> Suppose that y* 4+ xy = x°, so

d% (y4 +xy) = d% (X3) =3x°%.

Also £ 2 (y*) = 4y Y by the power rule
and d( xy) = dx}/+xdy = y+de by the product rule ; so

4y3dy +y+x% =3x°
(4 )% =3~y



Implicit differentiation

» Suppose that x and y are related by an equation such as y* + xy = x>.
We cannot write y as a function of x, but we can still find dy/dx.

> Differentiate both sides. Terms in the equation involving y give terms in
the derivative involving dy/dx. Rearranging gives dy/dx in terms of x and

y.
> Suppose that y* 4+ xy = x°, so

d% (y4 +xy) = d% (X3) =3x°%.

Also £ 2 (y*) = 4y Y by the power rule
and d( xy) = dx}/+xdy = y+de by the product rule ; so
4° % 4y 4 x2 =3x
(4y -‘y—X)% =3%—y

dy __ 3x27y
dx T 4y34x-
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> Suppose x + sin(x) = y — cos(y).

ax (x +sin(x)) = Z (v — cos(y))
1+ cos(x) = & +sin(y) %

dx
dy 14-cos(x)
dx 1+sin(y)

> Suppose y = exp(x® + y?).
2 2
W = D exp(x’ +y°) = L(ee)
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> Suppose x + sin(x) = y — cos(y).

ax (x +sin(x)) = Z (v — cos(y))
1+ cos(x) = ¥ +sin(y) %

dx
dy
dx

1+cos(x)
1+sin(y)

> Suppose y = exp(x® + y?).
2 2
L= Lep(*+y’) = 4(e)
—2xe’ e 1 e 2yLe’
=2(x+yF)exp(x* +y?)
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> Suppose x + sin(x) = y — cos(y).

& (x +sin(x)) = £ (v — cos(y))
1+ cos(x) = ¥ +sin(y) %

dy _ 1+cos(x)

dx  1+sin(y)

> Suppose y = exp(x® + y?).

2 2
& = Lexp(x’ +y°) = L(e )

= 2%’ e’ + e 2yﬂ Y
=2(x+y %) exp(x* + y?)
(1— 2y exp(x + 7)) % = 2xexp(x’ + )

dy _ _2xexp(P+y?)
dx — 1—2yexp(x2+y?)



Parametric differentiation



Parametric differentiation

» Suppose that x and y are both functions of another variable t. Then

dy  dy/dt

dx ~ dx/dt




Parametric differentiation

» Suppose that x and y are both functions of another variable t. Then

dy  dy/dt

dx ~ dx/dt

> Suppose that x=1+t*and y =t + £



Parametric differentiation

» Suppose that x and y are both functions of another variable t. Then

dy  dy/dt

dx ~ dx/dt

> Suppose that x=1+t*and y =t + £

dy/dt =1+ 3t dx/dt = 2t



Parametric differentiation

» Suppose that x and y are both functions of another variable t. Then

dy  dy/dt

dx ~ dx/dt

> Suppose that x=1+t*and y =t + £

dy/dt =1+ 3t dx/dt = 2t

dy _ dy/dt
dx  dx/dt




Parametric differentiation

» Suppose that x and y are both functions of another variable t. Then

dy  dy/dt

dx ~ dx/dt

> Suppose that x=1+t*and y =t + £

dy/dt =1+ 3t dx/dt = 2t

dy _dy/dt 1+3¢
dx  dx/dt 2t




Parametric differentiation

» Suppose that x and y are both functions of another variable t. Then

dy  dy/dt

dx ~ dx/dt

> Suppose that x =14+ t>and y =t + t° (so t = y/x)

dy/dt =1+ 3t dx/dt = 2t

dy _dy/dt 143t  1+3(y/x)?
dx  dx/dt 2t  2(y/x)




Parametric differentiation

» Suppose that x and y are both functions of another variable t. Then

dy  dy/dt

dx ~ dx/dt

> Suppose that x =14+ t>and y =t + t° (so t = y/x)

dy/dt =1+ 3t dx/dt = 2t

dy _ dy/dt _ 1+32  1+43(y/x)> x> +3y
dx  dx/dt 2t  2(y/x)

2xy



Parametric differentiation

» Suppose that x and y are both functions of another variable t. Then

dy  dy/dt

dx ~ dx/dt

> Suppose that x =14+ t>and y =t + t° (so t = y/x)

dy/dt =1+ 3t dx/dt = 2t

dy _dy/dt 143t  1+3(y/x)* _ xX*+3y°
dx  dx/dt 2t  2(y/x)

2xy

» Suppose that x = t —sin(t) and y =1 — cos(t).



Parametric differentiation
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» Suppose that x and y are both functions of another variable t. Then

dy  dy/dt
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> Suppose that x =14+ t>and y =t + t° (so t = y/x)

dy/dt =1+ 3t dx/dt = 2t

dy _dy/dt 143t  1+3(y/x)* _ xX*+3y°

dx  dx/dt 2t 2(y/x)  2xy
» Suppose that x = t —sin(t) and y =1 — cos(t).
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> Differentiate x> + y* = 1; 2x + 2y% =0;
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Consider a point (x, y) on the unit circle, so x* + y? = 1.

» Differentiate x> + y2 =1; 2x+ 2y% =0;
X
dy_ _2x_ X
dx 2y y
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