
Lecture 5 Linear independence

Definition 8.1: Let V = v1, . . . , vk be a list of vectors in Rn.
A linear relation between the vi is a relation of the form
λ1v1 + · · ·+ λkvk = 0 , where λ1, . . . , λk are scalars.

For any list we have the trivial linear relation 0v1 + 0v2 + · · ·+ 0vk = 0 .
There may or may not be any nontrivial linear relations.

If V has a nontrivial linear relation, we say that it is (linearly) dependent .

If the only linear relation on V is the trivial one, we instead say that V is

(linearly) independent .

Example 8.4: The following list U is independent :

u1 =
[
1 1 0 0

]T
u2 =

[
0 1 1 0

]T
u3 =

[
0 0 1 1

]T
Indeed, consider a linear relation λ1u1 + λ2u2 + λ3u3 = 0. This gives

λ1

λ1 + λ2

λ2 + λ3

λ3

 =


0
0
0
0

 ; λ1 = 0 ; λ3 = 0 ; λ1 + λ2 = 0 ; λ2 = 0 .

As the only linear relation is the trivial one, we see that U is independent .

Checking dependence by row-reduction

Method 8.8: Let V = v1, . . . , vm be a list of vectors in Rn.
We can check whether this list is dependent as follows.

(a) Form the n ×m matrix A =

 v1 . . . vm

 whose columns are the

vectors vi .

(b) Row reduce A to get another n ×m matrix B in RREF.

(c) If every column of B contains a pivot (so B =

[
Im

0(n−m)×m

]
) then V is

independent.

(d) If some column of B has no pivot, then the list V is dependent.

Remark 8.9: If m > n then B is wide, so there cannot be a pivot in every
column, so V is automatically dependent and we need not do any more.
(Any list of 5 vectors in R3 is dependent, any list of 10 vectors in R9 is
dependent, and so on.)

Spanning

Definition 9.1: Suppose we have a list V = v1, . . . , vm of vectors in Rn. Then

V spans Rn if every vector in Rn can be expressed as a linear combination of
v1, . . . , vm.

Example : Consider the list U = u1, u2, u3, where

u1 =

1
1
0

 u2 =

1
0
1

 u3 =

0
1
1

 .
For any vector v =

[
x y z

]T ∈ R3 we can put

λ1 =
x + y − z

2
λ2 =

x − y + z

2
λ3 =

−x + y + z

2

and we find that v = λ1u1 + λ2u2 + λ3u3. This shows that U spans R3.



Checking spanning by row-reduction

Method 9.7: Let V = v1, . . . , vm be a list of vectors in Rn.
We can check whether this list spans Rn as follows.

(a) Form the m × n matrix C =

 vT
1

...

vT
m

 whose rows are the vT
i .

(b) Row reduce C to get another m × n matrix D in RREF.

(c) If every column of D contains a pivot (so D =

[
In

0(m−n)×n

]
) then V

spans Rn.

(d) If some column of D has no pivot, then the list V does not span Rn.

Remark 9.9: If m < n then D is wide, so there cannot be a pivot in every
column, so V cannot span and we need not do any more.
(No list of 3 vectors can span R6, no list of 10 vectors can span R42, and so
on.)

Bases

Definition 10.1: A basis for Rn is a linearly independent list of vectors in Rn

that also spans Rn.

Remark 10.2: Any basis for Rn must contain precisely n vectors. Indeed, we
saw before that a linearly independent list can contain at most n vectors, that a
spanning list must contain at least n vectors. As a basis has both these
properties, it must contain precisely n vectors.

Basis example

Consider the list U = (u1, u2, u3), where

u1 =

1
0
0

 u2 =

1
1
0

 u3 =

1
1
1

 .
For an arbitrary vector v =

[
x y z

]T
we have

(a− b)u1 + (b − c)u2 + cu3 =

 a− b

0
0

+

 b − c

b − c

0

+

 c
c
c

 =

ab
c

 = v ,

which expresses v as a linear combination of u1, u2 and u3. This shows that U
spans R3. Now suppose we have a linear relation λ1u1 + λ2u2 + λ3u3 = 0. This
means that λ1 + λ2 + λ3

λ2 + λ3

λ3

 =

0
0
0

 ,
from which we read off that λ3 = 0, then that λ2 = 0, then that λ1 = 0. This

means that the only linear relation on U is the trivial one, so U is linearly
independent. As it also spans, we conclude that U is a basis.

Basis criterion

Proposition 10.4: Given V = (v1, . . . , vn) in Rn, put

A =

 v1 . . . vn

 ∈ Mn×n(R)

Then V is a basis iff Aλ = x has a unique solution for every x ∈ Rn. Proof:
Suppose that V is a basis. In particular, this means that any vector x ∈ Rn can
be expressed as a linear combination x = λ1v1 + · · ·+ λnvn.

