
SOM201 2008 Solution 1

(i) The column rank of A (which is equal to the rank of A) is 4.
(ii) The general solution is

x7 = λ, x6 = −2λ, x5 = µ, x4 = 2λ− 3µ, x3 = ν, x2 = 2λ + 2µ− 2ν, x1 = −λ− µ + ν,

where λ, µ, ν are arbitrary real numbers. Thus, in (column) vector form, the set of all solutions of
AX = 0 is 







− λ − µ + ν
2λ + 2µ − 2ν

ν
2λ − 3µ

µ
− 2λ

λ




∈ R7 : λ, µ, ν ∈ R





.

(iii) NA is the set of all column vectors v ∈ R7 which are solutions of AX = 0. By (ii),

NA = {λe + µf + νg : λ, µ, ν ∈ R},
where

e =




−1
2
0
2
0
−2
1




, f =




−1
2
0
−3
1
0
0




, g =




1
−2
1
0
0
0
0




.

Thus NA = Sp{e, f, g} is the span of the vectors e, f, g, and so is a subspace of R7. We show that
e, f, g are linearly independent.

Suppose α, β, γ ∈ R are such that αe + βf + γg = 0. Comparison of (7, 1)th, (5, 1)th and (3, 1)th
entries of the two sides of this equation shows that α = 0 = β = γ. Thus e, f, g are linearly inde-
pendent.
(iv) Write

E =


 D1 D2 D3 D4 D5 D6 D7


 ,

so that Dj is the jth column of E (for j = 1, . . . , 7). Note that

A =


 vT

1 vT
2 vT

3 vT
4 vT

5 vT
6 vT

7


 .

(a) Since D1, D2, D4, D6 (being 4 columns of I5) are linearly independent, v1, v2, v4, v6 are linearly
independent. Since

D3 = −D1 + 2D2, D5 = D1 − 2D2 + 3D4, D7 = D1 − 2D2 − 2D4 + 2D6,

(and the system AX = 0 has exactly the same set of solutions as EX = 0),

v3 = −v1 + 2v2, v5 = v1 − 2v2 + 3v4, v7 = v1 − 2v2 − 2v4 + 2v6.

Thus v3, v5, v7 are linear combinations of v1, v2, v4, v6. Therefore

W = Sp{v1, v2, v3, v4, v5, v6, v7} = Sp{v1, v2, v4, v6},



so that v1, v2, v4, v6 form a basis for W and dim W = 4.

(b) The three vectors v5, v6, v7 cannot form a basis for the 4-dimensional subspace W of R5, because
every basis for W must have 4 members.

(c) The sequence of EROs which shows that A ∼ E will also show, on deletion of 1st, 2nd and 3rd
columns throughout, that

A′ :=


 vT

4 vT
5 vT

6 vT
7


 ∼


 D4 D5 D6 D7


 .

Therefore

A′ ∼




0 1 0 1
0 −2 0 −2
1 3 0 −2
0 0 1 2
0 0 0 0



∼




1 0 0 −5
0 1 0 1
0 0 1 2
0 0 0 0
0 0 0 0




=: G =


 H4 H5 H6 H7


 .

Since H7 = −5H4 + H5 + 2H6, it follows that v7 = −5v4 + v5 + 2v6 and (−5)v4 + v5 + 2v6 − v7 = 0.
This shows that v4, v5, v6, v7 are linearly dependent; therefore, they cannot form a basis for W .
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(i) We show that 0.96 is an eigenvalue of A by showing that the system of linear equations

(A− (0.96)I3)(x y z)T = 0

has a non-trivial solution. This system has augmented matrix

(
A− (0.96)I3 0

)
=



−0.06 0.04 0 0
0.09 −0.06 0 0
0.01 0.06 0.04 0


 ∼




3 −2 0 0
1 6 4 0
0 0 0 0




∼



1 6 4 0
0 −20 −12 0
0 0 0 0


 ∼




1 0 2
5 0

0 1 3
5 0

0 0 0 0


 .

It follows that the system of linear equations (A− (0.96)I3)(x y z)T = 0 has a non-trivial solution,
so that 0.96 is an eigenvalue of A. In particular, we see that v1 := (−2 − 3 5)T is an eigenvector
of A corresponding to the eigenvalue 0.96.

