Subspace example

A subspace must contain 0, and be closed under addition and scalar multiplication.

Let L be the line in \mathbb{R}^2 with equation $y = x/\pi$.

- ▶ The point $0 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ lies on L.
- ▶ Suppose we have $v, w \in L$, so $v = \begin{bmatrix} a & a/\pi \end{bmatrix}^T$ and $w = \begin{bmatrix} b & b/\pi \end{bmatrix}^T$ for some numbers a and b. Then $v + w = \begin{bmatrix} a + b & (a + b)/\pi \end{bmatrix}^T$, which again lies on L. Thus, L is closed under addition.
- ▶ Suppose again that $v \in L$, so $v = \begin{bmatrix} a & a/\pi \end{bmatrix}^T$ for some a. Suppose also that $t \in \mathbb{R}$. Then $tv = \begin{bmatrix} ta & ta/\pi \end{bmatrix}^T$, which again lies on L, so L is closed under scalar multiplication.

So L is a subspace.

Subspaces

In \mathbb{R}^2 and \mathbb{R}^3 , lines and planes are important, especially through the origin. We now discuss analogous structures in \mathbb{R}^n , where n may be bigger than 3.

Definition 19.1: A subset $V \subseteq \mathbb{R}^n$ is a *subspace* if

- (a) The zero vector is an element of V.
- (b) Whenever v and w are two elements of V, the sum v+w is also an element of V. (In other words, V is closed under addition.)
- (c) Whenever v is an element of V and t is a real number, the vector tv is again an element of V. (In other words, V is closed under scalar multiplication.)

Subspace non-examples

Consider the following subsets of \mathbb{R}^2 :

$$V_1 = \mathbb{Z}^2 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \mid x \text{ and } y \text{ are integers } \right\}$$

$$V_2 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \mid x \le 0 \le y \right\}$$

$$V_3 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \mid x^2 = y^2 \right\} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \mid x = \pm y \right\}.$$

None of these are subspaces.

V_1 is not a subspace

$$V_1 = \left\{ egin{bmatrix} x \ y \end{bmatrix} \in \mathbb{R}^2 \mid x ext{ and } y ext{ are integers }
ight\}$$

It is clear that the zero vector has integer coordinates and so lies in V_1 . Next, if v and w both have integer coordinates then so does v+w. In other words, if $v,w\in V_1$ then also $v+w\in V_1$, so V_1 is closed under addition. However, it is not closed under scalar multiplication. Indeed, if we take $v=\begin{bmatrix}1\\0\end{bmatrix}$ and t=0.5 then $v\in V_1$ and $t\in \mathbb{R}$ but the vector $tv=\begin{bmatrix}0.5\\0\end{bmatrix}$ does not lie in V_1 .

(This is generally the best way to prove that a set is not a subspace: provide a completely specific and explicit example where one of the conditions is not satisfied.)

V_3 is not a subspace

$$V_3 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \mid x^2 = y^2 \right\}$$
$$= \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \mid x = \pm y \right\}.$$

It is again clear that $0 \in V_3$.

Now suppose we have $v = \begin{bmatrix} x & y \end{bmatrix}^T \in V_3$ (so $x^2 = y^2$) and $t \in \mathbb{R}$.

It follows that $(tx)^2 = t^2x^2 = t^2y^2 = (ty)^2$,

so the vector $tv = \begin{bmatrix} tx & ty \end{bmatrix}^T$ again lies in V_3 .

This means that V_3 is closed under scalar multiplication.

However, it is not closed under addition,

because the vectors $v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $w = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ lie in V_3 ,

but v + w does not.

V_2 is not a subspace

As $0 \le 0 \le 0$ we see that $0 \in V_2$. Suppose we have vectors $v = \begin{bmatrix} x & y \end{bmatrix}^T$ and $v' = \begin{bmatrix} x' & y' \end{bmatrix}^T$ in V_2 , so $x \le 0 \le y$ and $x' \le 0 \le y'$. As $x, x' \le 0$ it follows that $x + x' \le 0$. As $y, y' \ge 0$ it follows that $y + y' \ge 0$. This means that the sum $v + v' = \begin{bmatrix} x + x' & y + y' \end{bmatrix}^T$ is again in V_2 , so V_2 is closed under addition. However, it is not closed under scalar multiplication. Indeed, if we take $v = \begin{bmatrix} -1 & 1 \end{bmatrix}^T$ and t = -1 then $v \in V_2$ and $t \in \mathbb{R}$ but the vector $tv = \begin{bmatrix} 1 & -1 \end{bmatrix}^T$ does not lie in V_2 .

Two extreme cases

- (a) The set $\{0\}$ (just consisting of the zero vector) is a subspace of \mathbb{R}^n .
- (b) The whole set \mathbb{R}^n is a subspace of itself.

Linear combinations in subspaces

Proposition 19.6: Let V be a subspace of \mathbb{R}^n . Then any linear combination of elements of V is again in V.

Proof.

Suppose we have elements $v_1,\ldots,v_k\in V$, and suppose that w is a linear combination of the v_i , say $w=\sum_i\lambda_iv_i$ for some $\lambda_1,\ldots,\lambda_k\in\mathbb{R}$. As $v_i\in V$ and $\lambda_i\in\mathbb{R}$ and V is closed under scalar multiplication we have $\lambda_iv_i\in V$. Now λ_1v_1 and λ_2v_2 are elements of V, and V is closed under addition, so $\lambda_1v_1+\lambda_2v_2\in V$. Next, as $\lambda_1v_1+\lambda_2v_2\in V$ and $\lambda_3v_3\in V$ and V is closed under addition we have $\lambda_1v_1+\lambda_2v_2+\lambda_3v_3\in V$. By extending this in the obvious way, we eventually conclude that the vector $w=\lambda_1v_1+\cdots+\lambda_kv_k$ lies in V as claimed.

