Checking dependence by row-reduction

Method 8.8: Let $\mathcal{V} = v_1, \ldots, v_m$ be a list of vectors in \mathbb{R}^n . We can check whether this list is dependent as follows.

- (a) Form the $n \times m$ matrix $A = \begin{bmatrix} v_1 & \dots & v_m \end{bmatrix}$ whose columns are the vectors v_i .
- (b) Row reduce A to get another $n \times m$ matrix B in RREF.
- (c) If every column of *B* contains a pivot (so $B = \begin{bmatrix} I_m \\ 0_{(n-m)\times m} \end{bmatrix}$) then \mathcal{V} is independent.
- (d) If some column of B has no pivot, then the list \mathcal{V} is dependent.

Remark 8.9: If m > n then B is wide, so there cannot be a pivot in every column, so \mathcal{V} is automatically dependent and we need not do any more. (Any list of 5 vectors in \mathbb{R}^3 is dependent, any list of 10 vectors in \mathbb{R}^9 is dependent, and so on.)

Linear independence

Definition 8.1: Let $\mathcal{V} = v_1, \ldots, v_k$ be a list of vectors in \mathbb{R}^n . A *linear relation* between the v_i is a relation of the form , where $\lambda_1, \ldots, \lambda_k$ are scalars.

For any list we have the trivial linear relation There may or may not be any nontrivial linear relations.

If \mathcal{V} has a nontrivial linear relation, we say that it is *(linearly)* If the only linear relation on \mathcal{V} is the trivial one, we instead say that \mathcal{V} is *(linearly)*.

Example 8.4: The following list \mathcal{U} is

 $u_1 = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^T$ $u_2 = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}^T$ $u_3 = \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}^T$

Indeed, consider a linear relation $\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3 = 0$. This gives

As the only linear relation is the trivial one, we see that $\ensuremath{\mathcal{U}}$ is

Spanning

Definition 9.1: Suppose we have a list $\mathcal{V} = v_1, \ldots, v_m$ of vectors in \mathbb{R}^n . Then \mathcal{V} spans \mathbb{R}^n if every vector in \mathbb{R}^n

 $v_1,\ldots,v_m.$

Example : Consider the list $U = u_1, u_2, u_3$, where

$$u_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
 $u_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ $u_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$

For any vector $v = \begin{bmatrix} x & y & z \end{bmatrix}^T \in \mathbb{R}^3$ we can put

$$\lambda_1 = \frac{x+y-z}{2}$$
 $\lambda_2 = \frac{x-y+z}{2}$ $\lambda_3 = \frac{-x+y+z}{2}$

and we find that $v = \lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3$. This shows that \mathcal{U} spans \mathbb{R}^3 .

Checking spanning by row-reduction

(a) Form the
$$m \times n$$
 matrix $C = \begin{bmatrix} v_1' \\ \vdots \\ v_m^T \end{bmatrix}$ whose rows are the v_i^T .

- (b) Row reduce C to get another $m \times n$ matrix D in RREF.
- (c) If every column of D contains a pivot (so $D = \begin{bmatrix} I_n \\ 0_{(m-n) \times n} \end{bmatrix}$) then \mathcal{V} spans \mathbb{R}^n .

(d) If some column of D has no pivot, then the list \mathcal{V} does not span \mathbb{R}^n .

Remark 9.9: If m < n then D is wide, so there cannot be a pivot in every column, so \mathcal{V} cannot span and we need not do any more.

(No list of 3 vectors can span $\mathbb{R}^6,$ no list of 10 vectors can span $\mathbb{R}^{42},$ and so on.)

Bases

Definition 10.1: A basis for \mathbb{R}^n is a linearly independent list of vectors in \mathbb{R}^n that also spans \mathbb{R}^n .

Remark 10.2: Any basis for \mathbb{R}^n must contain precisely *n* vectors. Indeed, we saw before that a linearly independent list can contain at most *n* vectors, that a spanning list must contain at least *n* vectors. As a basis has both these properties, it must contain precisely *n* vectors.

