Lecture 11

Differential equations example

If $\dot{x} = Ax$, x = c at t = 0, $A = UDU^{-1}$, then $x = Ue^{Dt}U^{-1}c$ where $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ and $e^{Dt} = \operatorname{diag}(e^{\lambda_1 t}, \dots, e^{\lambda_n t})$.

Example 15.1: Suppose $\dot{x}_1 = x_1 + x_2 + x_3$; $\dot{x}_2 = 2x_2 + 2x_3$; $\dot{x}_3 = 3x_3$ with $x_1 = x_2 = 0$ and $x_3 = 1$ at t = 0. This can be written as $\dot{x} = Ax$, where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$
. By Example 14.6: $A = UDU^{-1}$, where

$$U = \begin{bmatrix} 1 & 1 & 3/2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 3/2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \qquad U^{-1} = \begin{bmatrix} 1 & -1 & 1/2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}.$$

So $x = Ue^{Dt}U^{-1}c$, where $c = \text{initial value} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$. Thus

$$x = \begin{bmatrix} 1 & 1 & 3/2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{t} & 0 & 0 \\ 0 & e^{2t} & 0 \\ 0 & 0 & e^{3t} \end{bmatrix} \begin{bmatrix} 1 & -1 & 1/2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} e^{t} & e^{2t} & \frac{3}{2}e^{3t} \\ 0 & e^{2t} & 2e^{3t} \\ 0 & 0 & e^{3t} \end{bmatrix} \begin{bmatrix} 1/2 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}e^{t} - 2e^{2t} + \frac{3}{2}e^{3t} \\ -2e^{2t} + 2e^{3t} \\ e^{3t} \end{bmatrix}.$$

Systems of differential equations

- If $\dot{x} = ax$ with x = c at t = 0, then $x = c e^{at}$.
- If $\dot{x}_i = a_i x_i$ with $x_i = c_i$ at t = 0 (for i = 1, 2, 3), then $x_i = c_i e^{a_i t}$
- ▶ Put

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad c = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} \qquad D = \begin{bmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{bmatrix} \qquad e^{Dt} = \begin{bmatrix} e^{a_1t} & 0 & 0 \\ 0 & e^{a_2t} & 0 \\ 0 & 0 & e^{a_3t} \end{bmatrix}$$

The equations are $\dot{x} = Dx$ with x = c at t = 0; the solution is $x = e^{Dt}c$.

▶ Suppose instead x = c at t = 0 with

$$\begin{array}{lll} \dot{x}_1 &= a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \\ \dot{x}_2 &= a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \\ \dot{x}_3 &= a_{31}x_1 + a_{32}x_2 + a_{33}x_3 \end{array} \quad \text{so } \dot{x} = Ax \text{ where } A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}.$$

▶ To solve this, diagonalise $A = UDU^{-1}$ with $D = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$ say, so $\dot{x} = UDU^{-1}x$. Put $y = U^{-1}x$ and $d = U^{-1}c$ so $\dot{y} = U^{-1}\dot{x} = DU^{-1}\dot{x} = Dy$, with y = d at t = 0. This gives $v = e^{Dt}d$. where

$$e^{Dt} = diag(e^{\lambda_1 t}, e^{\lambda_2 t}, e^{\lambda_3 t});$$

so
$$x = Uy = Ue^{Dt}d = Ue^{Dt}U^{-1}c$$
.

Differential equations example

Suppose $\dot{x} = \dot{y} = \dot{z} = x + y + z$ with x = z = 0 and y = 1 at t = 0.

Suppose
$$x = y = z = x + y + z$$
 with $x = z = 0$ and $y = 1$ at $t = 0$.
Thus $\dot{v} = Av$, where $v = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$; $v = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ at $t = 0$

The characteristic polynomial is

$$\chi_A(t) = \det egin{bmatrix} 1-t & 1 & 1 \ 1 & 1-t & 1 \ 1 & 1 & 1-t \end{bmatrix} = 3t^2-t^3=t^2(3-t).$$

Eigenvalues are $\lambda_1=0$, $\lambda_2=0$ and $\lambda_3=3$. If we put

$$u_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
 $u_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$ $u_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

we find that $Au_1 = Au_2 = 0$ and $Au_3 = 3u_3$. Thus, the vectors u_i form a basis for \mathbb{R}^3 consisting of eigenvectors for A. This means that we have a diagonalisation $A = UDU^{-1}$, where

$$U = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix} \qquad D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

Differential equations example

 $\dot{v} = UDU^{-1}v$ and v = c at t = 0 where

$$U = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix} \qquad D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix} \qquad c = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

