In R? and R3, lines and planes are important, especially through the origin. We
now discuss analogous structures in R”, where n may be bigger than 3.

Definition 19.1: A subset V C R" is a subspace if
(a) The zero vector is an element of V.

(b) Whenever v and w are two elements of V/, the sum v 4+ w is also an
element of V. (In other words, V is closed under addition.)

(c) Whenever v is an element of V and t is a real number, the vector tv is
again an element of V. (In other words, V is closed under scalar
multiplication.)

Subspace example Subspace non-examples

A subspace must contain 0, and be closed under addition and scalar

Consider the following subsets of R?:
multiplication.

I S . V1:Z2:{[X} €R2|xandyareintegers}
Let L be the line in R* with equation y = x/m. Y

L V2={{§]€R2|x§0§y}
v+w

0 % vgz{memflxzzf}:Hﬂewuziy}.

» The point 0= [0 0] lies on L.

» Suppose we have v,w € L, so v = [a a/Tr]T and w = [b b/ﬂT for

some numbers a and b. Then v+w = [a+ b (a+ b)/n] T, which again
lies on L. Thus, L is closed under addition.

» Suppose again that v € L, so v = [a a/7r] " for some a. Suppose also

. Lo . Vi V; V-
that t € R. Then tv = [ta ta/m] T, which again lies on L, so L is closed ! 2 3
under scalar multiplication.

So L is a subspace. None of these are subspaces.



V1 is not a subspace

Vi = {[ﬂ eR? | x and y are integers }

tvgVy

veVy

It is clear that the zero vector has integer coordinates and so lies in V;. Next, if
v and w both have integer coordinates then so does v 4+ w. In other words, if
v,w € Vi then also v + w € V4, so V; is closed under addition. However, it is

not closed under scalar multiplication. Indeed, if we take v = [(1)} and t =0.5

0
(This is generally the best way to prove that a set is not a subspace: provide a
completely specific and explicit example where one of the conditions is not
satisfied.)

then v € V4 and t € R but the vector tv = [ } does not lie in V;.

V3 is not a subspace

V3={{X] E]R2|x2:y2}
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X 2
= ceR | x== .
(] <=}
v+wg V3
w€V3.

It is again clear that 0 € V.

Now suppose we have v = [x ] TeVs(sox*=y?) and t €R.
It follows that (tx)? = t°x* = t2y? = (ty)?,

so the vector tv = [tx ty] again lies in Va.

This means that V3 is closed under scalar multiplication.
However, it is not closed under addition,

because the vectors v = {ﬂ and w = [711} lie in V3,

but v + w does not.

V5 is not a subspace
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As 0 <0 <0 we see that 0 € V5.

Suppose we have vectors v = [x y] Tand v/ = [x/ y'] "in Vo,
sox<0<yand x' <0<y’ Asx,x" <0 it follows that x + x’ < 0.

As y,y’ > 0 it follows that y + y’ > 0. This means that the sum

v4+v = [x +xy +y'] Tis again in Vs, so V5 is closed under addition.
However, it is not closed under scalar multiplication.

Indeed, if we take v = [~1 1] and t = —1 then v € V5 and t € R but the

vector tv = [1  —1] T does not lie in Vs.

Two extreme cases

(a) The set {0} (just consisting of the zero vector) is a subspace of R".
(b) The whole set R" is a subspace of itself.



Linear combinations in subspaces

Proposition 19.6: Let V be a subspace of R”. Then any linear combination
of elements of V is again in V.

Proof.

Suppose we have elements vi, ..., v, € V, and suppose that w is a linear
combination of the v;, say w = Z, Aivi for some A1,..., Ak €ER. Asv; € V
and A\; € R and V is closed under scalar multiplication we have Ajv; € V. Now
A1vi and A2vz are elements of V/, and V is closed under addition, so

Avi + Xave € V. Next, as \1vi + Xave € V and A\3vz3 € V and V is closed
under addition we have A\1vi + Aovs + A3v3 € V. By extending this in the
obvious way, we eventually conclude that the vector w = A\jvi + - -+ + Agvk lies

in V as claimed.
O

Subspaces of R?

