MAS201 PROBLEM SHEET 8

LECTURE 15
Exercise 1. Let V be the set of vectors of the form
v = [2p—q qg+r 3p T]T
(where p, g, and r are arbitrary real numbers). Find a list of vectors whose span is V.

Solution: This is similar to examples 19.16 and 19.17. The general form for elements of V is

2p —q 2 -1 0
_lg+r| _ |0 1 1
V= 3p =P |3 +q 0 +r 0
T 0 0 1

In other words, the elements of V' are all the possible linear combinations of the three vectors occuring
in the above formula. This means that

2 -1 0
0 1 1
V = span 3| E 0
0 0 1

Exercise 2. Put

7 2 3
and V = {v € R3 | Av = 0}. Find a list of vectors whose annihilator is V.

ey

Solution: This is an instance of Proposition 19.14: the space V is by definition the kernel of A, and
that proposition tells us that the kernel is the annihilator of the transposed rows. Thus, if we put

a; = [1 6 8}T and as = [7 2 3]T then V = ann(ay,az). This can also be seen quite easily without
reference to Proposition 19.14. If v = [m Y z]T then
T
Av — 1 6 8 _ z + 6y + 82 _ e
7 2 3 T+ 2y + 3z az.v|’

so v lies in V iff Av =0 iff a;.v = ag.v = 0 iff v lies in ann(ay, az); this means that V = ann(ay, a2) as
before.

Exercise 3. Put

a1 = as =
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(a) Does u lie in ann(aq,as)?
(b) Does v lie in ann(ay,as)?
(c) Does u lie in span(aq, az)?
(d) Does v lie in span(az, a2)?
Solution:
(a) Yes, we have u.ay =1—-2—-3+4=0and uaya =4—3—-2+1=0, so u € ann(ay, az).
(b) No, we have v.ay =1+2+34+4=10+# 0, so v € ann(ay, az). (We also have v.ay # 0, but the

fact that v.a; # 0 is already enough to show that v &€ ann(ay,as), so we do not really need to
consider v.as.)



(¢) No, u cannot be written as a linear combination of a; and as, so it does not lie in span(ay, as).
One way to check this is to use Method 7.6, which involves row-reducing the matrix [a1|az|u]:

1 4 1 1 4 1 1 4 1 1 0 —14 1 0 0
2 3 —-1 N 0 -5 -3 . 0 1 06 N 0 1 06 N 0 10
3 2 -1 0 —-10 —4 0 —-10 —4 0 0 2 0 0 1
4 1 1 0 —15 -5 0 —-15 -5 0 0 4 0 0 O

We end up with a pivot in the last column, which indicates that the equation Aja; + Asas = u
cannot be solved for A; and As, or equivalently that w is not a linear combination of a; and as.

(d) Yes, it is easy to see by inspection that v = (a1+a2)/5 = 0.2a;+0.2a2, so v is a linear combination
of a; and ag, or in other words v € span(a, as).

Exercise 4. Put

1 2 3 1 1 1
A=1|{1 2 3 b= [11] b= |12] b3= |13
1 2 3 1 1 1

For each of the following subspaces, give an example of a nonzero vector that lies in the subspace, and
an example of a nonzero vector that does not lie in the subspace.

Vo = span(bi, b2, b3)
Vi = ann(b, b, b3)
Vo = img(A)
V3 = ker(A).

Solution:

(a) The obvious example of a vector lying in Vo = span(by, by, b3) is just the vector by = [1 11 1]T

itself. Indeed, by can be written as 1 x b1 +0 X b +0 X b3, so it is a linear combination of by, b and
bs, so it is an element of span(by, bz, b3) = V5. On the other hand, the vector e; = [1 0 O]T is
not an element of V5. Indeed, in each of the vectors b;, the first and last entries are the same.
Any element of Vj is, by definition, a linear combination of the b; and so also has the first and
last entries the same. As e; does not have the first and last entries the same, it cannot be an
element of V.

(b) The vectoru=[1 0 —I]T has u.by = 1x14+0x114(—1)x1 = 0 and similarly u.by = u.bs = 0,

so u € ann(by, by,b3) = V1. On the other hand, the vector e; = [1 0 O]T has e;.b; # 0, so
€1 g Vl.

(¢) The vector v =[1 1 l]T can be written as v = Aey, so u € img(A) = V5. On the other hand,
if y is any element of img(A), then y can be written as Ax for some z, so

U1 1 2 3 X1 T, + 229 + 373
vl =1 2 3 To| = |21 + 229 + 323 ,
Y3 1 2 3| [z3 T + 2x9 + 373

S0 y1, Y2 and ys3 are all the same. In the vector e; the three entries are not all the same, so e; is
not an element of img(A).

