
Linear Mathematics for Applications —
Exam

(1)

(a) Which of the following matrices are in reduced row echelon form (RREF)? Explain your
answers. (3 marks)

A =

1 2 0 3
0 0 0 0
0 0 1 4

 B =

0 0 0 0 1
0 0 1 0 0
1 0 0 0 0

 C =

1 1 1
0 1 1
0 0 1


(b) Row-reduce the following matrix. (6 marks)

D =

11 10 1 1 11
11 1 10 10 1
1 1 0 0 10


(c) You may assume the row-reduction7 −3 1 −1 1

3 2 7 16 16
4 −1 2 3 −3

→
1 0 1 2 0

0 1 2 5 0
0 0 0 0 1


Solve the following two systems of equations (the first system on the left, and the second
system on the right) :

7x− 3y + z = −1 7x− 3y + z = 1

3x+ 2y + 7z = 16 3x+ 2y + 7z = 16

4x− y + 2z = 3 4x− y + 2z = −3

In each case say whether the system has a unique solution, an infinite family of solutions,
or no solution. (6 marks)

(d) Find the determinant of the following matrix: (3 marks)

E =


1 0 2 0
0 0 3 0
0 4 0 4
0 4 0 5


(e) State, with justification, which of the following matrices are invertible. (7 marks)

F =


1 1 1 1
2 3 4 5
6 7 8 9
9 9 9 9

 G =


1 2 5
6 4 3
5 1 2
7 9 1

 H =

−2 −2 −1
−1 0 1
2 −2 1

 J =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



Solution:
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(a) None of the matrices are in RREF. The matrix A is not in RREF because it has a row of
zeros that does not occur after all the nonzero rows.[1]The matrix B is not in RREF because
the pivot in the second row is to the left of the pivot in the first row.[1]The matrix C is not
in RREF because there are nonzero entries above the pivot in the third row.[1]

(b) 11 10 1 1 11
11 1 10 10 1
1 1 0 0 10

→
0 −1 1 1 −99

0 −10 10 10 −109
1 1 0 0 10

→
0 1 −1 −1 99

0 0 0 0 881
1 0 1 1 −89

→
1 0 1 1 0

0 1 −1 −1 0
0 0 0 0 1

 .[6]
(c) The left hand system corresponds to the first augmented matrix shown below: 7 −3 1 −1

3 2 7 16
4 −1 2 3

→
 1 0 1 2

0 1 2 5
0 0 0 0


By deleting the last column from the row-reduction given in the question, we see that our
matrix row-reduces as indicated, so the left hand system is equivalent to the system

x+ z = 2 y + 2z = 5 0 = 0.[1]

The solutions have the form

xy
z

 =

 2− z
5− 2z
z

 with z arbitrary [1]. In particular, there are

infinitely many solutions, one for each possible value of z [1].

Similarly, we can delete the fourth column from the given row-reduction to get 7 −3 1 1
3 2 7 16
4 −1 2 −3

→
 1 0 1 0

0 1 2 0
0 0 0 1


This shows that the right-hand system is equivalent to the system

x+ z = 0 y + 2z = 0 0 = 1, [2]

so there are no solutions [1].

(d) There are enough zeros in E that a direct expansion is painless:

det(E) = det

0 3 0
4 0 4
4 0 5

+ 2 det

0 0 0
0 4 4
0 4 5

 [1]

= −3 det

[
4 4
4 5

]
+ 2× 0[1]

= −3× (20− 16) = −12.[1]

(e) In matrix F the last row is 9 times the first row, so the rows are linearly dependent, so F
is not invertible [2]. The matrix G is not square and so cannot be invertible [1]. Next, the
matrix H can be row-reduced to the identity as follows:−2 −2 −1

−1 0 1
2 −2 1

→
0 −2 −3

1 0 −1
0 −2 3

→
0 −2 −3

1 0 −1
0 0 6

→
1 0 −1

0 1 3/2
0 0 1

→
1 0 0

0 1 0
0 0 1


This shows that H is invertible. Alternatively, we can calculate that det(H) = −12 6= 0,
which also implies that H is invertible [2]. Finally, the matrix is J is also invertible. One of
many ways to see this is to note that J2 = I, so J is its own inverse. [2]
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(2) Consider the following Markov chain:

1

2 3

0.6 0.2

0.2

1.0

1.0

(a) Write down the associated transition matrix. (2 marks)

(b) Find a stationary distribution for the system. (6 marks)

(c) If the system is in state 1 at t = 0, what is the probability that it is in state 2 at t = 4? (17
marks)

Solution:

