
MAS201 PROBLEM SHEET 7

Lecture 13

Exercise 1. Consider the following web of pages and links.
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Let a be the PageRank of page 1, and let b be the PageRank of page 9. By symmetry, pages 2 to 8 must
also have rank a. Use the consistency and normalisation conditions to find a and b (without writing
down any 9× 9 matrices).

Solution: First, the normalisation condition says that
∑9

i=1 ri = 1. As r1 = · · · = r8 = a and r9 = b,
this means that 8a + b = 1.

Next, note that the numbers of outgoing links are N1 = · · · = N8 = 2 and N9 = 8. As page 1 has
links from pages 8 and 9, the consistency condition says that r1 = r8/N8 + r9/N9, or in other words
a = a/2 + b/8. By symmetry, pages 2 to 8 have the same consistency condition as page 1. On the other
hand, page 9 has links from pages 1 to 8, so the consistency condition there is

b = r9 = r1/N1 + · · ·+ r8/N8 = a/2 + · · ·+ a/2 = 4a.

Solving the equations 8a + b = 1, a = a/2 + b/8 and b = 4a gives a = 1/12 and b = 1/3.

Lecture 14

Exercise 2. Each of the following sets is a subspace of Rn for suitable n.

(a) U0 is the set of vectors u =
[
x y z

]T
in R3 that satisfy 2x− y + 3z = 0.

(b) U1 is the set of vectors in R4 of the form
[
s t− 3s t + 2s t− s

]T
.

(c) U2 is the set of vectors in R4 that can be expressed as a linear combination of the vectors

a =
[
1 1 1 1

]T
and b =

[
1 0 0 1

]T
.

(d) U3 is the set of vectors in R3 that are perpendicular to the vector c =
[
5 6 7

]T
.

Find two vectors p and q that both lie in U0. Of course, there are many different answers for this that
are equally correct. You should choose your vectors p and q such that they are nonzero and different
from each other. Check that p + q is an element of U0. Then choose examples in the same way for U1,
U2 and U3.

Solution:

(a) One possibility is to take p =
[
1 2 0

]T
(which lies in U0 because 2 × 1 − 2 + 3 × 0 = 0) and

q =
[
0 3 1

]T
. We then have p+q =

[
1 5 1

]T
, which lies in U0 because 2×1−5+2×1 = 0.
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(b) If we take s = 1 and t = 0 in the defining formula for U1, we get the vector
[
1 −3 2 −1

]T
.

We call this p, so p ∈ U1. If we instead take s = 0 and t = 1 in the defining formula for U1, we

get the vector
[
0 1 1 1

]T
. We call this q, so q ∈ U1. We then have p+ q =

[
1 −2 3 0

]T
.

This can be written as p + q =
[
s t− 3s t + 2s t− s

]T
with s = t = 1, so p + q ∈ U1.

(c) Here the obvious thing to do is to take

p = a = 1a + 0b =
[
1 1 1 1

]T
q = b = 0a + 1b =

[
1 0 0 1

]T
.

Then p and q are elements of U2. We have p+ q =
[
2 1 1 2

]T
= a+ b, and this is a linear

combination of a and b, so p + q ∈ U2 as expected.

(d) By the standard dot product test, a vector u =
[
x y z

]T
is perpendicular to the vector

c =
[
5 6 7

]T
if and only if u.c = 0, or in other words 5x + 6y + 7z = 0. We can thus take

p =
[
6 −5 0

]T
and q =

[
0 7 −6

]
; these satisfy p.c = q.c = 0, so they are both elements of

U3. We then have p + q =
[
6 2 −6

]
. As (p + q).c = 6 × 5 + 2 × 6 − 6 × 7 = 0, we see that

p + q is again an element of U3.

Exercise 3. Consider the following sets

P0 = {
[
x y

]T ∈ R2 | x2 ≥ 1}

P1 = {
[
x y

]T ∈ R2 | xy ≥ 0}

P2 = {
[
x y

]T ∈ R2 | y ≤ x2}

P3 = {
[
x y

]T ∈ R2 | x + y is an integer }

P4 = {
[
x y

]T ∈ R2 | x2 + y2 ≤ 1}

The set P0 is not closed under addition, because the vectors u0 =

[
1
0

]
and u1 =

[
−1
0

]
both lie in P0, but

the sum u0 +u1 =

[
0
0

]
does not lie in P0. Moreover, the set P0 is not closed under scalar multiplication,

because the vector u2 =

[
1
1

]
lies in P0, but the product 0.5u2 =

[
0.5
0.5

]
does not lie in P0. Give similarly

specific examples to show that

(a) P1 is not closed under addition.
(b) P2 is not closed under addition.
(c) P2 is not closed under scalar multiplication.
(d) P3 is not closed under scalar multiplication.
(e) P4 is not closed under scalar multiplication.

Solution:

(a) P1 contains the vectors u3 =

[
0
1

]
and u4 =

[
−1
0

]
but not the sum u3 + u4 =

[
−1
1

]
.

(b) P2 contains the vectors u5 =

[
1
1

]
and u6 =

[
−1
1

]
but not the sum u5 + u6 =

[
0
2

]
.

(c) P2 contains the vector u7 =

[
0
−1

]
but not the vector (−1)u7 =

[
0
1

]
.