We can find U^{-1} by the following row-reduction:

$$\left[\begin{array}{cc|cccc} 1 & 0 & 1 & 1 & 0 & 0 \\ -1 & 1 & 1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{array}\right] \rightarrow \left[\begin{array}{cccccccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 3 & 1 & 1 & 1 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{array}\right] \rightarrow$$

$$\left[\begin{array}{cc|ccc|c} 1 & 0 & 0 & 2/3 & -1/3 & -1/3 \\ 0 & 0 & 1 & 1/3 & 1/3 & 1/3 \\ 0 & -1 & 0 & -1/3 & -1/3 & 2/3 \end{array} \right] \rightarrow \left[\begin{array}{ccc|c} 1 & 0 & 0 & 2/3 & -1/3 & -1/3 \\ 0 & 1 & 0 & 1/3 & 1/3 & -2/3 \\ 0 & 0 & 1 & 1/3 & 1/3 & 1/3 \end{array} \right].$$

The conclusion is that

$$U^{-1} = rac{1}{3} egin{bmatrix} 2 & -1 & -1 \ 1 & 1 & -2 \ 1 & 1 & 1 \end{bmatrix}.$$

Another approach to the same problem

- Again consider $\dot{x} = \dot{y} = \dot{z} = x + y + z$ with x = z = 0, y = 1 at t = 0.
- ▶ Put a = x y. Subtracting $\dot{x} = x + y + z$ and $\dot{y} = x + y + z$ we get $\dot{a} = 0$, so a is constant. At t = 0 we have a = 0 1 = -1, so a = -1 for all t.
- Put b = y z. Subtracting $\dot{y} = x + y + z$ and $\dot{z} = x + y + z$ we get $\dot{b} = 0$, so b is constant. At t = 0 we have b = 1 0 = 1, so b = 1 for all t.
- Put c = x + y + z. Adding the equations $\dot{x} = c$ and $\dot{y} = c$ and $\dot{z} = c$ gives $\dot{c} = 3c$, so $c = c_0 e^{3t}$ for some constant c_0 . At t = 0 we have c = 0 + 1 + 0 = 1, so $c_0 = 1$, so $c = e^{3t}$.
- ▶ We now have x y = -1 and y z = 1 and $x + y + z = e^{3t}$. These can be solved algebraically to get

$$x = \frac{e^{3t} - 1}{3}$$
 $y = \frac{e^{3t} + 2}{3}$ $z = \frac{e^{3t} - 1}{3}$

as before.

Here we found appropriate quantities a, b and c by inspection. The eigenvalue method effectively does the same thing in a more systematic way.

Differential equations example

 $\dot{v} = UDU^{-1}v$ and v = c at t = 0 where

$$U = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix} \quad D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix} \quad U^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -1 & -1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{bmatrix} \quad c = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

The solution to our differential equation is now $v = Ue^{Dt}U^{-1}c$:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{3t} \end{bmatrix} \begin{bmatrix} 2 & -1 & -1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 1 & 0 & e^{3t} \\ -1 & 1 & e^{3t} \\ 0 & -1 & e^{3t} \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} (e^{3t} - 1)/3 \\ (e^{3t} + 2)/3 \\ (e^{3t} - 1)/3 \end{bmatrix}.$$

Solving difference equations

Problem: find a formula for the sequence where $a_0 = -1$, $a_1 = 0$, and $a_{i+2} = 6a_{i+1} - 8a_i$ for all i > 0.

$$a_2 = 6a_1 - 8a_0 = 6 \times 0 - 8 \times (-1) = 8$$

 $a_3 = 6a_2 - 8a_1 = 6 \times 8 - 8 \times 0 = 48$
 $a_4 = 6a_3 - 8a_2 = 6 \times 48 - 8 \times 8 = 224$ et

Vector formulation: put $v_i=egin{bmatrix} a_i \ a_{i+1} \end{bmatrix}\in\mathbb{R}^2$, so $v_0=egin{bmatrix} -1 \ 0 \end{bmatrix}$ and

$$v_{n+1} = \begin{bmatrix} a_{n+1} \\ a_{n+2} \end{bmatrix} = \begin{bmatrix} a_{n+1} \\ 6a_{n+1} - 8a_n \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -8 & 6 \end{bmatrix} \begin{bmatrix} a_n \\ a_{n+1} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -8 & 6 \end{bmatrix} v_n.$$

We write $A=\begin{bmatrix}0&1\\-8&6\end{bmatrix}$, so the above reads $v_{n+1}=Av_n$. Thus $v_1=Av_0$, $v_2=Av_1=A^2v_0$, $v_3=Av_2=A^3v_0$, $v_n=A^nv_0$.