(a) P =

0.2 0 0
0.6 0 1
0.2 1 0

. [2]

(b) A stationary distribution p is in particular an eigenvector of eigenvalue 1. Such eigenvectors
can be found by row-reducing P − I [1]:−0.8 0 0

0.6 −1 1
0.2 1 −1

→
1 0 0

0 −1 1
0 1 −1

→
1 0 0

0 1 −1
0 0 0

 [2]

We conclude that if p =
[
p1 p2 p3

]T
then we must have1 0 0

0 1 −1
0 0 0

p1p2
p3

 =

0
0
0

 ,
or equivalently p1 = 0 and p2 = p3 [1]. For a stationary distribution we also need p1, p2, p3 ≥
0 and p1 + p2 + p3 = 1, so we must take p2 = p3 = 0.5 [1]. It follows that the stationary

distribution is
[
0 0.5 0.5

]T
[1].

(c) We are given that the initial distribution is r0 =

1
0
0

T

, and we need to calculate r4 = P 4r0.
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As 4 is not very large, it is easy enough to do this directly:

P 2 =

−0.8 0 0
0.6 −1 1
0.2 1 −1

−0.8 0 0
0.6 −1 1
0.2 1 −1

 =

0.04 0 0
0.32 1 0
0.64 0 1


P 4 = (P 2)2 =

0.04 0 0
0.32 1 0
0.64 0 1

0.04 0 0
0.32 1 0
0.64 0 1

 =

0.0016 0 0
0.3328 1 0
0.6656 0 1


r4 = P 4r0 =

0.0016 0 0
0.3328 1 0
0.6656 0 1

1
0
0

 =

0.0016
0.3328
0.6656


The probability of being in state 2 at t = 4 is the second component of r4, which is 0.3328.
Full credit will be given for this approach.

However, most students will probably use the following method. We first find the remaining
eigenvalues and eigenvectors for P [1]. The characteristic polynomial is

χP (t) = det

0.2− t 0 0
0.6 −t 1
0.2 1 −t

 = (0.2− t)(t2 − 1)[1] = (t− 1)(t+ 1)(0.2− t),

so the eigenvalues are 1 and −1 and 0.2 [1]. We have already found an eigenvector u1 =[
0 0.5 0.5

]T
of eigenvalue 1. To find an eigenvector of eigenvalue −1, we row-reduce P+I:1.2 0 0

0.6 1 1
0.2 1 1

→
1 0 0

0 1 1
0 1 1

→
1 0 0

0 1 1
0 0 0

 [1]

This shows that the eigenvectors of eigenvalue −1 are the vectors of the form
[
x y z

]
with

x = y + z = 0, or in other words the vectors of the form
[
0 y −y

]
[1]. For compatibility

with u1 it will be convenient to take y = 0.5 giving u2 =
[
0 0.5 −0.5

]
[1]. Next, to find

an eigenvector of eigenvalue 0.2 we row-reduce P − 0.2I: 0 0 0
0.6 −0.2 1
0.2 1 −0.2

→
 1 5 −1

0.6 −0.2 1
0 0 0

→
1 5 −1

0 −3.2 1.6
0 0 0

→
1 5 −1

0 1 −0.5
0 0 0

→
1 0 1.5

0 1 −0.5
0 0 0

 [2]

From this we see that a suitable eigenvector is u3 =
[
−1.5 0.5 1

]
[1]. We next need to

write the vector r0 =
[
1 0 0

]T
as a linear combination of the eigenvectors ui. We can do

this by row-reducing the matrix [u1|u2|u3|r0]: [1] 0 0 −1.5 1
0.5 0.5 0.5 0
0.5 −0.5 1 0

→
 0 0 −1.5 1

0.5 0.5 0.5 0
0 −1 0.5 0

→
1 1 1 0

0 1 −0.5 0
0 0 1 −2/3


→

1 1 0 2/3
0 1 0 −1/3
0 0 1 −2/3

→
1 0 0 1

0 1 0 −1/3
0 0 1 −2/3

 [2]

The required coefficients appear in the last column, so r0 = u1 − 1
3u2 −

2
3u3 [1]. This gives

r4 = P 4r0 = P 4u1 − 1
3P

4u2 − 2
3P

4u3[1] = 14u1 − 1
3 (−1)4u2 − 2

3 (0.2)4u3[1]

= u1 − 1
3u2 −

2
3 (0.2)4u3 =

 0
1/2
1/2

+

 0
−1/6
1/6

+ (0.2)4

 1
−1/3
−2/3

 =

0.0016
0.3328
0.6656

 [1]

Again, the probability of being in state 2 at t = 4 is the second component of r4, which is
0.3328. [1]
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(3)

(1) Are the following statements true or false? Justify your answers carefully. (9 marks)

(a) Any list of four vectors in R3 spans R3.