(d) P3 contains the vector u8 =

[
1
0

]
but not the vector 0.5u8 =

[
0.5
0

]
.

(e) P4 contains the vector u8 as above, but not the vector 2u8 =

[
2
0

]
.

Exercise 4. Which of the following sets is a subspace of R4?

(a) V1 is the set of vectors of the form
[
s t + s t− s t

]T
(for some s, t ∈ R).

(b) V2 is the set of vectors of the form
[
t t2 t3 t4

]T
(for some t ∈ R).

(c) V3 is the set of vectors v =
[
w x y z

]T
that satisfy w + 10x + 100y + 1000z = 1.
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(d) V4 is the set of vectors v =
[
w x y z

]T
that satisfy w − x + y − z = 0.

(e) V5 is the set of vectors v =
[
w x y z

]T
that satisfy (w − x)2 + (y − z)2 = 0.

Explain your answers carefully.

Solution:

(a) The set V1 is a subspace of R4. Indeed, if v, v′ ∈ V1 then we have v =
[
s t + s t− s t

]T
and

v′ =
[
s′ t′ + s′ t′ − s′ t′

]T
for some s, t, s′, t′inR. This means that v+v′ =

[
s′′ t′′ + s′′ t′′ − s′′ t′′

]T
,

where s′′ = s+ s′ and t′′ = t+ t′. It follows that v+ v′ ∈ V1, so V1 is closed under addition. Sim-

ilarly, if a is any scalar, we have av =
[
s∗ t∗ + s∗ t∗ − s∗ t∗

]T
, where s∗ = as and t∗ = at.

This shows that av ∈ V1, so V1 is closed under scalar multiplication. Finally, by taking s = t = 0
we see that the zero vector lies in V1.

(b) The set V2 is not a subspace of R4. Indeed, by taking t = 1 we see that the vector v =[
1 1 1 1

]T
lies in V2, but the vector 2v =

[
2 2 2 2

]T
does not lie in V2, so V2 is not

closed under scalar multiplication.
(c) The set V3 is not a subspace of R4, because the zero vector does not satisfy w + 10x + 100y +

1000z = 1 and so is not an element of V3.

(d) The set V4 is a subspace of R4. Indeed, the zero vector
[
w x y z

]T
=
[
0 0 0 0

]T
satisfies

w−x+y−z and so 0 ∈ V4. If we have elements v =
[
w x y z

]T
and v′ =

[
w′ x′ y′ z′

]T
in V4 then the we have w−x+ y− z = 0 and w′−x′+ y′− z′ = 0. By adding these equations we
see that (w+w′)− (x+x′) + (y + y′)− (z + z′) = 0, which shows that the sum v + v′ is again an
element of V4, so V4 is closed under addition. A similar argument shows that it is closed under
scalar multiplication.

(e) The set V5 is also a subspace of R4, although this fact is slightly disguised by the way that we have
defined it. Because all squares are nonnegative, we see that the only way (w−x)2 + (y− z)2 can

be zero is if w = x and y = z. This means that V5 is the set of vectors of the form
[
s s t t

]T
,

which is a subspace by the same method that we used in part (a).

Exercise 5. (a) Give an example of a subset U0 ⊆ R2 that contains zero and is closed under addition
but is not closed under scalar multiplication.

(b) Give an example of a subset U1 ⊆ R2 that contains zero and is closed under scalar multiplication
but is not closed under addition.

(c) Suppose that U2 is a nonempty subset of R2 that is closed under addition and scalar multiplica-
tion. Show that U2 contains the zero vector.

(d) Let U3 be a subspace of R1 = R. Show that U3 is either {0} or all of R.

Solution:

(a) The simplest example is

U0 =

{[
x
y

]
∈ R2 | x, y ≥ 0

}
.

This is not closed under scalar multiplication, because

[
1
1

]
∈ U0 but (−1)

[
1
1

]
6∈ U0.

(b) The simplest example is

U1 =

{[
x
y

]
∈ R2 | xy = 0

}
.

This is not closed under addition, because

[
1
0

]
∈ U1 and

[
0
1

]
∈ U1 but

[
1
0

]
+

[
0
1

]
=

[
1
1

]
6∈ U1.

(c) As U2 is nonempty, we can choose a vector u ∈ U2. As U2 is closed under scalar multiplication,
we can multiply the vector u ∈ U2 by the scalar 0 ∈ R, and the result 0u will again be an element
of U2. Of course 0u is just the zero vector, so the zero vector is an element of U2.

(d) Let U3 be a subspace of R. As it is a subspace, it must contain zero. If it does not contain
anything else, then U3 = {0}. Suppose instead that it does contain something else, so there is
a nonzero element u ∈ U3. Consider another element v ∈ R. As we are working with elements
of R1 which are just numbers, we can make sense of multiplication and division (which are not
defined for vectors in R2 and beyond). We can thus express v as the product of the scalar v/u
with the vector u ∈ U3. (There is no problem with dividing by u, because we have assumed that
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u 6= 0.) As U3 is closed under scalar multiplication, the product (v/u)u lies in U3, or in other
words v ∈ U3. This works for all vectors v ∈ R1, so we have U3 = R1.
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