MAS201 PROBLEM SHEET 7

Lecture 13

Exercise 1. Consider the following web of pages and links.

Let a be the PageRank of page 1, and let b be the PageRank of page 9. By symmetry, pages 2 to 8 must also have rank a. Use the consistency and normalisation conditions to find a and b (without writing down any 9×9 matrices).

Solution: First, the normalisation condition says that $\sum_{i=1}^{9} r_i = 1$. As $r_1 = \cdots = r_8 = a$ and $r_9 = b$, this means that 8a + b = 1.

Next, note that the numbers of outgoing links are $N_1 = \cdots = N_8 = 2$ and $N_9 = 8$. As page 1 has links from pages 8 and 9, the consistency condition says that $r_1 = r_8/N_8 + r_9/N_9$, or in other words a = a/2 + b/8. By symmetry, pages 2 to 8 have the same consistency condition as page 1. On the other hand, page 9 has links from pages 1 to 8, so the consistency condition there is

$$b = r_9 = r_1/N_1 + \dots + r_8/N_8 = a/2 + \dots + a/2 = 4a$$

Solving the equations 8a + b = 1, a = a/2 + b/8 and b = 4a gives a = 1/12 and b = 1/3.

Lecture 14

Exercise 2. Each of the following sets is a subspace of \mathbb{R}^n for suitable *n*.

- (a) U_0 is the set of vectors $u = \begin{bmatrix} x & y & z \end{bmatrix}^T$ in \mathbb{R}^3 that satisfy 2x y + 3z = 0.
- (b) U_1 is the set of vectors in \mathbb{R}^4 of the form $\begin{bmatrix} s & t-3s & t+2s & t-s \end{bmatrix}^T$. (c) U_2 is the set of vectors in \mathbb{R}^4 that can be expressed as a linear combination of the vectors $a = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$ and $b = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^T$.
- (d) U_3 is the set of vectors in \mathbb{R}^3 that are perpendicular to the vector $c = \begin{bmatrix} 5 & 6 & 7 \end{bmatrix}^T$.

Find two vectors p and q that both lie in U_0 . Of course, there are many different answers for this that are equally correct. You should choose your vectors p and q such that they are nonzero and different from each other. Check that p + q is an element of U_0 . Then choose examples in the same way for U_1 , U_2 and U_3 .

Solution:

(a) One possibility is to take $p = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix}^T$ (which lies in U_0 because $2 \times 1 - 2 + 3 \times 0 = 0$) and $q = \begin{bmatrix} 0 & 3 & 1 \end{bmatrix}^T$. We then have $p + q = \begin{bmatrix} 1 & 5 & 1 \end{bmatrix}^T$, which lies in U_0 because $2 \times 1 - 5 + 2 \times 1 = 0$.

- (b) If we take s = 1 and t = 0 in the defining formula for U_1 , we get the vector $\begin{bmatrix} 1 & -3 & 2 & -1 \end{bmatrix}^T$. We call this p, so $p \in U_1$. If we instead take s = 0 and t = 1 in the defining formula for U_1 , we get the vector $\begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}^T$. We call this q, so $q \in U_1$. We then have $p + q = \begin{bmatrix} 1 & -2 & 3 & 0 \end{bmatrix}^T$. This can be written as $p + q = \begin{bmatrix} s & t - 3s & t + 2s & t - s \end{bmatrix}^T$ with s = t = 1, so $p + q \in U_1$.
- (c) Here the obvious thing to do is to take

$$p = a = 1a + 0b = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^{T}$$
$$q = b = 0a + 1b = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^{T}.$$

Then p and q are elements of U_2 . We have $p+q = \begin{bmatrix} 2 & 1 & 1 & 2 \end{bmatrix}^T = a+b$, and this is a linear combination of a and b, so $p + q \in U_2$ as expected.

(d) By the standard dot product test, a vector $u = \begin{bmatrix} x & y & z \end{bmatrix}^T$ is perpendicular to the vector $c = \begin{bmatrix} 5 & 6 & 7 \end{bmatrix}^T$ if and only if u.c = 0, or in other words 5x + 6y + 7z = 0. We can thus take $p = \begin{bmatrix} 6 & -5 & 0 \end{bmatrix}^T$ and $q = \begin{bmatrix} 0 & 7 & -6 \end{bmatrix}$; these satisfy p.c = q.c = 0, so they are both elements of U_3 . We then have $p + q = \begin{bmatrix} 6 & 2 & -6 \end{bmatrix}$. As $(p + q).c = 6 \times 5 + 2 \times 6 - 6 \times 7 = 0$, we see that p+q is again an element of U_3 .