Basis example

Consider the list $\mathcal{U} = (u_1, u_2, u_3)$, where

$$u_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 $u_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ $u_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

For an arbitrary vector $v = \begin{bmatrix} x & y & z \end{bmatrix}^T$ we have

$$(a-b)u_1+(b-c)u_2+cu_3=\begin{bmatrix} 0\\0\\0\end{bmatrix}+\begin{bmatrix} 0\\0\end{bmatrix}+\begin{bmatrix} a\\b\\c\end{bmatrix}=v,$$

which expresses v as a linear combination of u_1 , u_2 and u_3 . This shows that \mathcal{U} spans \mathbb{R}^3 . Now suppose we have a linear relation $\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3 = 0$. This means that

 $\begin{bmatrix} \lambda_1 + \lambda_2 + \lambda_3 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$

from which we read off that $\lambda_3 = 0$, then that $\lambda_2 = 0$, then that $\lambda_1 = 0$. This means that the only linear relation on \mathcal{U} is the trivial one, so \mathcal{U} is linearly independent. As it also spans, we conclude that \mathcal{U} is a basis.

Basis criterion

Proposition 10.4: Given
$$\mathcal{V} = (v_1, \dots, v_n)$$
 in \mathbb{R}^n , put

$$A = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} \in M_{n \times n}(\mathbb{R})$$

Then \mathcal{V} is a basis iff $A\lambda = x$ has a **unique** solution for every $x \in \mathbb{R}^n$. Proof: Suppose that \mathcal{V} is a basis. In particular, this means that any vector $x \in \mathbb{R}^n$ can be expressed as a linear combination $x = \lambda_1 v_1 + \cdots + \lambda_n v_n$.

Thus, if we form the vector $\lambda = \begin{bmatrix} \lambda_1 & \cdots & \lambda_n \end{bmatrix}^T$, we have

$$A\lambda = \left[\begin{array}{c|c} v_1 & \cdots & v_n \end{array}\right] \left[\begin{array}{c} \lambda_1 \\ \vdots \\ \lambda_n \end{array}\right] = \lambda_1 v_1 + \cdots + \lambda_n v_n = x,$$

so λ is a solution to $A\lambda = x$. Suppose that μ is also a solution, so

$$\mu_1 \mathbf{v}_1 + \cdots + \mu_n \mathbf{v}_n = \mathbf{x}.$$

By subtracting this from the earlier equation, we get

$$(\lambda_1-\mu_1)\mathbf{v}_1+\cdots+(\lambda_n-\mu_n)\mathbf{v}_n=\mathbf{0}.$$

This is a linear relation on the independent list \mathcal{V} , so it must be the trivial one, so the coefficients $\lambda_i - \mu_i$ are zero, so $\lambda = \mu$. In other words, λ is the **unique** solution to $A\lambda = x$, as required.

Basis criterion

Proposition 10.4: Given $\mathcal{V} = (v_1, \dots, v_n)$ in \mathbb{R}^n , put

$$A = \left| \begin{array}{c} v_1 \\ \cdots \\ v_n \end{array} \right| \in M_{n \times n}(\mathbb{R})$$

Then $\overline{\mathcal{V}}$ is a basis iff $\overline{\mathcal{A}}\lambda = x$ has a **unique** solution for every $x \in \mathbb{R}^n$.