(d) The vector w = [2 —1 O}T

satisfies

2 0

-1l = 1|0
0

1
Aw = |1
1 0

N NN
W w W

so w € ker(A) = V5. On the other hand, we have Ae; = |1 1 1]T # 0, so e1 & ker(A).

Exercise 5. Put

1 P) 3 4
1 2 -3 —4
=19 2 =14 bi=1, b=
2 1 4 -3

Show that span(ay, as) C ann(by, by).



Solution: First, we have
a1.b1 =3-3+8-8=0
a1.bo =4—-44+6-6=0
as.by =6—-6+4—-4=0
az.bo =8—-8+3-3=0.
Now consider an arbitrary element v € span(ay, az). By the definition of span(ay, az), this means that v
can be expressed as v = Aja; + Azaq for some scalars A\; and Ay. This gives
v.by = (A1a1 + Aaaz2).by = A1(a1.b1) + Aa(az.b1) = A1 x 0+ A x0=0
v.hy = (A1a1 + A2a2).ba = A1(a1.b2) + Aa(az.ba) = A1 x 0+ Ay x 0 = 0.
As v.by = v.by = 0, we have v € ann(by,bs). As this holds for every element of span(a,as), we have

span(a,az) C ann(by, be) as claimed.

LECTURE 16

Exercise 6. Put V = span(v1, ve,v3), where

v=[0 26 10 1 0"
w=[0 135 1 =3
vs=[0 3 9 15 1 3]".

(a) What is the dimension of V7
(b) What is the canonical basis for V'?
(¢) What is the set J(V') of jumps for V'?

Solution: We can row-reduce the matrix A = [v;|va|vs]? as follows:

0 26 101 O 0 000 -1 6 01 3 5 0 3
A=101 3 5 1 -3|—-|0 1 3 5 1 —-3|—-|0 0 0 0 1 —-6|=B.
03 9 151 3 0 000 -2 12 0 000 0 O

According to Method 20.14, the canonical basis for V' consists of the transposes of the nonzero rows in
B, or in other words the vectors

w=[0 1350 3" us=1[0 0 0 0 1 —6].

As this basis consists of two vectors, we have dim(V') = 2. According to Lemma 20.13, the jumps for V'
are the pivot columns for the above matrix B. There are pivots in columns 2 and 5, so J(V) = {2,5}.

Exercise 7. Let V be the set of all vectors of the form
v=[p+q p+2¢ p+r p+3r] .

You may assume that this is a subspace. Find a list of vectors that spans V', and then find the canonical
basis for V.

Solution: A general element of V' has the form

1 1 0
1 2 0
v=[p+q p+2¢ p+r p+3r]=p el 714
1 0 3
In other words, the elements of V' are precisely the linear combinations of the vectors
1 1 0
|1 |2 10
v = 1 Vo = 0 V3 = 1
1 0 3
For the canonical basis, we perform the following row-reduction:
1 1 1 1 11 1 1 1 0 2 2 1 0 0 —4
120 0f =01 -1 -1|—-(f0 1 -1 -1 =10 1 0 2
0 0 1 3 0 0 1 3 00 1 3 001 3



We conclude that the canonical basis consists of the vectors

wi=[1 00 —4" w=[0 102" w=[0 0 1 3".

Exercise 8. Put V = span(e; — ea,e2 —e3,...,ep_1 — €,) C R™, where e; is the ¢’th standard basis
vector for R”.

(a) What is the dimension of V7

(b) What is the canonical basis for V7

(¢) What is the set J(V') of jumps for V'?

(You can start by doing the case n = 5 by row-reduction if you like, but ideally you should give an
answer for the general case, together with a more abstract proof that your answer is correct.)

Solution: Put v; = e; — e;41, so V = span(vy,...,v,—1). For the case n = 5 we have can row-reduce
the matrix A = [v|va|vs|vg]T as follows:

1 -1 0 0 0 1 -1 0 0 O 1 -1 0 0 O 100 0 -1

o 1 -1 0 0 . O 1 -1 0 0 N 0o 1 0 0 -1 . 01 0 0 -1

0 O 1 -1 0 0 O 1 0 -1 0 0 1 0 -1 0 01 0 -1

o 0 o0 1 -1 0 0 0 1 -1 0 0 0 1 -1 00 0 1 -1

The final matrix B can be described as [w; |w2|w3|w4]T, where w; = e; —eq. It follows that these vectors

w; form the canonical basis for V, so dim(V) = 4. Moreover, the set of jumps for V is the set of pivot
columns for B, namely {1,2,3,4}.