(b) There exists a linearly dependent list of vectors that spans R3.

(c) The following vectors are linearly independent:
1
2
3
4




2
2
3
4




3
3
3
4




4
4
4
4




4
3
2
1


(d) The following vectors form a basis of R3:1

1
1

  1
10
100

  1
11
101


(2) Which of the following sets is a subspace of R4? Justify your answers. (9 marks)

V1 = {
[
w x y z

]T ∈ R4 | w + x+ y + z = 0}

V2 = {
[
w x y z

]T ∈ R4 | w2 + x2 + y2 + z2 = 0}

V3 = {
[
w x y z

]T ∈ R4 | w3 + x3 + y3 + z3 = 0}

V4 = {
[
w x y z

]T ∈ R4 | w + x+ y + z = 1}.

(3) Give examples of the following. (7 marks)

(a) A list of 4 vectors in R3 such that any three of them form a basis.

(b) A pair of subspaces V,W ≤ R6 with dim(V ) = dim(W ) = 3 and dim(V +W ) = 4.

(c) A list of three subspaces P,Q,R ≤ R3 such that dim(P ) = dim(Q) = dim(R) = 2 and
dim(P ∩Q ∩R) = 1.

Solution:

(1) (a) This is false [1]. For the most extreme example, the list 0, 0, 0, 0 clearly does not span
R3. For a less degenerate example in which the four vectors are all different, we can

take

1
0
0

 ,
2

0
0

 ,
3

0
0

 ,
4

0
0

 [1].

(b) This is true [1]. The simplest example is the list e1, e2, e3, 0 [1].

(c) This is false [1]: any list of five vectors in R4 is automatically linearly dependent [1].
If we call the vectors v1 to v5, then we have

4v1 − 5v4 + 4v5 =


4
8
12
16

−


20
20
20
20

+


16
12
8
4

 =

0
0
0

 ,
which is a specific example of a nontrivial linear relation.
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(d) This is true [1]. One way to prove it is to take the vectors as the columns of a matrix,
and start row-reducing it:1 1 1

1 10 11
1 100 101

→
1 1 1

0 9 10
0 99 100

→
1 1 1

0 9 10
0 0 −10


We now have an upper triangular matrix with nonzero entries on the diagonal, and any
such matrix can be row-reduced to the identity. It follows that the given list is a basis
[2].

(2) (a) The set V1 is a subspace [1]. Indeed, it is clear that the zero vector lies in V1. Next,

suppose we have two elements a =
[
w x y z

]T
and a′ =

[
w′ x′ y′ z′

]T
in

V1, so w + x + y + z = 0 and w′ + x′ + y′ + z′ = 0. By adding these equations,
we see that (w + w′) + (x + x′) + (y + y′) + (z + z′) = 0, so the vector a + a′ =[
w + w′ x+ x′ y + y′ z + z′

]
also lies in V1. This shows that V1 is closed under

addition. Similarly, for any t ∈ R we have tw + tx+ ty + tz = 0, showing that ta ∈ V1.
This means that V1 is closed under scalar multiplication and so is a subspace [2].

(b) The set V2 is a subspace [1]. Indeed, as all squares are nonnegative, the only way we
can have w2 +x2 +y2 +z2 = 0 is if w = x = y = z = 0. Thus V2 = {0}, which is clearly
a subspace [1].

(c) The set V3 is not a subspace [1]. Indeed, the vectors a =
[
1 −1 0 0

]T
and a′ =[

1 0 −1 0
]

lie in V3, but the sum a + a′ =
[
2 −1 −1 0

]T
does not (because

23 + (−1)3 + (−1)3 + 03 = 6 6= 0) so V3 is not closed under addition [1].

(d) The set V4 is not a subspace [1], because it does not contain the zero vector [1].

(3) (a) The simplest example is the list e1, e2, e3, e1 + e2 + e3. [2]

(b) The simplest example is to take V = span(e1, e2, e3) and W = span(e1, e2, e4) so
V +W = span(e1, e2, e3, e4). [2]

(c) We need three planes that meet along a common line. One example is to take

P =


xy
z

 ∈ R3 | y = z

 Q =


xy
z

 ∈ R3 | y = 0

 R =


xy
z

 ∈ R3 | y = −z

 ,

so

P ∩Q ∩R =


xy
z

 ∈ R3 | y = z = 0

 = the x-axis .[3]
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(4) Put

v1 =


1
1
0
1

 v2 =


2
2
−1
0

 u1 =


1
2
2
−1

 u2 =


2
2
2
−1


and V = span(v1, v2) and W = ann(u1, u2).