We now need to prove the converse. Suppose that for every $x \in \mathbb{R}^n$, the equation $A\lambda = x$ has a unique solution. Equivalently, for every $x \in \mathbb{R}^n$, there is a unique sequence of coefficients $\lambda_1, \ldots, \lambda_n$ such that $\lambda_1 v_1 + \ldots + \lambda_n v_n = x$. Firstly, we can temporarily ignore the uniqueness, and just note that every element $x \in \mathbb{R}^n$ can be expressed as a linear combination of v_1, \ldots, v_n . This means that the list \mathcal{V} spans \mathbb{R}^n . Next, consider the case x = 0. The equation $A\lambda = 0$ has $\lambda = 0$ as one solution. By assumption, the equation $A\lambda = 0$ has a unique solution, so $\lambda = 0$ is the only solution. Using the standard equation for $A\lambda$, we can restate this as follows: the only sequence $(\lambda_1, \ldots, \lambda_n)$ for which $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$ is the sequence $(0, \ldots, 0)$. In other words, the only linear relation on \mathcal{V} is the trivial one. This means that \mathcal{V} is linearly independent, and it also spans \mathbb{R}^n , so it is a basis.

Basis example

Consider the vectors

[1]	[3]	[1]	[1]	[5
2	2	1	3	3
$v_1 = 3 $	$v_2 = 1 $	$v_3 = 1 $	$v_4 = 5$	$v_5 = 1$
2	2	1	3	3
[1]	[3]	$\lfloor 1 \rfloor$	$\lfloor 1 \rfloor$	5

To decide whether they form a basis, we construct the corresponding matrix A and start row-reducing it:

Γ1	3	1	1	5		[1	3	1	1	5		[1	3	1	1	5
2				3		0	-4	$^{-1}$	1	-7		0	-4	$^{-1}$	1	-7
3				1	\rightarrow	0	-8	-2	2	-14	\rightarrow	0	0	0	0	0
2				3		0	-4	-1	1	-7		0	0	0	0	0
L1	3	1	1	5_		0	0	0	0	0		[0	0	0	0	0

Already after the first step we have a row of zeros, and it is clear that we will still have a row of zeros after we complete the row-reduction, so A does not reduce to the identity matrix, so the vectors v_i do not form a basis.

Method to check for a basis

- Let $\mathcal{V} = (v_1, \ldots, v_m)$ be a list of vectors in \mathbb{R}^n .
- (a) If $m \neq n$ then \mathcal{V} is not a basis.
- (b) If m = n then we form the matrix

$$A = \left[\begin{array}{c|c} v_1 & \dots & v_m \end{array} \right]$$

and row-reduce it to get a matrix B.

(c) If $B = I_n$ then \mathcal{V} is a basis; otherwise, it is not.

Proof:

- (a) Has been discussed already: any basis of \mathbb{R}^n has *n* vectors.
- (b) If $A \to I_n$ then the same steps give $[A|x] \to [I_n|x']$, then $\lambda = x'$ is the unique solution to $A\lambda = x$. Thus \mathcal{V} is a basis.
- (c) If $A \rightarrow B \neq I_n$ then B cannot have a pivot in every column. By our method for checking independence, the list V is dependent and so is not a basis.

Basis example

Consider the vectors

$$p_{1} = \begin{bmatrix} 1 \\ 1 \\ 11 \\ 1 \end{bmatrix} \qquad p_{2} = \begin{bmatrix} 1 \\ 11 \\ 1 \\ 11 \end{bmatrix} \qquad p_{3} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 11 \end{bmatrix} \qquad p_{4} = \begin{bmatrix} 1 \\ 11 \\ 11 \\ 11 \end{bmatrix}$$

To decide whether they form a basis, we construct the corresponding matrix *A* and row reduce it:

Coefficients in terms of a basis

Suppose that the list $\mathcal{V} = v_1, \ldots, v_n$ is a basis for \mathbb{R}^n , and that w is another vector in \mathbb{R}^n . By the very definition of a basis, it must be possible to express w (in a unique way) as a linear combination $w = \lambda_1 v_1 + \cdots + \lambda_n v_n$. If we want to find the coefficients λ_i , we can use the following:

Method 10.8: Let $\mathcal{V} = v_1, \ldots, v_n$ be a basis for \mathbb{R}^n , and let w be another vector in \mathbb{R}^n .

