
MAS201 PROBLEM SHEET 8

Lecture 15

Exercise 1. Let V be the set of vectors of the form

v =
[
2p− q q + r 3p r

]T
(where p, q, and r are arbitrary real numbers). Find a list of vectors whose span is V .

Solution: This is similar to examples 19.16 and 19.17. The general form for elements of V is

v =


2p− q
q + r

3p
r

 = p


2
0
3
0

+ q


−1
1
0
0

+ r


0
1
0
1

 .
In other words, the elements of V are all the possible linear combinations of the three vectors occuring
in the above formula. This means that

V = span




2
0
3
0

 ,

−1
1
0
0

 ,


0
1
0
1


 .

Exercise 2. Put

A =

[
1 6 8
7 2 3

]
and V = {v ∈ R3 | Av = 0}. Find a list of vectors whose annihilator is V .

Solution: This is an instance of Proposition 19.14: the space V is by definition the kernel of A, and
that proposition tells us that the kernel is the annihilator of the transposed rows. Thus, if we put

a1 =
[
1 6 8

]T
and a2 =

[
7 2 3

]T
then V = ann(a1, a2). This can also be seen quite easily without

reference to Proposition 19.14. If v =
[
x y z

]T
then

Av =

[
1 6 8
7 2 3

]xy
z

 =

[
x+ 6y + 8z
7x+ 2y + 3z

]
=

[
a1.v
a2.v

]
,

so v lies in V iff Av = 0 iff a1.v = a2.v = 0 iff v lies in ann(a1, a2); this means that V = ann(a1, a2) as
before.

Exercise 3. Put

a1 =


1
2
3
4

 a2 =


4
3
2
1

 u =


1
−1
−1
1

 v =


1
1
1
1

 .
(a) Does u lie in ann(a1, a2)?
(b) Does v lie in ann(a1, a2)?
(c) Does u lie in span(a1, a2)?
(d) Does v lie in span(a1, a2)?

Solution:

(a) Yes, we have u.a1 = 1− 2− 3 + 4 = 0 and u.a2 = 4− 3− 2 + 1 = 0, so u ∈ ann(a1, a2).
(b) No, we have v.a1 = 1 + 2 + 3 + 4 = 10 6= 0, so v 6∈ ann(a1, a2). (We also have v.a2 6= 0, but the

fact that v.a1 6= 0 is already enough to show that v 6∈ ann(a1, a2), so we do not really need to
consider v.a2.)
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(c) No, u cannot be written as a linear combination of a1 and a2, so it does not lie in span(a1, a2).
One way to check this is to use Method 7.6, which involves row-reducing the matrix [a1|a2|u]:

1 4 1
2 3 −1
3 2 −1
4 1 1

→


1 4 1
0 −5 −3
0 −10 −4
0 −15 −5

→


1 4 1
0 1 0.6
0 −10 −4
0 −15 −5

→


1 0 −1.4
0 1 0.6
0 0 2
0 0 4

→


1 0 0
0 1 0
0 0 1
0 0 0

 .
We end up with a pivot in the last column, which indicates that the equation λ1a1 + λ2a2 = u
cannot be solved for λ1 and λ2, or equivalently that u is not a linear combination of a1 and a2.

(d) Yes, it is easy to see by inspection that v = (a1+a2)/5 = 0.2a1+0.2a2, so v is a linear combination
of a1 and a2, or in other words v ∈ span(a1, a2).

Exercise 4. Put

A =

1 2 3
1 2 3
1 2 3

 b1 =

 1
11
1

 b2 =

 1
12
1

 b3 =

 1
13
1


For each of the following subspaces, give an example of a nonzero vector that lies in the subspace, and
an example of a nonzero vector that does not lie in the subspace.

V0 = span(b1, b2, b3)

V1 = ann(b1, b2, b3)

V2 = img(A)

V3 = ker(A).

Solution:

(a) The obvious example of a vector lying in V0 = span(b1, b2, b3) is just the vector b1 =
[
1 11 1

]T
itself. Indeed, b1 can be written as 1×b1+0×b2+0×b3, so it is a linear combination of b1, b2 and

b3, so it is an element of span(b1, b2, b3) = V0. On the other hand, the vector e1 =
[
1 0 0

]T
is

not an element of V0. Indeed, in each of the vectors bi, the first and last entries are the same.
Any element of V0 is, by definition, a linear combination of the bi and so also has the first and
last entries the same. As e1 does not have the first and last entries the same, it cannot be an
element of V0.

(b) The vector u =
[
1 0 −1

]T
has u.b1 = 1×1+0×11+(−1)×1 = 0 and similarly u.b2 = u.b3 = 0,

so u ∈ ann(b1, b2, b3) = V1. On the other hand, the vector e1 =
[
1 0 0

]T
has e1.b1 6= 0, so

e1 6∈ V1.

