
Lecture 20 Orthogonal matrices and orthonormal lists

Definition 23.1: Let A be an n × n matrix.
We say that A is an orthogonal matrix if ATA = In,
or equivalently A is invertible and A−1 = AT .

Definition 23.2: Let v1, . . . , vr be a list of r vectors in Rn.
We say that this list is orthonormal if vi .vi = 1 for all i ,
and vi .vj = 0 whenever i and j are different.

Proposition 23.4: Any orthonormal list of length n in Rn is a basis.

Proof: Let v1, . . . , vn be an orthonormal list of length n.
Suppose we have a linear relation

∑n
i=1 λivi = 0.

We can take the dot product of both sides with vp to get
∑n

i=1 λi (vi .vp) = 0.
Most of the terms vi .vp are zero, because vi .vj = 0 whenever i 6= j .
After dropping the terms where i 6= p, we are left with λp(vp.vp) = 0.
Here vp.vp = 1 (by the definition of orthonormality) so λp = 0.
This works for all p, so our linear relation is the trivial one.
This proves that the list v1, . . . , vn is linearly independent.
A linearly independent list of n vectors in Rn is automatically a basis by
Proposition 10.12.

Orthogonal matrices and orthonormal lists

Proposition 23.5: Let A be an n× n matrix. Then A is an orthogonal matrix
if and only if the columns of A form an orthonormal list.

Proof.
By definition, A is orthogonal if and only if AT is an inverse for A, or in other
words ATA = In. Let the columns of A be v1, . . . , vn. Then

ATA =

 vT
1

...

vT
n


 v1 · · · vn

 =

v1.v1 · · · v1.vn
...

. . .
...

vn.v1 · · · vn.vn


In other words, the entry in the (i , j) position in ATA is just the dot product
vi .vj . For ATA to be the identity we need the diagonal entries vi .vi to be one,
and the off-diagonal entries vi .vj (with i 6= j) to be zero. This means precisely
that the list v1, . . . , vn is orthonormal.

Symmetric matrices

Definition 23.6: Let A be an n × n matrix, with entries aij .
We say that A is symmetric if AT = A,
or equivalently aij = aji for all i and j .

Example: A 4× 4 matrix is symmetric if and only if it has the form
a b c d
b e f g
c f h i
d g i j

 .
Example: The matrices A and B are symmetric, but C and D are not.

A =

1 2 3
2 2 3
3 3 3

 B =

111 11 1
11 111 11
1 11 111


C =

1 2 3
4 5 6
7 8 9

 D =

1 10 1000
1 10 1000
1 10 1000





Dot products and symmetric matrices

Lemma 23.9: Let A be an n × n matrix, and let u and v be vectors in Rn.
Then u.(Av) = (ATu).v . Thus, if A is symmetric then u.(Av) = (Au).v .

Proof.
Put p = ATu and q = Av , so the claim is that u.q = p.v .
By the definition of matrix multiplication, we have qi =

∑
j Aijvj ,

so u.q =
∑

i uiqi =
∑

i,j uiAijvj .

Similarly, we have pj =
∑

i (A
T )jiui , but (AT )ji = Aij so pj =

∑
i uiAij .

It follows that p.v =
∑

j pjvj =
∑

i,j uiAijvj ,
which is the same as u.q, as claimed.

Alternatively: for x , y ∈ Rn the dot product x .y is the matrix product xT y .
Thus (Au).v = (Au)T v , but (Au)T = uTAT (by Proposition 3.4)
so (Au).v = uT (AT v) = u.(AT v).

Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).
We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av+iAw = A(v+iw) = Au = λu = (α+iβ)(v+iw) = (αv−βw)+i(βv+αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.

Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (b): Suppose that u and v are eigenvectors of A with distinct
eigenvalues, say λ and µ. This means that

Au = λu Av = µv λ 6= µ.

As A is symmetric we have (Au).v = u.(Av).
As Au = λu and Av = µv this becomes λ u.v = µ u.v .
Rearrange to get (λ− µ)u.v = 0.
As λ 6= µ we can divide by λ− µ to get u.v = 0,
which means that u and v are orthogonal.