(a) Let *B* be the matrix

$$B = \begin{bmatrix} v_1 & \cdots & v_n & w \end{bmatrix} \in M_{n \times (n+1)}(\mathbb{R}).$$

(b) Let B' be the RREF form of B. Then B' will have the form $[I_n|\lambda]$ for some column vector

$$\lambda = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix}.$$

(c) Now $w = \lambda_1 v_1 + \cdots + \lambda_n v_n$.

It is clear from our recent discussion that this is valid.

Example of coefficients in terms of a basis

We will express $q = \begin{bmatrix} 0.9 & 0.9 & 0 & 10.9 \end{bmatrix}^T$ in terms of the basis p_1, p_2, p_3, p_4 in the previous example. We form the relevant augmented matrix, and apply the same row-reduction steps as before, except that we now have an extra column.

Example of coefficients in terms of a basis

One can check that the vectors u_1 , u_2 , u_3 and u_4 below form a basis for \mathbb{R}^4 .

<i>u</i> ₁ =	$\begin{bmatrix} 1\\ 1/2 \end{bmatrix}$	$\begin{bmatrix} 1/2\\ 1/3 \end{bmatrix}$	$\begin{bmatrix} 1/3\\ 1/4 \end{bmatrix}$	1/4 1/5	
	1/3 1/4	$u_2 = \begin{bmatrix} 1/4 \\ 1/5 \end{bmatrix}$	$u_3 = \begin{bmatrix} 1/5 \\ 1/6 \end{bmatrix}$	$u_4 = \begin{vmatrix} 1/6 \\ 1/7 \end{vmatrix}$	$v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

We would like to express v in terms of this basis. The matrix formed by the vectors u_i is called the *Hilbert matrix*; it is notoriously hard to row-reduce. We will therefore use Maple.

Example of coefficients in terms of a basis

with(LinearAlgebra): RREF := ReducedRowEchelonForm; u[1] := <1,1/2,1/3,1/4>; u[2] := <1/2,1/3,1/4,1/5>; u[3] := <1/3,1/4,1/5,1/6>; u[4] := <1/4,1/5,1/6,1/7>; v := <1,1,1,1>; B := <u[1]|u[2]|u[3]|u[4]|v>; RREF(B);

1	1/2	1/3	1/4	1		1	0	0	0	-4	
1/2	1/3	1/4	1/5	1		0	1	0	0	60	
1/3	1/4	1/5	1/6	1	\rightarrow	0	0	1	0	-180	·
1/4	1/5	1/6	1/7	1		0	0	0	1	140	

We conclude that

$$v = -4u_1 + 60u_2 - 180u_3 + 140u_4.$$

Duality for bases

Proposition 10.11: Let A be an $n \times n$ matrix. Then the columns of A form a basis for \mathbb{R}^n if and only if the columns of A^T form a basis for \mathbb{R}^n .

Proof.

Recall:

- The colums of A span iff the columns of A^T are
- The columns of A are independent iff the columns of A^{T}
- ► A list is a basis iff

The claim is clear from this.

Numerical criteria

Proposition 10.12: Let \mathcal{V} be a list of *n* vectors in \mathbb{R}^n (so the number of vectors is the same as the number of entries in each vector).

- (a) If the list is linearly independent then it also spans, and so is a basis.
- (b) If the list spans then it is also linearly independent, and so is a basis.

Proof.

- Let A be the matrix whose columns are the vectors in \mathcal{V} .
- (a) Suppose that V is linearly independent. Let B be the matrix obtained by row-reducing A. By the standard method for checking (in)dependence, B must have a pivot in every column. As B is also square, we must have
 It follows that V is a basis.
- (b) Suppose instead that V (which is the list of columns of A) spans Rⁿ. By duality, we conclude that the columns of A^T are linearly independent. Now A^T has n columns, so we can apply part (a) to deduce that the columns of A^T form a basis. By duality again, the columns of A must form a basis as well.