We can be more explicit by finding the eigenvalues and eigenvectors of A.

Solving difference equations

$$v_n = \begin{bmatrix} a_n \\ a_{n+1} \end{bmatrix} = A^n v_0$$
 $A = \begin{bmatrix} 0 & 1 \\ -8 & 6 \end{bmatrix}$ $v_0 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$.

The characteristic polynomial is

$$\chi_A(t) = \det \begin{bmatrix} -t & 1 \\ -8 & 6-t \end{bmatrix} = t^2 - 6t + 8 = (t-2)(t-4),$$

so the eigenvectors are 2 and 4. Using the row-reductions

$$A - 2I = \begin{bmatrix} -2 & 1 \\ -8 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1/2 \\ 0 & 0 \end{bmatrix} \qquad A - 4I = \begin{bmatrix} -4 & 1 \\ -8 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1/4 \\ 0 & 0 \end{bmatrix}$$

we see that $u_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $u_2 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ are eigenvectors of eigenvalues 2 and 4 (forming a basis for \mathbb{R}^2). We now have a diagonalisation $A = UDU^{-1}$, where

$$U = \begin{bmatrix} u_1 | u_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix} \qquad D = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix} \qquad U^{-1} = \begin{bmatrix} 2 & -1/2 \\ -1 & 1/2 \end{bmatrix}.$$

This gives $v_n = A^n v_0 = UD^n U^{-1} v_0$.

Another difference equation

We will find the sequence satisfying $b_0 = 3$ and $b_1 = 6$ and $b_2 = 14$ and

$$b_{i+3} = 6b_i - 11b_{i+1} + 6b_{i+2}.$$

The vectors $v_i = \begin{bmatrix} b_i & b_{i+1} & b_{i+2} \end{bmatrix}^T$ satisfy $v_0 = \begin{bmatrix} 3 & 6 & 14 \end{bmatrix}^T$ and

$$v_{i+1} = \begin{bmatrix} b_{i+1} \\ b_{i+2} \\ b_{i+3} \end{bmatrix} = \begin{bmatrix} b_{i+1} \\ b_{i+2} \\ 6b_i - 11b_{i+1} + 6b_{i+2} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{bmatrix} \begin{bmatrix} b_i \\ b_{i+1} \\ b_{i+2} \end{bmatrix} = Bv_i.$$

It follows that $v_n = B^n v_0$ for all n, and b_n is the top entry in the vector v_n . Now diagonalise B. The characteristic polynomial is

$$\chi_B(t) = \det egin{bmatrix} -t & 1 & 0 \ 0 & -t & 1 \ 6 & -11 & 6 - t \end{bmatrix} = -t \det egin{bmatrix} -t & 1 \ -11 & 6 - t \end{bmatrix} - \det egin{bmatrix} 0 & 1 \ 6 & 6 - t \end{bmatrix}$$
 $= -t(t^2 - 6t + 11) - (-6) = 6 - 11t + 6t^2 - t^3 = (1 - t)(2 - t)(3 - t)$

so the eigenvalues are 1, 2 and 3.

Solving difference equations

$$v_n = \begin{bmatrix} a_n \\ a_{n+1} \end{bmatrix} = A^n v_0 = UD^n U^{-1} v_0$$

$$U = \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix} \qquad D = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix} \qquad U^{-1} = \begin{bmatrix} 2 & -1/2 \\ -1 & 1/2 \end{bmatrix} \qquad v_0 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}.$$

$$\begin{bmatrix} a_n \\ a_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 2^n & 0 \\ 0 & 4^n \end{bmatrix} \begin{bmatrix} 2 & -1/2 \\ -1 & 1/2 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} 2^n & 4^n \\ 2^{n+1} & 4^{n+1} \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4^n - 2^{n+1} \\ 4^{n+1} - 2^{n+2} \end{bmatrix}$$

Thus $a_n = 4^n - 2^{n+1} = 2^{2n} - 2^{n+1}$. We will check that this formula does indeed give the required properties:

$$a_0 = 2^0 - 2^1 = 1 - 2 = -1$$

$$a_1 = 2^2 - 2^2 = 0$$

$$6a_{i+1} - 8a_i = 6(2^{2i+2} - 2^{i+2}) - 8(2^{2i} - 2^{i+1}) = 24 \times 2^{2i} - 24 \times 2^i - 8 \times 2^{2i} + 16 \times 2^i$$

$$= 16 \times 2^{2i} - 8 \times 2^i = 2^{2i+4} - 2^{i+3} = 2^{2(i+2)} - 2^{(i+2)+1} = a_{i+2}.$$

Another difference equation

$$v_n = \begin{bmatrix} b_n \\ b_{n+1} \\ b_{n+2} \end{bmatrix} = B^n \begin{bmatrix} 3 \\ 6 \\ 14 \end{bmatrix}$$
 $B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{bmatrix}$ has eigenvalues 1, 2, 3.