Subspaces of \mathbb{R}^2

Proposition 19.7: Let V be a subspace of \mathbb{R}^2 . Then V is either $\{0\}$ or all of \mathbb{R}^2 or a straight line through the origin.

Proof.

- (a) If $V = \{0\}$ then there is nothing more to say.
- (b) Suppose that V contains two vectors v and w such that the list (v, w) is linearly independent. As this is a linearly independent list of two vectors in \mathbb{R}^2 , it must be a basis. Thus, every vector $x \in \mathbb{R}^2$ is a linear combination of v and w, and therefore lies in V by Proposition 19.6. Thus, we have $V = \mathbb{R}^2$.
- (c) Suppose instead that neither (a) nor (b) holds. As (a) does not hold, we can choose a nonzero vector $v \in V$. Let L be the set of all scalar multiples of v, which is a straight line through the origin. As V is a subspace and $v \in V$ we know that every multiple of v lies in V, or in other words that $L \subseteq V$. Now let w be any vector in V. As (b) does not hold, the list (v, w) is linearly dependent, so the Lemma 8.5 tells us that w is a multiple of v and so lies in L. This shows that $V \subseteq L$, so V = L.

Dependent lists of length two

Lemma 8.5: Let v and w be vectors in \mathbb{R}^n , and suppose that $v \neq 0$ and that the list (v, w) is linearly dependent. Then there is a number α such that $w = \alpha v$.

Proof.

Because the list is dependent, there is a linear relation $\lambda v + \mu w = 0$ where λ and μ are not both zero. There are apparently three possibilities:

- (a) $\lambda \neq 0$ and $\mu \neq 0$;
- (b) $\lambda = 0$ and $\mu \neq 0$;
- (c) $\lambda \neq 0$ and $\mu = 0$.

However, case (c) is not really possible. Indeed, in case (c) the equation $\lambda v + \mu w = 0$ would reduce to $\lambda v = 0$, and we could multiply by λ^{-1} to get v = 0; but $v \neq 0$ by assumption. In case (a) or (b) we can take $\alpha = -\lambda/\mu$ and we have $w = \alpha v$.

Subspace examples

Consider the set

$$U = \{ [w \ x \ y \ z]^T \in \mathbb{R}^4 \mid 2w - 4x - 7y + 3z = 1 \}.$$

This is not a subspace of \mathbb{R}^4 . Indeed, as $2 \times 0 - 4 \times 0 - 7 \times 0 + 3 \times 0 \neq 1$ we see that the zero vector is not an element of U. However, a subspace must contain the zero vector, by definition.

Consider the set

$$V = \{ \begin{bmatrix} a & b & c \end{bmatrix}^T \in \mathbb{R}^3 \mid a^2 + b^2 = c^2 \}.$$

The vectors $u = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$ and $v = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$ are elements of V (because $1^2 + 0^2 = 1^2$ and $0^2 + 1^2 = 1^2$) but the vector $u + v = \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}^T$ is not an element of V (because $1^2 + 1^2 \neq 2^2$). This shows that V is not closed under addition, so it is not a subspace of \mathbb{R}^3 .

Consider the set

$$W = \{ \begin{bmatrix} x & y \end{bmatrix}^T \in \mathbb{R}^2 \mid y = \sin(x) \}.$$

This is a subset of \mathbb{R}^2 that is not $\{0\}$ or \mathbb{R}^2 or a straight line through the origin, so it cannot be a subspace of \mathbb{R}^2 .

Subspace examples

Consider the set

$$U = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \mid 10x + 11y + 12z = 0 \right\} = \left\{ u \in \mathbb{R}^3 \mid u.c = 0 \right\} \qquad \left(c = \begin{bmatrix} 10 \\ 11 \\ 12 \end{bmatrix} \right)$$

- (a) As 0.c = 0, we have $0 \in U$.
- (b) Suppose that $u, v \in U$, so u.c = v.c = 0. Then (u+v).c = u.c + v.c = 0 + 0 = 0, so $u+v \in U$. Thus, U is closed under addition.
- (c) Suppose that $u \in U$ and $t \in \mathbb{R}$. Then u.c = 0, so $(tu).c = t \times 0 = 0$, so $tu \in U$. Thus, U is closed under scalar multiplication.

As U contains zero and is closed under addition and scalar multiplication, it is a subspace of \mathbb{R}^3 .

Subspace examples

Let V be the set of all vectors in \mathbb{R}^4 that have the form

$$v = \begin{bmatrix} 1000s + t & 100s + 10t & 10s + 100t & s + 1000t \end{bmatrix}^T$$

for some $s, t \in \mathbb{R}$.

- ▶ Taking s = t = 0, we see that the zero vector $v_0 = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$ is an element of V.
- ► Taking s = 2 and t = 4, we see that the vector $v_1 = \begin{bmatrix} 2004 & 240 & 420 & 4002 \end{bmatrix}^T$ is an element of V.
- ► Taking s = 5 and t = 1, we see that the vector $v_2 = \begin{bmatrix} 5001 & 510 & 150 & 1005 \end{bmatrix}^T$ is an element of V.
- Note that $v_1 + v_2 = \begin{bmatrix} 7005 & 750 & 570 & 5007 \end{bmatrix}^T$, which has the required form with s = 7 and t = 5, so $v_1 + v_2 \in V$. This illustrates (but does not prove) the fact that V is closed under addition.
- Note that $2v_1 = \begin{bmatrix} 4008 & 480 & 840 & 8004 \end{bmatrix}^T$, which has the required form with s = 4 and t = 8, so $2v_1 \in V$. This illustrates (but does not prove) the fact that V is closed under scalar multiplication.