We show that 0.84 is an eigenvalue of A by showing that the system of linear equations

(A− (0.84)I3)(x y z)T = 0

has a non-trivial solution. This system has augmented matrix

(
A− (0.84)I3 0

)
=




0.06 0.04 0 0
0.09 0.06 0 0
0.01 0.06 0.16 0


 ∼




1 6 16 0
3 2 0 0
0 0 0 0




∼



1 6 16 0
0 −16 −48 0
0 0 0 0


 ∼




1 0 −2 0
0 1 3 0
0 0 0 0


 .

It follows that the system of linear equations (A− (0.84)I3)(x y z)T = 0 has a non-trivial solution,
so that 0.84 is an eigenvalue of A. In particular, we see that v2 := (2 − 3 1)T is an eigenvector of
A corresponding to the eigenvalue 0.84.

Since A is a stochastic matrix, 1 must be an eigenvalue of A. An eigenvector of A corresponding to
the eigenvalue 1 is a non-zero (column) vector v ∈ R3 such that (A− 1I3)v = 0, and since

A− 1I3 =



−0.1 0.04 0
0.09 −0.1 0
0.01 0.06 0


 ,

it is clear that v3 := (0 0 1)T is an eigenvector of A corresponding to the eigenvalue 1.

(ii) (Since v1, v2, v3 are eigenvectors of A corresponding to distinct eigenvalues of A, they are linearly
independent, and so, as there are 3 of them, they form a basis for R3.) We find µ1, µ2, µ3 ∈ R such
that

∑3
i=1 µivi = (1 0 0)T by solving the system of linear equations given, in matrix form, by


 v1 v2 v3







µ1

µ2

µ3


 =




1
0
0


 .



The augmented matrix of this system


−2 2 0 1
−3 −3 0 0
5 1 1 0


 ∼




1 5 0 1
−3 −3 0 0
5 1 1 0


 ∼




1 5 0 1
0 12 0 3
0 −24 1 −5




∼



1 5 0 1
0 1 0 1

4
0 0 1 1


 ∼




1 0 0 − 1
4

0 1 0 1
4

0 0 1 1


 .

Hence (1 0 0)T = − 1
4v1 + 1

4v2 + 1v3.

(iii) For each non-negative integer n, let wn = (wn1 wn2 wn3)T ∈ R3, where 100wni, for i = 1, 2, 3
is the percentage of the firms in P which, on 02 January (2008 + n) are using air travel, high-speed
train travel, and video-conferences respectively for their board meetings. The information given in
the question yields that wn+1 = Awn for all n ∈ N0, and that w0 = (1 0 0)T . It therefore follows
from the standard theory of difference equations that, for all n ∈ N0,

wn = Anw0 = An
(− 1

4v1 + 1
4v2 + 1v3

)
= − 1

4Anv1 + 1
4Anv2 + 1Anv3

= − 1
4 (0.96)nv1 + 1

4 (0.84)nv2 + 1nv3.

To determine the expected situation on 02 January 2024, we take n = 16. The expected percentage
of the firms in P that will be using video-conferences for their board meetings at 02 January 2024 is

100w16,3 = 100
(−0.25× (0.96)16 × 5 + 0.25× (0.84)16 + 1

)

≈ 100 (−0.25× 0.5204× 5 + 0.25× 0.0614 + 1) ≈ 100 (−0.6505 + 0.0154 + 1) ≈ 36.5

approximately.
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(i)(a) The subset L1 of R4 is not a subspace of R4 because it does not contain the zero vector
0R4 = (0, 0, 0, 0).

(b) The subset L2 of R4 is a subspace of R4 because it is the null space of the 1 × 4 row matrix
B :=

(
0 −1 1 1

)
. Since the only row of B is non-zero, it is clear that the rank of B is 1.

Therefore dim L2 = nullity(B) = 4− rank(B) = 4− 1 = 3.

(c) Since the square of a real number is never negative,

L3 = {(w, x, y, z) ∈ R4 : x = y = z = 0} = {(w, 0, 0, 0) : w ∈ R} = Sp{(1, 0, 0, 0)}.
Thus L3 is the span of the set containing just the one vector e1 := (1, 0, 0, 0), and so is a subspace
of R4. Since e1 is non-zero, it forms a basis for L3; therefore dimL3 = 1.