(c) The vector v =
[
1 1 1

]T
can be written as v = Ae1, so u ∈ img(A) = V2. On the other hand,

if y is any element of img(A), then y can be written as Ax for some x, soy1y2
y3

 =

1 2 3
1 2 3
1 2 3

x1x2
x3

 =

x1 + 2x2 + 3x3
x1 + 2x2 + 3x3
x1 + 2x2 + 3x3

 ,
so y1, y2 and y3 are all the same. In the vector e1 the three entries are not all the same, so e1 is
not an element of img(A).

(d) The vector w =
[
2 −1 0

]T
satisfies

Aw =

1 2 3
1 2 3
1 2 3

 2
−1
0

 =

0
0
0


so w ∈ ker(A) = V3. On the other hand, we have Ae1 =

[
1 1 1

]T 6= 0, so e1 6∈ ker(A).

Exercise 5. Put

a1 =


1
1
2
2

 a2 =


2
2
1
1

 b1 =


3
−3
4
−4

 b2 =


4
−4
3
−3

 .
Show that span(a1, a2) ⊆ ann(b1, b2).
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Solution: First, we have

a1.b1 = 3− 3 + 8− 8 = 0

a1.b2 = 4− 4 + 6− 6 = 0

a2.b1 = 6− 6 + 4− 4 = 0

a2.b2 = 8− 8 + 3− 3 = 0.

Now consider an arbitrary element v ∈ span(a1, a2). By the definition of span(a1, a2), this means that v
can be expressed as v = λ1a1 + λ2a2 for some scalars λ1 and λ2. This gives

v.b1 = (λ1a1 + λ2a2).b1 = λ1(a1.b1) + λ2(a2.b1) = λ1 × 0 + λ2 × 0 = 0

v.b2 = (λ1a1 + λ2a2).b2 = λ1(a1.b2) + λ2(a2.b2) = λ1 × 0 + λ2 × 0 = 0.

As v.b1 = v.b2 = 0, we have v ∈ ann(b1, b2). As this holds for every element of span(a1, a2), we have
span(a1, a2) ⊆ ann(b1, b2) as claimed.

Lecture 16

Exercise 6. Put V = span(v1, v2, v3), where

v1 =
[
0 2 6 10 1 0

]T
v2 =

[
0 1 3 5 1 −3

]T
v3 =

[
0 3 9 15 1 3

]T
.

(a) What is the dimension of V ?
(b) What is the canonical basis for V ?
(c) What is the set J(V ) of jumps for V ?

Solution: We can row-reduce the matrix A = [v1|v2|v3]T as follows:

A =

0 2 6 10 1 0
0 1 3 5 1 −3
0 3 9 15 1 3

→
0 0 0 0 −1 6

0 1 3 5 1 −3
0 0 0 0 −2 12

→
0 1 3 5 0 3

0 0 0 0 1 −6
0 0 0 0 0 0

 = B.

According to Method 20.14, the canonical basis for V consists of the transposes of the nonzero rows in
B, or in other words the vectors

u1 =
[
0 1 3 5 0 3

]T
u2 =

[
0 0 0 0 1 −6

]
.

As this basis consists of two vectors, we have dim(V ) = 2. According to Lemma 20.13, the jumps for V
are the pivot columns for the above matrix B. There are pivots in columns 2 and 5, so J(V ) = {2, 5}.

Exercise 7. Let V be the set of all vectors of the form

v =
[
p+ q p+ 2q p+ r p+ 3r

]T
.

You may assume that this is a subspace. Find a list of vectors that spans V , and then find the canonical
basis for V .

Solution: A general element of V has the form

v =
[
p+ q p+ 2q p+ r p+ 3r

]
= p


1
1
1
1

+ q


1
2
0
0

+ r


0
0
1
3

 .
In other words, the elements of V are precisely the linear combinations of the vectors

v1 =


1
1
1
1

 v2 =


1
2
0
0

 v3 =


0
0
1
3

 .
For the canonical basis, we perform the following row-reduction:1 1 1 1

1 2 0 0
0 0 1 3

→
1 1 1 1

0 1 −1 −1
0 0 1 3

→
1 0 2 2

0 1 −1 −1
0 0 1 3

→
1 0 0 −4

0 1 0 2
0 0 1 3

 .
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We conclude that the canonical basis consists of the vectors

w1 =
[
1 0 0 −4

]T
w2 =

[
0 1 0 2

]T
w3 =

[
0 0 1 3

]T
.

Exercise 8. Put V = span(e1 − e2, e2 − e3, . . . , en−1 − en) ⊆ Rn, where ei is the i’th standard basis
vector for Rn.

(a) What is the dimension of V ?
(b) What is the canonical basis for V ?
(c) What is the set J(V ) of jumps for V ?

(You can start by doing the case n = 5 by row-reduction if you like, but ideally you should give an
answer for the general case, together with a more abstract proof that your answer is correct.)

Solution: Put vi = ei − ei+1, so V = span(v1, . . . , vn−1). For the case n = 5 we have can row-reduce
the matrix A = [v1|v2|v3|v4]T as follows:

1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

→


1 −1 0 0 0
0 1 −1 0 0
0 0 1 0 −1
0 0 0 1 −1

→


1 −1 0 0 0
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1

→


1 0 0 0 −1
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1


The final matrix B can be described as [w1|w2|w3|w4]T , where wi = ei− e4. It follows that these vectors
wi form the canonical basis for V , so dim(V ) = 4. Moreover, the set of jumps for V is the set of pivot
columns for B, namely {1, 2, 3, 4}.