Now find the eigenvectors:

$$B-I = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 6 & -11 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \qquad u_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$B-2I = \begin{bmatrix} -2 & 1 & 0 \\ 0 & -2 & 1 \\ 6 & -11 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1/4 \\ 0 & 1 & -1/2 \\ 0 & 0 & 0 \end{bmatrix} \qquad u_2 = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$B-3I = \begin{bmatrix} -3 & 1 & 0 \\ 0 & -3 & 1 \\ 6 & -11 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1/9 \\ 0 & 1 & -1/3 \\ 0 & 0 & 0 \end{bmatrix} \qquad u_3 = \begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix}.$$

$$B = UDU^{-1}$$
 where $U = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$ $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

Another difference equation

$$v_n = UD^nU^{-1}v_0$$
 $U = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$ $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ $v_0 = \begin{bmatrix} 3 \\ 6 \\ 14 \end{bmatrix}$

Find U^{-1} by the adjugate method:

$$m_{11} = 6$$
 $m_{12} = 6$ $m_{13} = 2$ $m_{21} = 5$ $m_{22} = 8$ $m_{23} = 3$ $m_{31} = 1$ $m_{32} = 2$ $m_{33} = 1$.

$$\operatorname{adj}(U) = \begin{bmatrix} +m_{11} & -m_{21} & +m_{31} \\ -m_{12} & +m_{22} & -m_{32} \\ +m_{13} & -m_{23} & +m_{33} \end{bmatrix} = \begin{bmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \\ 2 & -3 & 1 \end{bmatrix}.$$

$$\det(U) = 1m_{11} - 1m_{12} + 1m_{13} = 6 - 6 + 2 = 2.$$

$$U^{-1} = \frac{\operatorname{adj}(U)}{\det(U)} = \begin{bmatrix} 3 & -5/2 & 1/2 \\ -3 & 4 & -1 \\ 1 & -3/2 & 1/2 \end{bmatrix}.$$

A slightly different method

Find eigenvalues and eigenvectors as before:

$$\lambda_1 = 1$$

$$\lambda_2 = 2$$

$$\lambda_3 = 3$$

$$u_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$u_2 = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$u_3 = \begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix}$$

Recall $v_n = UD^nU^{-1}v_0$. We do not need all of U^{-1} , we only need $U^{-1}v_0$. This amounts to expressing v_0 as a linear combination of the columns u_i . For this we row-reduce $[u_1|u_2|u_3|v_0]$:

$$\left[\begin{array}{ccc|c} 1 & 1 & 1 & 3 \\ 1 & 2 & 3 & 6 \\ 1 & 4 & 9 & 14 \end{array}\right] \rightarrow \left[\begin{array}{ccc|c} 1 & 1 & 1 & 3 \\ 0 & 1 & 2 & 3 \\ 0 & 3 & 8 & 11 \end{array}\right] \rightarrow \cdots \rightarrow \left[\begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{array}\right].$$

The required coefficients appear in the last column: $v_0 = u_1 + u_2 + u_3$. This can also be seen by inspection.

As u_k is an eigenvector of eigenvalue k, we have $B^n u_k = k^n u_k$, so

$$v_n = B^n v_0 = B^n u_1 + B^n u_2 + B^n u_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + 2^n \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} + 3^n \begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix} = \begin{bmatrix} 1 + 2^n + 3^n \\ 1 + 2^{n+1} + 3^{n+1} \\ 1 + 2^{n+2} + 3^{n+2} \end{bmatrix}.$$

Moreover, b_n is the top entry in v_n , so we again conclude that

$$b_n = 1 + 2^n + 3^n$$
.