(d) Since the square of a real number is never negative, x2 + y2 + z2 ≥ 0 for all (w, x, y, z) ∈ R4.
Therefore L4 is empty, and so is not a subspace of R4.

(e) The subset L5 of R4 is not a subspace of R4 because v := (1, 0, 2, 0) ∈ L5 but 2v(= 2v + 0v) =
(2, 0, 4, 0) 6∈ L5 because 02 − 42 + 02 = −16 6= −4.

(ii)(a) Note that dim W1 = nullity(A + I4). We find the nullity of A + I4 by finding the rank of
A + I4 and using the Rank-Nullity Theorem. Now

A + I4 =




0 0 0 0
4 2 0 0
−8 −1 1 1
0 −1 −1 3


 ∼




1 1
2 0 0

0 3 1 1
0 1 1 −3
0 0 0 0


 ∼




1 0 − 1
2

3
2

0 1 1 −3
0 0 −2 10
0 0 0 0




∼




1 0 0 −1
0 1 0 2
0 0 1 −5
0 0 0 0


 ,

a reduced row echelon matrix with 3 non-zero rows. Therefore rank(A + I4) = 3 and dim W1 =
4− rank(A + I4) = 4− 3 = 1.

(b) Note that dimW2 = nullity(A− I4). We find the nullity of A− I4 by finding the rank of A− I4

and using the Rank-Nullity Theorem. Now

A− I4 =




−2 0 0 0
4 0 0 0
−8 −1 −1 1
0 −1 −1 1


 ∼




1 0 0 0
0 1 1 −1
0 0 0 0
0 0 0 0




a reduced row echelon matrix with 2 non-zero rows. Therefore rank(A − I4) = 2 and dim W2 =
4− rank(A− I4) = 4− 2 = 2.

(c) Clearly 0R4 ∈ W3. Furthermore, if there exists 0 6= v ∈ W3, then Av = 2v, so that 2 would be an
eigenvalue of A with v as a corresponding eigenvector. However, 2 is not an eigenvalue of A, since
the characteristic polynomial of A,

χA(t) =

∣∣∣∣∣∣∣∣

−1− t 0 0 0
4 1− t 0 0
−8 −1 −t 1
0 −1 −1 2− t

∣∣∣∣∣∣∣∣
= −(1 + t)(1− t) (−t(2− t) + 1)

= −(1 + t)(1− t)(t2 − 2t + 1) = −(1 + t)(1− t)3



does not have 2 as a root. Therefore W3 is the zero subspace of R4, and so dim W3 = 0.

(d) Now W1 ∩W2 = {v ∈ R4 : Av = −v and Av = v}. Therefore W1 ∩W2 = {(0, 0, 0, 0)} = {0R4}
is the zero subspace of R4, and so dimW4 = 0.

(e) The dimension of W5 is the rank of A. Since 0 is not an eigenvalue of A (by part (c)), we must
have {v ∈ R4 : Av = 0} = {0R4}; hence nullity(A) = 0, so that dim W5 = rank(A) = 4 − 0 = 4 by
the Rank-Nullity Theorem.
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(i)(a)

AdjA =




−4 3 −1
−12 8 0
−8 7 −1


 .

(b) Therefore

A(AdjA) =




2 1 −2
3 1 −3
5 −1 −1







−4 3 −1
−12 8 0
−8 7 −1


 =



−4 0 0
0 −4 0
0 0 −4


 .

(c) Since A(AdjA) = (det A)I3, it follows that det A = −4.

(d) Since detA 6= 0, the matrix A is invertible; its inverse is

1
det A

AdjA =




1 − 3
4

1
4

3 −2 0
2 − 7

4
1
4


 .

(ii) For i = 1, 2, 3, let vi denote the ith column of P . Set

B :=



−7 2 −8
−3 0 −3
6 −2 7


 and D :=




1 0 0
0 0 0
0 0 −1


 .

Since P−1BP = D, we have BP = PD, that is,

B


 v1 v2 v3


 =


 v1 v2 v3







1 0 0
0 0 0
0 0 −1


 =


 1v1 0v2 (−1)v3


 .

Thus Bv1 = 1v1, Bv2 = 0v2 and Bv3 = (−1)v3, so that 1, 0 and −1 are eigenvalues of B with
corresponding eigenvectors v1, v2 and v3 respectively.