Proposition 19.7: Let V be a subspace of R?. Then V is either {0} or all of
R? or a straight line through the origin.

Proof.
(a) If V ={0} then there is nothing more to say.

(b) Suppose that V contains two vectors v and w such that the list (v, w) is
linearly independent. As this is a linearly independent list of two vectors in
R2?, it must be a basis. Thus, every vector x € R? is a linear combination
of v and w, and therefore lies in V' by Proposition 19.6. Thus, we have
vV =R.

(c) Suppose instead that neither (a) nor (b) holds. As (a) does not hold, we
can choose a nonzero vector v € V. Let L be the set of all scalar multiples
of v, which is a straight line through the origin. As V is a subspace and
v € V we know that every multiple of v lies in V, or in other words that
L C V. Now let w be any vector in V. As (b) does not hold, the list
(v, w) is linearly dependent, so the Lemma 8.5 tells us that w is a multiple
of v and so lies in L. This shows that V C L, so V = L.

O

Dependent lists of length two

Lemma 8.5: Let v and w be vectors in R", and suppose that v # 0 and that
the list (v, w) is linearly dependent. Then there is a number « such that

w = V.

Proof.

Because the list is dependent, there is a linear relation Av + pw = 0 where A
and p are not both zero. There are apparently three possibilities:

(a) A#0and p #0;

(b) A=0and p #0;

(c) X#0and p=0.

However, case (c) is not really possible. Indeed, in case (c) the equation

Av + pw = 0 would reduce to Av = 0, and we could multiply by A™! to get

v = 0; but v # 0 by assumption. In case (a) or (b) we can take « = —\/p and
we have w = av. O

Subspace examples

Consider the set
U:{[W Xy Z]T€R4|2W—4x—7y+3z:1}.

This is not a subspace of R*. Indeed, as 2 x 0 —4x0—7x0+3x0#1 we
see that the zero vector is not an element of U. However, a subspace must
contain the zero vector, by definition.

Consider the set
V={[a b ] eR|P+b=c"}

The vectors u = [1 0 1] Tand v = [O 1 1] T are elements of V
(because 1> + 0% = 1% and 0° 4+ 1> = 1%) but the vector u+v = [1 1 2]T is

not an element of V (because 12 + 12 # 2?). This shows that V is not closed
under addition, so it is not a subspace of R>.

Consider the set ;
W={[x y] eR®|y=sin(x)}.

This is a subset of R? that is not {0} or R? or a straight line through the
origin, so it cannot be a subspace of R?.



Subspace examples

Consider the set

X 10
U=<{ly| eR®|10x+11y +12z=0p = {u e R®| u.c =0} c= |11
z 12

(a) As0.c =0, we have 0 € U.

(b) Suppose that u,v € U, so u.c = v.c =0. Then
(u+v)c=uc+vic=04+0=0,sou+veU.
Thus, U is closed under addition.

(c) Suppose that u € U and t € R. Then u.c =0, so (tu).c =t x0=0,
so tu € U. Thus, U is closed under scalar multiplication.

As U contains zero and is closed under addition and scalar multiplication, it is
a subspace of R3.

Subspace examples

Let V be the set of all vectors in R* that have the form
v =[1000s + ¢t 100s+ 10t 10s+ 100t s+ 1000t]

for some s, t € R.

» Taking s = t = 0, we see that the zero vector vy =[0 0 0 0] " is an
element of V.

» Taking s =2 and t = 4, we see that the vector
vi = [2004 240 420 4002]  is an element of V.

» Taking s =5 and t = 1, we see that the vector
Vo = [5001 510 150 1005} " is an element of V.

» Note that vi + v» = [7005 750 570 5007] T, which has the required
form with s =7 and t =5, so vi + v» € V. This illustrates (but does not
prove) the fact that V is closed under addition.

» Note that 2v; = [4008 480 840 8004]T, which has the required form
with s =4 and t = 8, so 2v; € V. This illustrates (but does not prove)
the fact that V is closed under scalar multiplication.