Alternative proof for 2 × 2 matrices

A 2× 2 symmetric matrix has the form

A =

[
a b
b d

]
so A− tI2 =

[
a− t b
b d − t

]
so

χA(t) = (a− t)(d − t)− b2 = t2 − (a + d)t + (ad − b2).

The eigenvalues are

λ =
a + d ±

√
(a + d)2 − 4(ad − b2)

2
.

The expression under the square root is

(a + d)2 − 4(ad − b2) = a2+2ad + d2−4ad + 4b2

= a2 − 2ad + d2 + 4b2

= (a− d)2 + (2b)2.

This is the sum of two squares, so it is nonnegative, so the square root is real,
so the two eigenvalues are both real.



Orthonormal basis of eigenvectors

Proposition 23.12: Let A be an n × n symmetric matrix.
Then there is an orthonormal basis for Rn consisting of eigenvectors for A.

Partial proof.

We will show that the Theorem holds whenever A has n distinct eigenvalues.
In fact it is true even without that assumption, but the proof is harder.

Let the eigenvalues of A be λ1, . . . , λn (so λi ∈ R).
For each i we choose a (real) eigenvector ui of eigenvalue λi .
As ui is an eigenvector we have ui 6= 0 and so ui .ui > 0
so we can define vi = ui/

√
ui .ui . This is just a real number times ui , so it is

again an eigenvector of eigenvalue λi .

It satisfies vi .vi =
ui .ui√

ui .ui
√
ui .ui

= 1 (so it is a unit vector).

Proposition 23.10(b): eigenvectors of a symmetric matrix with distinct
eigenvalues are orthogonal. Thus vi .vj = 0 for i 6= j .
This shows that the sequence v1, . . . , vn is orthonormal.
Proposition 23.4: any orthonormal list of length n in Rn is a basis.
Proposition 13.22: any n eigenvectors in Rn with distinct eigenvalues form a
basis.
Either of these results implies that v1, . . . , vn is a basis.

Our special case is the usual case

Let A be an n × n symmetric matrix again.
The characteristic polynomial χA(t) has degree n,
so by well-known properties of polynomials it can be factored as

χA(t) =
n∏

i=1

(λi − t)

for some complex numbers λ1, . . . , λn.

By Proposition 23.10(a) these eigenvalues λi are in fact all real.

Some of them might be the same, but that would be a concidence which could
only happen if the matrix A was very simple or had some kind of hidden
symmetry.

Thus, our proof of Proposition 23.12 covers almost all cases
(but some of the cases that are not covered are the most interesting ones).

Orthonormal eigenvector example

Consider the symmetric matrix A =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


(which appeared on one of the problem sheets) and the vectors

u1 =


1
−1
0
0
0

 u2 =


1
0
−1
0
0

 u3 =


1
0
0
−1
0

 u4 =


1
0
0
0
−1

 u5 =


1
1
1
1
1

 .
These satisfy Au1 = Au2 = Au3 = Au4 = 0 and Au5 = 5u5,

so they are eigenvectors of eigenvalues λ1 = λ2 = λ3 = λ4 = 0 and λ5 = 5.
Because λ5 is different from λ1, . . . , λ4, Proposition 23.10(b) tells us that u5
must be orthogonal to u1, . . . , u4, and indeed it is easy to see directly that
u1.u5 = · · · = u4.u5 = 0. However, the eigenvectors u1, . . . , u4 all share the
same eigenvalue so there is no reason for them to be orthogonal and in fact
they are not.

Orthonormal eigenvector example

u1 =


1
−1
0
0
0

 u2 =


1
0
−1
0
0

 u3 =


1
0
0
−1
0

 u4 =


1
0
0
0
−1

 u5 =


1
1
1
1
1

 .
These satisfy Au1 = Au2 = Au3 = Au4 = 0 and Au5 = 5u5.