Let
Y = Y (x) :=

(
y1 y2 y3

)T =
(

y1(x) y2(x) y3(x)
)T

be the 3 × 1 column matrix whose entries are the functions y1, y2, y3. The general solution of the
given system of linear differential equations is

Y = c1e
xv1 + c2e

0xv2 + c3e
−xv3, where c1, c2, c3 are arbitrary scalars.

We require the solution for which Y (0) =
(

1 1 1
)T , and so we solve the system of linear

equations
c1 − 2c2 + c3 = 1

c2 + 3c3 = 1
− c1 + 2c2 = 1

.

The augmented matrix of this system is



1 −2 1 1
0 1 3 1
−1 2 0 1


 ∼




1 −2 1 1
0 1 3 1
0 0 1 2


 ∼




1 0 7 3
0 1 3 1
0 0 1 2


 ∼




1 0 0 −11
0 1 0 −5
0 0 1 2


 .

Thus c1 = −11, c2 = −5, c3 = 2, and the required solution is



y1

y2

y3


 = −11ex




1
0
−1


− 5



−2
1
2


 + 2e−x




1
3
0


 .
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(i)

Q(x, y, z) = 3x2 − 3y2 − 2xz + 2yz = 3x2 − 2xz − 3y2 + 2yz

=
(√

3x− 1√
3
z
)2

− (
3y2 − 2yz + 1

3z2
)

=
(√

3x− 1√
3
z
)2

−
(√

3y − 1√
3
z
)2

.

The matrix

P :=




√
3 0 − 1√

3

0
√

3 − 1√
3

0 0 1




is invertible (since it has non-zero determinant), and so

x′ =
√

3x − 1√
3
z

y′ =
√

3y − 1√
3
z

z′ = z

are three linearly independent linear forms. Therefore

Q(x, y, z) = 3x2 − 3y2 − 2xz + 2yz = x′2 − y′2

where x′, y′ are linearly independent linear forms.

(ii) The rank of Q(x, y, z) is therefore 1 + 1 = 2 and the signature of Q(x, y, z) is 1− 1 = 0.

(iii) Notice that Q(x, y, z) = (x, y, z)A(x, y, z)T , where A is as in part (iv) of the question. As A is
a real symmetric matrix, its eigenvalues are all real, and the conclusions of part (ii) mean that A
must have one positive eigenvalue, one negative eigenvalue, and 0 as its third eigenvalue. Therefore
the quadric surface in R3 whose equation is Q(x, y, z) = 1 is a cylinder with an hyperbola as base.

(iv) Since

Q(x, y, z) = 3x2 − 3y2 − 2xz + 2yz = (x, y, z)A(x, y, z)T

= (x, y, z)PT (P−1)T AP−1P (x, y, z)T

= (x′, y′, z′)(P−1)T AP−1(x′, y′, z′)T = (x′, y′, z′)




1 0 0
0 −1 0
0 0 0







x′

y′

z′




and (P−1)T AP−1 is symmetric, we see that S := P−1 is a 3 × 3 matrix (that is invertible because
it is the inverse of an invertible matrix) such that ST AS is a diagonal matrix with entries 1,−1 and
0 along its diagonal. We find P−1:

(
P |I3

)
=




√
3 0 − 1√

3
1 0 0

0
√

3 − 1√
3

0 1 0
0 0 1 0 0 1


 ∼




1 0 − 1
3

1√
3

0 0
0 1 − 1

3 0 1√
3

0
0 0 1 0 0 1




∼



1 0 0 1√
3

0 1
3

0 1 0 0 1√
3

1
3

0 0 1 0 0 1


 .

Therefore

S = P−1 =




1√
3

0 1
3

0 1√
3

1
3

0 0 1






is an invertible matrix such that

ST AS =




1 0 0
0 −1 0
0 0 0


 = D.

(v) We find the eigenvalues of A. They are the roots of the characteristic polynomial χA(t) of A.
Now

χA(t) =

∣∣∣∣∣∣

3− t 0 −1
0 −3− t 1
−1 1 −t

∣∣∣∣∣∣
= (3− t) (t(3 + t)− 1) + 3 + t = −t3 + 11t

= −t(
√

11− t)(
√

11 + t).

Therefore the eigenvalues of A are
√

11, 0 and −√11.

The maximum and minimum values of K are the maximum and the minimum of the eigenvalues of
A, namely

√
11 and −√11, respectively.