Thus, if we form the vector λ =
[
λ1 · · · λn

]T
, we have

Aλ =

 v1 · · · vn


λ1

...
λn

 = λ1v1 + · · ·+ λnvn = x ,

so λ is a solution to Aλ = x . Suppose that µ is also a solution, so

µ1v1 + · · ·+ µnvn = x .

By subtracting this from the earlier equation, we get

(λ1 − µ1)v1 + · · ·+ (λn − µn)vn = 0.

This is a linear relation on the independent list V, so it must be the trivial one,
so the coefficients λi − µi are zero, so λ = µ. In other words, λ is the unique
solution to Aλ = x , as required.



Basis criterion

Proposition 10.4: Given V = (v1, . . . , vn) in Rn, put

A =

 v1 . . . vn

 ∈ Mn×n(R)

Then V is a basis iff Aλ = x has a unique solution for every x ∈ Rn.

We now need to prove the converse. Suppose that for every x ∈ Rn, the
equation Aλ = x has a unique solution. Equivalently, for every x ∈ Rn, there is
a unique sequence of coefficients λ1, . . . , λn such that λ1v1 + . . .+ λnvn = x .
Firstly, we can temporarily ignore the uniqueness, and just note that every
element x ∈ Rn can be expressed as a linear combination of v1, . . . , vn. This
means that the list V spans Rn. Next, consider the case x = 0. The equation
Aλ = 0 has λ = 0 as one solution. By assumption, the equation Aλ = 0 has a
unique solution, so λ = 0 is the only solution. Using the standard equation for
Aλ, we can restate this as follows: the only sequence (λ1, . . . , λn) for which
λ1v1 + · · ·+ λnvn = 0 is the sequence (0, . . . , 0). In other words, the only linear
relation on V is the trivial one. This means that V is linearly independent, and
it also spans Rn, so it is a basis.

Method to check for a basis

Let V = (v1, . . . , vm) be a list of vectors in Rn.

(a) If m 6= n then V is not a basis.

(b) If m = n then we form the matrix

A =

 v1 . . . vm


and row-reduce it to get a matrix B.

(c) If B = In then V is a basis; otherwise, it is not.

Proof:

(a) Has been discussed already: any basis of Rn has n vectors.

(b) If A→ In then the same steps give [A|x ]→ [In|x ′], then λ = x ′ is the
unique solution to Aλ = x . Thus V is a basis.

(c) If A→ B 6= In then B cannot have a pivot in every column. By our
method for checking independence, the list V is dependent and so is not a
basis.

Basis example

Consider the vectors

v1 =


1
2
3
2
1

 v2 =


3
2
1
2
3

 v3 =


1
1
1
1
1

 v4 =


1
3
5
3
1

 v5 =


5
3
1
3
5


To decide whether they form a basis, we construct the corresponding matrix A
and start row-reducing it:

1 3 1 1 5

2 2 1 3 3

3 1 1 5 1

2 2 1 3 3
1 3 1 1 5

→


1 3 1 1 5
0 −4 −1 1 −7
0 −8 −2 2 −14
0 −4 −1 1 −7
0 0 0 0 0

→


1 3 1 1 5
0 −4 −1 1 −7
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Already after the first step we have a row of zeros, and it is clear that we will
still have a row of zeros after we complete the row-reduction, so A does not
reduce to the identity matrix, so the vectors vi do not form a basis.

Basis example

Consider the vectors

p1 =


1
1

11
1

 p2 =


1

11
1

11

 p3 =


1
1
1

11

 p4 =


1

11
11
11


To decide whether they form a basis, we construct the corresponding matrix A
and row reduce it:

1 1 1 1
1 11 1 11

11 1 1 11
1 11 11 11

 →


1 1 1 1
0 10 0 10
0 −10 −10 0
0 10 10 10

 →


1 1 1 1
0 1 0 1
0 1 1 0
0 1 1 1

 →


1 1 1 1
0 1 0 1
0 1 1 0
0 0 0 1

 →


1 1 1 1
0 1 0 1
0 0 1 −1
0 0 0 1

 →


1 0 1 0
0 1 0 1
0 0 1 −1
0 0 0 1


After a few more steps, we obtain the identity matrix . It follows that the list

p1, p2, p3, p4 is a basis .