The vectors u1, . . . , u4 are not orthogonal:

u1.u2 = u1.u3 = u1.u4 = u2.u3 = u2.u4 = u3.u4 = 1.

However, it is possible to choose a different basis of eigenvectors where all the
eigenvectors are orthogonal to each other. One such choice is as follows:

v1 =


1
−1
0
0
0

 v2 =


1
1
−2
0
0

 v3 =


1
1
1
−3
0

 v4 =


1
1
1
1
−4

 v5 =


1
1
1
1
1


It is easy to check directly that Av1 = Av2 = Av3 = Av4 = 0 Av5 = 5v5

v1.v2 = v1.v3 = v1.v4 = v1.v5 = v2.v3 = v2.v4 = v2.v5 = v3.v4 = v3.v5 = v4.v5 = 0,

so the vi are eigenvectors and are orthogonal to each other.



Orthonormal eigenvector example

v1 =


1
−1
0
0
0

 v2 =


1
1
−2
0
0

 v3 =


1
1
1
−3
0

 v4 =


1
1
1
1
−4

 v5 =


1
1
1
1
1


These satisfy Av1 = Av2 = Av3 = Av4 = 0 and Av5 = 5v5,
and they are orthogonal to each other.

However, the list v1, . . . , v5 is not orthonormal, because

v1.v1 = 2 v2.v2 = 6 v3.v3 = 12 v4.v4 = 20 v5.v5 = 5.

This is easily fixed: if we put

w1 =
v1√

2
w2 =

v2√
6

w3 =
v3√
12

w4 =
v4√
20

w5 =
v5√

5

then w1, . . . ,w5 is an orthonormal basis for R5 consisting of eigenvectors for A.

Orthogonal diagonalisation of symmetric matrices

Corollary 23.15: Let A be an n × n symmetric matrix.
Then there is an orthogonal matrix U and a diagonal matrix D such that
A = UDUT = UDU−1.

Proof.
Choose an orthonormal basis of eigenvectors u1, . . . , un, and let λi be the
eigenvalue of ui .

Put U = [u1| · · · |un] and D = diag(λ1, . . . , λn).

Proposition 14.4 tells us that U−1AU = D and so A = UDU−1.

Proposition 23.5 tells us that U is an orthogonal matrix, so U−1 = UT .

Example of orthogonal diagonalisation

Let A be the 5× 5 matrix in which every entry is one, as in Example 23.14.
Following the prescription in the above proof, we put

U =


1/
√

2 1/
√

6 1/
√

12 1/
√

20 1/
√

5

−1/
√

2 1/
√

6 1/
√

12 1/
√

20 1/
√

5

0 −2/
√

6 1/
√

12 1/
√

20 1/
√

5

0 0 −3/
√

12 1/
√

20 1/
√

5

0 0 0 −4/
√

20 1/
√

5

 D =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 5



The general theory tells us that A = UDUT . We can check this directly:

UD =


∗ ∗ ∗ ∗ 1/

√
5

∗ ∗ ∗ ∗ 1/
√

5

∗ ∗ ∗ ∗ 1/
√

5

∗ ∗ ∗ ∗ 1/
√

5

∗ ∗ ∗ ∗ 1/
√

5



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 5

 =


0 0 0 0

√
5

0 0 0 0
√

5

0 0 0 0
√

5

0 0 0 0
√

5

0 0 0 0
√

5



UDUT =


0 0 0 0

√
5

0 0 0 0
√

5

0 0 0 0
√

5

0 0 0 0
√

5

0 0 0 0
√

5



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

1/
√

5 1/
√

5 1/
√

5 1/
√

5 1/
√

5

 =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 = A.

Example of orthogonal diagonalisation

Write ρ =
√

3 for brevity (so ρ2 = 3), and consider the symmetric matrix

A =

0 1 ρ
1 0 −ρ
ρ −ρ 0

 .
The characteristic polynomial is

χA(t) = det

−t 1 ρ
1 −t −ρ
ρ −ρ −t


= −t det

[
−t −ρ
−ρ −t

]
− det

[
1 −ρ
ρ −t

]
+ ρ det

[
1 −t
ρ −ρ

]
= −t(t2 − ρ2)− (−t + ρ2) + ρ(−ρ+ tρ) = −t3 + 3t + t − 3− 3 + 3t

= −t3 + 7t − 6 = −(t − 1)(t − 2)(t + 3).