The same pattern works for general n. In more detail, we can define vectors wy,...,w,—1 by w; =
e; —en, and W = span(wy, ..., w,—1). For i < n — 1 we have

v; =€ — eit1 = (€ — €n) — (€i+1 — €) = W; — Wiy1,

whereas v, _1 is just equal to w,_1. This shows that v; € W for all 4, and it follows that V' C W. In the
opposite direction, we have

Vi F i1 a1 = (€ — 1) (i1 — €ig2) + oo F (enm1 — €n) = € — €, = wy,

which shows that w; € V for all 4, and thus that W C V. It follows that W = V, so the list W =
Wi, ..., w,_1 spans V. The corresponding matrix B = [w1|---|w,_1]T is clearly in RREF, so W is in
fact the canonical basis for V. It follows that dim(V) =n —1and J(V) ={1,2,...,n —1}.

Exercise 9. Put V = ann(ay, az, a3) C RS, where
a; = [1 1 2 3 3 2
a2=1[3 3 2 1 1 2
az=[0 0 1 1 1 1]".
Find the canonical basis for V.

Solution: The equations as.z = as.x = a;.xz = 0 can be written as
e + X5 + x4 + T3 =0
206 + x5 + x4 + 223+ 32+ 21 =0
206 + 3x5 + 314 + 203 + 20 + 21 = 0.

The matrix A on the left below is [a;]az|as]’; the matrix A* on the right is obtained by turning A
through 180° and is the matrix of coefficients in the above system of equations.

11 2 3 3 2 1 111 0 0
A=13 3 2 1 1 2 A*=12 1 1 2 3 3
0 01 1 11 2 3 3 2 11
We can row-reduce A* as follows:
1 1 1 1 0 0 1 0 01 3 3 1 001 00
A0 -1 -1 0 3 3| —-|/0 1 1 0 -3 -3 —1]/0 1 1 0 O O|=B*
0 1 1 0 1 1 0 0 0 0 4 4 0 00 0 11



The matrix B* corresponds to the system of equations

Te + Ir3 = 0
T5+x4 =0
z2 +x1 =0,
which can be rewritten as x4 = —x3 and x5 = —z4 and o = —x1. This gives
x1 1 1 0 0
T2 —X1 -1 0 0
| T3 I3 o 0 1 0
T = aa|l "l as | T T 0 + x3 0 + x4 1
I5 —T4 0 0 -1
L6 —I3 0 —1 0

It follows that the vectors

w=[ -1 00 0 0
w=[0 0100 —1]"
vs=[0 00 1 -1 0]

form the canonical basis for V.
The calculation can be written more compactly in terms of Method 20.23. The matrix B* has pivot
columns 1, 2 and 5, and non-pivot columns 3, 4 and 6. Deleting the pivot columns leaves the matrix

et 01 0
c*r = 3 =11 0 0
632 0 0 1
We then construct the matrix
0 -1 1.0 0 O
D* = [761 —Co €1 €3 —C3 63] = [—1 0 0 1 0 0
0 0O 0 0 -1 1
and rotate it to get
1 -1 0 0 O 0
D=0 0 1 0 0 -1
0 0 01 -1 o0
The canonical basis vectors v; appear as the rows of D.

Exercise 10. Put

1 1 11
1 2 2 1
A_1331
1 4 4 1

Find the canonical basis for img(A), and the canonical basis for ker(A).

Solution: First, let aj,...,as be the columns of A. Proposition 19.19 tellus us that img(A) =
span(ay, . ..,a4). To find the canonical basis for this space, Method 20.14 tells us that we should form

the matrix whose rows are af,...,al, but that matrix is just A”. We can row-reduce AT as follows:
11 11 11 11 1 0 -1 =2
1 2 3 4 . 01 2 3 01 2 3
1 2 3 4 01 2 3 00 0 O
11 1 1 0 00 O 00 0 O

By looking at the transposed rows of the final matrix, we see that the canonical basis for img(A) consists
of the vectors

1 0
U = Bl and Uy = ;
-2 3



Next, we recall that ker(A) is the set of vectors x that satisfy Az = 0. After noting that

1 1 1 1 T Tr1+ X9+ T3+ T4

1 2 2 1 To| _ |x1+ 2x9 + 223 + x4
1 3 3 1 I3 B X1 +31‘2+3£E3+I4
1 4 4 1| (x4 T + 4xo + 4a3 + 24

we see that ker(A) is the set of solutions to the equations
Ty +x2+23+2x4 =0
T, 4 229 + 223 + x4 =0
1 +3r2+3x3+24 =0
T1 + 4xo + 4x3 + x4 = 0.

These are easily solved to give x4 = —x1 and x5 = —z with 27 and z9 arbitrary. (In order to get the
canonical basis rather than any other basis, we need to write things this way around, with the higher-
numbered variables on the left written in terms of the lower-numbered variables on the right.) This
gives

I 1 0
o To o 0 1
= —X2 = 0 T -1
—X1 -1 0
From this we see that the canonical basis for ker(A) consists of the vectors
1 0
0 1
v = 0 and va =

-1 0