Another difference equation

$$v_n = UD^n U^{-1} v_0 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{bmatrix} \begin{bmatrix} 3 & -5/2 & 1/2 \\ -3 & 4 & -1 \\ 1 & -3/2 & 1/2 \end{bmatrix} \begin{bmatrix} 3 \\ 6 \\ 14 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2^n & 3^n \\ 1 & 2^{n+1} & 3^{n+1} \\ 1 & 2^{n+2} & 3^{n+2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1+2^n+3^n \\ 1+2^{n+1}+3^{n+1} \\ 1+2^{n+2}+3^{n+2} \end{bmatrix}.$$

Thus $b_n = 1 + 2^n + 3^n$. Check:

$$b_0 = 1 + 1 + 1 = 3$$
 $b_1 = 1 + 2 + 3 = 6$ $b_2 = 1 + 4 + 9 = 14$

$$6b_{i} - 11b_{i+1} + 6b_{i+2} = 6(1 + 2^{i} + 3^{i}) - 11(1 + 2^{i+1} + 3^{i+1}) + 6(1 + 2^{i+2} + 3^{i+2})$$

$$= (6 - 11 + 6) + (6 - 22 + 24)2^{i} + (6 - 33 + 54)3^{i}$$

$$= 1 + 8 \times 2^{i} + 27 \times 3^{i}$$

$$= 1 + 2^{i+3} + 3^{i+3} = b_{i+3}.$$

Fibonacci numbers

The Fibonacci numbers are given by $F_0=0$ and $F_1=1$ and $F_{n+2}=F_n+F_{n+1}$. The vectors $v_i=\begin{bmatrix}F_i\\F_{i+1}\end{bmatrix}$ therefore satisfy $v_0=\begin{bmatrix}0\\1\end{bmatrix}$ and

$$v_{n+1} = \begin{bmatrix} F_{n+1} \\ F_{n+2} \end{bmatrix} = \begin{bmatrix} F_{n+1} \\ F_n + F_{n+1} \end{bmatrix} = Av_n, \quad \text{where} \quad A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}.$$

It follows that $v_n=A^nv_0$. We have $\chi_A(t)=t^2-t-1$, which has roots $\lambda_1=(1+\sqrt{5})/2$ and $\lambda_2=(1-\sqrt{5})/2$. To find an eigenvector of eigenvalue λ_1 , we must solve

$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \lambda_1 \begin{bmatrix} x \\ y \end{bmatrix} \quad \text{or} \quad \begin{aligned} y &= \lambda_1 x \\ x + y &= \lambda_1 y \end{aligned}$$

Substituting $y = \lambda_1 x$ in $x + y = \lambda_1 y$ gives $x + \lambda_1 x = \lambda_1^2 x$, or $(\lambda_1^2 - \lambda_1 - 1)x = 0$, which is automatic, because λ_1 is a root of $t^2 - t - 1 = 0$.

Take x=1 to get an eigenvector $u_1=\begin{bmatrix}1\\\lambda_1\end{bmatrix}$ of eigenvalue $\lambda_1.$

Similarly, we have an eigenvector $u_2 = \begin{bmatrix} 1 \\ \lambda_2 \end{bmatrix}$ of eigenvalue λ_2 .

Fibonacci numbers

$$v_n = A^n \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 $u_k = \begin{bmatrix} 1 \\ \lambda_k \end{bmatrix}$ $Au_k = \lambda_k u_k$ $\lambda_1 = (1 + \sqrt{5})/2$ $\lambda_2 = (1 - \sqrt{5})/2$

We now need to find α and β such that $\alpha u_1 + \beta u_2 = v_0$, or equivalently

$$lpha egin{bmatrix} 1 \ \lambda_1 \end{bmatrix} + eta egin{bmatrix} 1 \ \lambda_2 \end{bmatrix} = egin{bmatrix} 0 \ 1 \end{bmatrix} \qquad ext{ or } \qquad eta & = -lpha \ lpha (\lambda_1 - \lambda_2) & = 1. \end{bmatrix}$$

Now $\lambda_1 - \lambda_2 = \sqrt{5}$ so $\alpha = 1/\sqrt{5}$ and $\beta = -1/\sqrt{5}$ and $v_0 = (u_1 - u_2)/\sqrt{5}$.

$$v_n = A^n v_0 = \frac{A^n u_1 - A^n u_2}{\sqrt{5}} = \frac{\lambda_1^n u_1 - \lambda_2^n u_2}{\sqrt{5}} = \frac{1}{\sqrt{5}} \begin{bmatrix} \lambda_1^n - \lambda_2^n \\ \lambda_1^{n+1} - \lambda_2^{n+1} \end{bmatrix}.$$

Moreover, F_n is the top entry in v_n , so we obtain the formula

$$F_n = rac{\lambda_1^n - \lambda_2^n}{\sqrt{5}} = rac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}}.$$

It is also useful to note here that $\lambda_1\simeq 1.618033988$ and $\lambda_2\simeq -0.6180339880$. As $|\lambda_1|>1$ and $|\lambda_2|<1$ we see that $|\lambda_1^n|\to\infty$ and $|\lambda_2^n|\to0$ as $n\to\infty$. When n is large we can neglect the λ_2 term and we have $F_n\simeq \lambda_1^n/\sqrt{5}$.