It follows that the eigenvalues are λ1 = 1, λ2 = 2 and λ3 = −3.



Example of orthogonal diagonalisation

ρ =
√

3 A =

0 1 ρ
1 0 −ρ
ρ −ρ 0

 λ1 = 1
λ2 = 2
λ3 = −3.

Eigenvectors can be found by row-reduction:

A− I =

−1 1 ρ
1 −1 −ρ
ρ −ρ −1

→
1 −1 −ρ

0 0 2
0 0 0

→
1 −1 0

0 0 1
0 0 0


A− 2I =

−2 1 ρ
1 −2 −ρ
ρ −ρ −2

→
1 −2 −ρ

0 −3 −ρ
0 ρ 1

→
1 0 −ρ/3

0 1 ρ/3
0 0 0


A + 3I =

3 1 ρ
1 3 −ρ
ρ −ρ 3

→
1 3 −ρ

0 −8 4ρ
0 −4ρ 6

→
1 0 ρ/2

0 1 −ρ/2
0 0 0


From this we can read off the following eigenvectors:

u1 =

1
1
0

 u2 =

 ρ/3
−ρ/3

1

 u3 =

−ρ/2
ρ/2

1

 .

Example of orthogonal diagonalisation

λ1 = 1
λ2 = 2
λ3 = −3

u1 =

1
1
0

 u2 =

 ρ/3
−ρ/3

1

 u3 =

−ρ/2
ρ/2

1



Because the matrix A is symmetric and the eigenvalues are distinct, it is
automatic that the eigenvectors ui are orthogonal to each other. However, they
are not normalised: instead we have

u1.u1 = 12 + 12 = 2

u2.u2 = (ρ/3)2 + (−ρ/3)2 + 12 = 1/3 + 1/3 + 1 = 5/3

u3.u3 = (−ρ/2)2 + (ρ/2)2 + 12 = 3/4 + 3/4 + 1 = 5/2.

The vectors vi = ui/
√
ui .ui form an orthonormal basis of eigenvectors.

Explicitly, this works out as follows:

v1 =

1/
√

2

1/
√

2
0

 v2 =

 1/
√

5

−1/
√

5√
3/5

 v3 =

−
√

3/10√
3/10√
2/5

 .

Example of orthogonal diagonalisation

λ1 = 1
λ2 = 2
λ3 = −3

v1 =

1/
√

2

1/
√

2
0

 v2 =

 1/
√

5

−1/
√

5√
3/5

 v3 =

−
√

3/10√
3/10√
2/5

 .
The eigenvectors vi form orthonormal basis for R3.

It follows that if we put

U =

1/
√

2 1/
√

5 −
√

3/10

1/
√

2 −1/
√

5
√

3/10

0
√

3/5
√

2/5

 D =

1 0 0
0 2 0
0 0 −3


then U is an orthogonal matrix and A = UDUT .

Square roots of positive matrices

Corollary 23.18: Let A be an n × n real symmetric matrix, and suppose that
all the eigenvalues of A are positive.
Then there is a real symmetric matrix B such that A = B2.

Proof.
Choose an orthonormal basis of eigenvectors u1, . . . , un, and let λi be the
eigenvalue of ui .
Put U = [u1| · · · |un] and D = diag(λ1, . . . , λn).
We saw in Corollary 23.15 that U is orthogonal (so UTU = I = UUT )
and that A = UDUT .

By assumption the eigenvectors λi are positive, so we have a real diagonal
matrix E = diag(

√
λ1, . . . ,

√
λn). Put B = UEUT . It is clear that ET = E , and

it follows that

BT = (UEUT )T = UTTETUT = UEUT = B.

We also have

B2 = UEUTUEUT = UEEUT = UDUT = A.