(a) Find the canonical basis for V . (4 marks)

(b) Find the canonical basis for W . (6 marks)

(c) Find the canonical basis for V +W . (5 marks)

(d) Find vectors c1 and c2 such that V = ann(c1, c2). (5 marks)

(e) Find the canonical basis for V ∩W . (5 marks)

Solution:

(a) To find the canonical basis for V we perform the following row-reduction:[
vT1
vT2

]
[1] =

[
1 1 0 1
2 2 −1 0

]
→
[
1 1 0 1
0 0 −1 −2

]
→
[
1 1 0 1
0 0 1 2

]
[1]

From this we see that the canonical basis is (a1, a2) where a1 and a2 are the transposes of
the rows of the above matrix, namely

a1 =


1
1
0
1

 a2 =


0
0
1
2

 .[2]
(b) Next, W is the set of vectors x satisfying x.u1 = 0 and x.u2 = 0, or equivalently

−x4 + 2x3 + 2x2 + 2x1 = 0

−x4 + 2x3 + 2x2 + x1 = 0[2]

Solving these in the standard way gives x1 = 0 and x4 = 2x3 + 2x2 with x3 and x2 arbitrary
[1], so

x =


0
x2
x3

2x3 + 2x2

 = x2


0
1
0
2

+ x3


0
0
1
2

 .[1]
From this we see that the following matrices form the canonical basis for W :

b1 =


0
1
0
2

 b2 =


0
0
1
2

 .[2]
(c) It follows that V +W = span(a1, a2, b1, b2) [1], but we can omit b2 because it is the same as

a2. To make this canonical we perform the following row-reduction: aT1
aT2
bT1

 [2] =

1 1 0 1
0 0 1 2
0 1 0 2

→
1 0 0 −1

0 0 1 2
0 1 0 2

→
1 0 0 −1

0 1 0 2
0 0 1 2

 .[1]
This shows that the canonical basis for V +W consists of the vectors[

1 0 0 −1
]T [

0 1 0 2
]T [

0 0 1 2
]T
.[1]

7



(d) If x is a vector that annihilates the space V = span(v1, v2), we must have x.v1 = x.v2 = 0,
or equivalently

x4 + x2 + x1 = 0

−x3 + 2x2 + 2x1 = 0.[1]

This gives x4 = −x2 − x1 and x3 = 2x2 + 2x1 with x1 and x2 arbitrary, so

x =


x1
x2

2x1 + 2x2
−x1 − x2

 = x1


1
0
2
−1

+ x2


0
1
2
−1

 .[2]
The standard methods now tell us that V = ann(c1, c2), where

c1 =


1
0
2
−1

 c2 =


0
1
2
−1

 .[2]
(e) We now have V ∩W = ann(c1, c2) ∩ ann(u1, u2) = ann(c1, c2, u1, u2) [1]. In other words,

V ∩W is the set of solutions to the equations x.c1 = 0 and x.c2 = 0 and x.u1 = 0 and
x.u2 = 0, or equivalently

−x4 + 2x3 + x1 = 0

−x4 + 2x3 + x2 = 0

−x4 + 2x3 + 2x2 + 2x1 = 0

−x4 + 2x3 + 2x2 + x1 = 0.[1]

Subtracting the first two equations gives x1 = x2, and subtracting the last two gives x1 = 0,
so we also have x2 = 0. Given this, everything else reduces easily to the equation x4 = 2x3
[1]. We thus have

x =


0
0
x3
2x3

 = x3


0
0
1
2

 = x3a2.[1]

It follows that the vector a2 on its own is the canonical basis for V ∩W . [1]

(Note: this could have been obtained more directly. From parts (a) and (b) it is clear that
the vector a2 (which is the same as b2) lies in V ∩W , so the subspace Ra2 is contained in
V ∩W . If V ∩W were any bigger than this, it would have dimension 2 and so would be the
same as V and W , so we would have V = W , which is false because the canonical bases of
V and W are different. We must therefore have V ∩W = Ra2.)
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(5) Consider the matrix

A =


1 1 2 2
1 1 2 2
2 2 1 1
2 2 1 1

 .
You may assume that det(A− tI) = t4 − 4t3 − 12t2.