Exercise 3. Consider the following sets

$$P_{0} = \{ \begin{bmatrix} x & y \end{bmatrix}^{T} \in \mathbb{R}^{2} \mid x^{2} \ge 1 \}$$

$$P_{1} = \{ \begin{bmatrix} x & y \end{bmatrix}^{T} \in \mathbb{R}^{2} \mid xy \ge 0 \}$$

$$P_{2} = \{ \begin{bmatrix} x & y \end{bmatrix}^{T} \in \mathbb{R}^{2} \mid y \le x^{2} \}$$

$$P_{3} = \{ \begin{bmatrix} x & y \end{bmatrix}^{T} \in \mathbb{R}^{2} \mid x + y \text{ is an integer } \}$$

$$P_{4} = \{ \begin{bmatrix} x & y \end{bmatrix}^{T} \in \mathbb{R}^{2} \mid x^{2} + y^{2} \le 1 \}$$

The set P_0 is not closed under addition, because the vectors $u_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $u_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ both lie in P_0 , but the sum $u_0 + u_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ does not lie in P_0 . Moreover, the set P_0 is not closed under scalar multiplication, because the vector $u_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ lies in P_0 , but the product $0.5u_2 = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$ does not lie in P_0 . Give similarly specific examples to show that

- (a) P_1 is not closed under addition.
- (b) P_2 is not closed under addition.
- (c) P_2 is not closed under scalar multiplication.
- (d) P_3 is not closed under scalar multiplication.
- (e) P_4 is not closed under scalar multiplication.

Solution:

(a)
$$P_1$$
 contains the vectors $u_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $u_4 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ but not the sum $u_3 + u_4 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$
(b) P_2 contains the vectors $u_5 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $u_6 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ but not the sum $u_5 + u_6 = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$.
(c) P_2 contains the vector $u_7 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ but not the vector $(-1)u_7 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
(d) P_3 contains the vector $u_8 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ but not the vector $0.5u_8 = \begin{bmatrix} 0.5 \\ 0 \end{bmatrix}$.
(e) P_4 contains the vector u_8 as above, but not the vector $2u_8 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$.

Exercise 4. Which of the following sets is a subspace of \mathbb{R}^4 ?

- (a) V_1 is the set of vectors of the form $\begin{bmatrix} s & t+s & t-s & t \end{bmatrix}^T$ (for some $s, t \in \mathbb{R}$). (b) V_2 is the set of vectors of the form $\begin{bmatrix} t & t^2 & t^3 & t^4 \end{bmatrix}^T$ (for some $t \in \mathbb{R}$). (c) V_3 is the set of vectors $v = \begin{bmatrix} w & x & y & z \end{bmatrix}^T$ that satisfy w + 10x + 100y + 1000z = 1.

(d) V_4 is the set of vectors $v = \begin{bmatrix} w & x & y & z \end{bmatrix}_{T}^{T}$ that satisfy w - x + y - z = 0.

(e)
$$V_5$$
 is the set of vectors $v = \begin{bmatrix} w & x & y & z \end{bmatrix}^T$ that satisfy $(w - x)^2 + (y - z)^2 = 0$.

Explain your answers carefully.

Solution:

- (a) The set V_1 is a subspace of \mathbb{R}^4 . Indeed, if $v, v' \in V_1$ then we have $v = \begin{bmatrix} s & t+s & t-s & t \end{bmatrix}^T$ and $v' = \begin{bmatrix} s' & t'+s' & t'-s' & t' \end{bmatrix}^T$ for some $s, t, s', t'in\mathbb{R}$. This means that $v+v' = \begin{bmatrix} s'' & t''+s'' & t''-s'' & t'' \end{bmatrix}^T$, where s'' = s+s' and t'' = t+t'. It follows that $v+v' \in V_1$, so V_1 is closed under addition. Similarly, if a is any scalar, we have $av = \begin{bmatrix} s^* & t^*+s^* & t^*-s^* & t^* \end{bmatrix}^T$, where $s^* = as$ and $t^* = at$. This shows that $av \in V_1$, so V_1 is closed under scalar multiplication. Finally, by taking s = t = 0 we see that the zero vector lies in V_1 .
- (b) The set V_2 is not a subspace of \mathbb{R}^4 . Indeed, by taking t = 1 we see that the vector $v = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ lies in V_2 , but the vector $2v = \begin{bmatrix} 2 & 2 & 2 \end{bmatrix}^T$ does not lie in V_2 , so V_2 is not closed under scalar multiplication.
- (c) The set V_3 is not a subspace of \mathbb{R}^4 , because the zero vector does not satisfy w + 10x + 100y + 1000z = 1 and so is not an element of V_3 .
- (d) The set V_4 is a subspace of \mathbb{R}^4 . Indeed, the zero vector $\begin{bmatrix} w & x & y & z \end{bmatrix}^T = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^T$ satisfies w x + y z and so $0 \in V_4$. If we have elements $v = \begin{bmatrix} w & x & y & z \end{bmatrix}^T$ and $v' = \begin{bmatrix} w' & x' & y' & z' \end{bmatrix}^T$ in V_4 then the we have w x + y z = 0 and w' x' + y' z' = 0. By adding these equations we see that (w + w') (x + x') + (y + y') (z + z') = 0, which shows that the sum v + v' is again an element of V_4 , so V_4 is closed under addition. A similar argument shows that it is closed under scalar multiplication.
- (e) The set V_5 is also a subspace of \mathbb{R}^4 , although this fact is slightly disguised by the way that we have defined it. Because all squares are nonnegative, we see that the only way $(w-x)^2 + (y-z)^2$ can be zero is if w = x and y = z. This means that V_5 is the set of vectors of the form $\begin{bmatrix} s & s & t & t \end{bmatrix}^T$, which is a subspace by the same method that we used in part (a).

Exercise 5. (a) Give an example of a subset $U_0 \subseteq \mathbb{R}^2$ that contains zero and is closed under addition but is not closed under scalar multiplication.

- (b) Give an example of a subset $U_1 \subseteq \mathbb{R}^2$ that contains zero and is closed under scalar multiplication but is not closed under addition.
- (c) Suppose that U_2 is a nonempty subset of \mathbb{R}^2 that is closed under addition and scalar multiplication. Show that U_2 contains the zero vector.
- (d) Let U_3 be a subspace of $\mathbb{R}^1 = \mathbb{R}$. Show that U_3 is either $\{0\}$ or all of \mathbb{R} .

Solution:

(a) The simplest example is

$$U_0 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \mid x, y \ge 0 \right\}.$$

This is not closed under scalar multiplication, because $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \in U_0$ but $(-1) \begin{bmatrix} 1 \\ 1 \end{bmatrix} \notin U_0$.

(b) The simplest example is

$$U_1 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \mid xy = 0 \right\}.$$

This is not closed under addition, because $\begin{bmatrix} 1\\0 \end{bmatrix} \in U_1$ and $\begin{bmatrix} 0\\1 \end{bmatrix} \in U_1$ but $\begin{bmatrix} 1\\0 \end{bmatrix} + \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 1\\1 \end{bmatrix} \notin U_1$.

- (c) As U_2 is nonempty, we can choose a vector $u \in U_2$. As U_2 is closed under scalar multiplication, we can multiply the vector $u \in U_2$ by the scalar $0 \in \mathbb{R}$, and the result 0u will again be an element of U_2 . Of course 0u is just the zero vector, so the zero vector is an element of U_2 .
- (d) Let U_3 be a subspace of \mathbb{R} . As it is a subspace, it must contain zero. If it does not contain anything else, then $U_3 = \{0\}$. Suppose instead that it does contain something else, so there is a nonzero element $u \in U_3$. Consider another element $v \in \mathbb{R}$. As we are working with elements of \mathbb{R}^1 which are just numbers, we can make sense of multiplication and division (which are not defined for vectors in \mathbb{R}^2 and beyond). We can thus express v as the product of the scalar v/uwith the vector $u \in U_3$. (There is no problem with dividing by u, because we have assumed that

 $u \neq 0$.) As U_3 is closed under scalar multiplication, the product (v/u)u lies in U_3 , or in other words $v \in U_3$. This works for all vectors $v \in \mathbb{R}^1$, so we have $U_3 = \mathbb{R}^1$.