Coefficients in terms of a basis

Suppose that the list V = v1, . . . , vn is a basis for Rn, and that w is another
vector in Rn. By the very definition of a basis, it must be possible to express w
(in a unique way) as a linear combination w = λ1v1 + · · ·+ λnvn. If we want to
find the coefficients λi , we can use the following:

Method 10.8: Let V = v1, . . . , vn be a basis for Rn, and let w be another
vector in Rn.

(a) Let B be the matrix

B =
[
v1 · · · vn w

]
∈ Mn×(n+1)(R).

(b) Let B ′ be the RREF form of B. Then B ′ will have the form [In|λ] for some
column vector

λ =

λ1

...
λn

 .
(c) Now w = λ1v1 + · · ·+ λnvn.

It is clear from our recent discussion that this is valid.

Example of coefficients in terms of a basis

We will express q =
[
0.9 0.9 0 10.9

]T
in terms of the basis p1, p2, p3, p4 in

the previous example. We form the relevant augmented matrix, and apply the
same row-reduction steps as before, except that we now have an extra column.


1 1 1 1 0.9
1 11 1 11 0.9
11 1 1 11 0
1 11 11 11 10.9

 →


1 1 1 1 0.9
0 10 0 10 0
0 −10 −10 0 −9.9
0 10 10 10 10

 →


1 1 1 1 0.9
0 1 0 1 0
0 1 1 0 0.99
0 1 1 1 1

 →


1 1 1 1 0.9
0 1 0 1 0
0 1 1 0 0.99
0 0 0 1 0.01

 →


1 1 1 1 0.9
0 1 0 1 0
0 0 1 −1 0.99
0 0 0 1 0.01

 →


1 0 1 0 0.9
0 1 0 1 0
0 0 1 −1 0.99
0 0 0 1 0.01

 →


1 0 1 0 0.9
0 1 0 0 −0.01
0 0 1 0 1
0 0 0 1 0.01

 →


1 0 0 0 −0.1

0 1 0 0 −0.01

0 0 1 0 1

0 0 0 1 0.01



The final result is [I4|λ], where λ =
[
−0.1 −0.01 1 0.01

]T
. This

means that q can be expressed in terms of the vectors pi as follows:

q = −0.1 p1 − 0.01 p2 + p3 + 0.01 p4.

Example of coefficients in terms of a basis

One can check that the vectors u1, u2, u3 and u4 below form a basis for R4.

u1 =


1

1/2
1/3
1/4

 u2 =


1/2
1/3
1/4
1/5

 u3 =


1/3
1/4
1/5
1/6

 u4 =


1/4
1/5
1/6
1/7

 v =


1
1
1
1


We would like to express v in terms of this basis. The matrix formed by the
vectors ui is called the Hilbert matrix; it is notoriously hard to row-reduce.
We will therefore use Maple.

Example of coefficients in terms of a basis

with(LinearAlgebra):

RREF := ReducedRowEchelonForm;

u[1] := <1,1/2,1/3,1/4>;

u[2] := <1/2,1/3,1/4,1/5>;

u[3] := <1/3,1/4,1/5,1/6>;

u[4] := <1/4,1/5,1/6,1/7>;

v := <1,1,1,1>;

B := <u[1]|u[2]|u[3]|u[4]|v>;

RREF(B);
1 1/2 1/3 1/4 1

1/2 1/3 1/4 1/5 1
1/3 1/4 1/5 1/6 1
1/4 1/5 1/6 1/7 1

→


1 0 0 0 −4
0 1 0 0 60
0 0 1 0 −180
0 0 0 1 140

 .
We conclude that

v = −4u1 + 60u2 − 180u3 + 140u4.



Duality for bases

Proposition 10.11: Let A be an n × n matrix. Then the columns of A form
a basis for Rn if and only if the columns of AT form a basis for Rn.

Proof.
Recall:

I The colums of A span iff the columns of AT are independent .

I The columns of A are independent iff the columns of AT span .

I A list is a basis iff it is independent and also spans.

The claim is clear from this.

Numerical criteria

Proposition 10.12: Let V be a list of n vectors in Rn (so the number of
vectors is the same as the number of entries in each vector).

(a) If the list is linearly independent then it also spans, and so is a basis.

(b) If the list spans then it is also linearly independent, and so is a basis.

Proof.
Let A be the matrix whose columns are the vectors in V.

(a) Suppose that V is linearly independent. Let B be the matrix obtained by
row-reducing A. By the standard method for checking (in)dependence, B
must have a pivot in every column. As B is also square, we must have

B = In . It follows that V is a basis.

(b) Suppose instead that V (which is the list of columns of A) spans Rn. By
duality, we conclude that the columns of AT are linearly independent. Now
AT has n columns, so we can apply part (a) to deduce that the columns of
AT form a basis. By duality again, the columns of A must form a basis as
well.