(a) Find the eigenvalues of A. (2 marks)

(b) Find an orthonormal basis of R4 consisting of eigenvectors of A. (14 marks)

(c) Find an orthogonal matrix P and a diagonal matrix D such that A = PDPT . (4 marks)

(d) Express the quadratic form

Q = w2 + x2 + y2 + z2 + 2(wx+ yz) + 4(wy + wz + xy + xz)

as Q = F 2 − G2, where F and G are linear forms. Hence express Q as a product of two
linear forms. (5 marks)

Solution:

(a) The characteristic polynomial factorises as χA(t) = t2(t2− 4t− 12) = t2(t− 6)(t+ 2), so the
eigenvalues are 0, 6 and −2. [2]

(b) It is easy to see that a vector
[
w x y z

]T
is an eigenvector of eigenvalue 0 if and only if

w+ x+ 2y + 2z = 2w+ 2x+ y + z = 0 [2], which reduces to x = −w and z = −y [1]. If we
put

u1 =
[
1/
√

2 −1/
√

2 0 0
]T

u2 =
[
0 0 1/

√
2 −1/

√
2
]T

then u1 and u2 are orthonormal and are eigenvectors of eigenvalue 0 [2].

Next, to find an eigenvector of eigenvalue 6 we row-reduce the matrix A− 6I [1]:
−5 1 2 2
1 −5 2 2
2 2 −5 1
2 2 1 −5

→


0 −24 12 12
1 −5 2 2
0 12 −9 −3
0 12 −3 −9

→


0 −24 12 12
1 −5 2 2
0 12 −9 −3
0 0 6 −6



→


0 −24 0 24
1 −5 0 4
0 12 0 −12
0 0 1 −1

→


0 1 0 −1
1 −5 0 4
0 0 0 0
0 0 1 −1

→


1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 0

 [2].

From this we see that the eigenvectors of eigenvalue 6 are the vectors of the form a =[
w w w w

]T
[1]. We note that ‖a‖ =

√
w2 + w2 + w2 + w2 =

√
4w2 = 2|w|. To get a

unit vector we take w = 1/2 giving

u3 =
[
1
2

1
2

1
2

1
2

]T
.[1]

Finally, to find an eigenvector of eigenvalue −2 we row-reduce the matrix A+ 2I:
3 1 2 2
1 3 2 2
2 2 3 1
2 2 1 3

→


0 −8 −4 −4
1 3 2 2
0 −4 −1 −3
0 −4 −3 −1

→


0 1 1/2 1/2
1 3 2 2
0 0 1 −1
0 0 −1 1



9



→


0 1 0 1
1 3 0 4
0 0 1 −1
0 0 0 0

→


1 0 0 1
0 1 0 1
0 0 1 −1
0 0 0 0

 [2]

From this we see that the eigenvectors of eigenvalue −2 are the vectors
[
w x y z

]T
satis-

fying w+z = x+z = y−z = 0, or in other words the vectors of the form
[
w w −w −w

]T
[1]. To get a unit vector we again take w = 1/2, giving

u4 =
[
1
2

1
2 − 1

2 − 1
2

]T
.[1]

It is standard that when a and b are eigenvectors of a symmetric matrix with distinct
eigenvalues, we have a.b = 0. This gives u1.u3 = u1.u4 = u2.u3 = u2.u4 = u3.u4 = 0, and
the remaining identity u1.u2 = 0 is clear by inspection (as are the others, in fact). Thus, we
have an orthonormal basis of eigenvectors.

(c) The general theory tells us that we can take

P =

 u1 u2 u3 u4

 =


1/
√

2 0 1/2 1/2

−1/
√

2 0 1/2 1/2

0 1/
√

2 1/2 −1/2

0 −1/
√

2 1/2 −1/2

 [2]

D =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 =


0 0 0 0
0 0 0 0
0 0 6 0
0 0 0 −2

 [2]

(d) We have Q = aTAa, where a =
[
w x y z

]T
. It is standard that with an orthonormal

sequence of eigenvectors as above, we have Q =
∑

i λi(ui.a)2. In our case λ1 = λ2 = 0 so
this reduces to

Q = 6(u3.a)2 − 2(u4.a)2[2] = (
√

6(w + x+ y + z)/2)2 − (
√

2(w + x− y − z)/2)2.[1]

We may thus take

F =
√

6(w + x+ y + z)/2

G =
√

2(w + x− y − z)/2.[1]

This in turn gives Q = LM , where

L = F +G =

√
6 +
√

2

2
(w + x) +

√
6−
√

2

2
(y + z)

M = F −G =

√
6−
√

2

2
(w + x) +

√
6 +
√

2

2
(y + z).[1]
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