The same pattern works for general n. In more detail, we can define vectors w1, . . . , wn−1 by wi =
ei − en and W = span(w1, . . . , wn−1). For i < n− 1 we have

vi = ei − ei+1 = (ei − en)− (ei+1 − en) = wi − wi+1,

whereas vn−1 is just equal to wn−1. This shows that vi ∈W for all i, and it follows that V ⊆W . In the
opposite direction, we have

vi + vi+1 + · · ·+ vn−1 = (ei − ei+1) + (ei+1 − ei+2) + · · ·+ (en−1 − en) = ei − en = wi,

which shows that wi ∈ V for all i, and thus that W ⊆ V . It follows that W = V , so the list W =
w1, . . . , wn−1 spans V . The corresponding matrix B = [w1| · · · |wn−1]T is clearly in RREF, so W is in
fact the canonical basis for V . It follows that dim(V ) = n− 1 and J(V ) = {1, 2, . . . , n− 1}.

Exercise 9. Put V = ann(a1, a2, a3) ⊆ R6, where

a1 =
[
1 1 2 3 3 2

]T
a2 =

[
3 3 2 1 1 2

]T
a3 =

[
0 0 1 1 1 1

]T
.

Find the canonical basis for V .

Solution: The equations a3.x = a2.x = a1.x = 0 can be written as

x6 + x5 + x4 + x3 = 0

2x6 + x5 + x4 + 2x3 + 3x2 + x1 = 0

2x6 + 3x5 + 3x4 + 2x3 + x2 + x1 = 0.

The matrix A on the left below is [a1|a2|a3]T ; the matrix A∗ on the right is obtained by turning A
through 180◦ and is the matrix of coefficients in the above system of equations.

A =

1 1 2 3 3 2
3 3 2 1 1 2
0 0 1 1 1 1

 A∗ =

1 1 1 1 0 0
2 1 1 2 3 3
2 3 3 2 1 1

 .
We can row-reduce A∗ as follows:

A∗ →

1 1 1 1 0 0
0 −1 −1 0 3 3
0 1 1 0 1 1

→
1 0 0 1 3 3

0 1 1 0 −3 −3
0 0 0 0 4 4

→
1 0 0 1 0 0

0 1 1 0 0 0
0 0 0 0 1 1

 = B∗
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The matrix B∗ corresponds to the system of equations

x6 + x3 = 0

x5 + x4 = 0

x2 + x1 = 0,

which can be rewritten as x6 = −x3 and x5 = −x4 and x2 = −x1. This gives

x =


x1
x2
x3
x4
x5
x6

 =


x1
−x1
x3
x4
−x4
−x3

 = x1


1
−1
0
0
0
0

+ x3


0
0
1
0
0
−1

+ x4


0
0
0
1
−1
0

 .

It follows that the vectors

v1 =
[
1 −1 0 0 0 0

]T
v2 =

[
0 0 1 0 0 −1

]T
v3 =

[
0 0 0 1 −1 0

]T
form the canonical basis for V .

The calculation can be written more compactly in terms of Method 20.23. The matrix B∗ has pivot
columns 1, 2 and 5, and non-pivot columns 3, 4 and 6. Deleting the pivot columns leaves the matrix

C∗ =

 cT1
cT2
cT3

 =

0 1 0
1 0 0
0 0 1

 .
We then construct the matrix

D∗ =
[
−c1 −c2 e1 e2 −c3 e3

]
=

 0 −1 1 0 0 0
−1 0 0 1 0 0
0 0 0 0 −1 1


and rotate it to get

D =

1 −1 0 0 0 0
0 0 1 0 0 −1
0 0 0 1 −1 0

 .
The canonical basis vectors vi appear as the rows of D.

Exercise 10. Put

A =


1 1 1 1
1 2 2 1
1 3 3 1
1 4 4 1

 .
Find the canonical basis for img(A), and the canonical basis for ker(A).

Solution: First, let a1, . . . , a4 be the columns of A. Proposition 19.19 tellus us that img(A) =
span(a1, . . . , a4). To find the canonical basis for this space, Method 20.14 tells us that we should form
the matrix whose rows are aT1 , . . . , a

T
4 , but that matrix is just AT . We can row-reduce AT as follows:

1 1 1 1
1 2 3 4
1 2 3 4
1 1 1 1

→


1 1 1 1
0 1 2 3
0 1 2 3
0 0 0 0

→


1 0 −1 −2
0 1 2 3
0 0 0 0
0 0 0 0


By looking at the transposed rows of the final matrix, we see that the canonical basis for img(A) consists
of the vectors

u1 =


1
0
−1
−2

 and u2 =


0
1
2
3

 .
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Next, we recall that ker(A) is the set of vectors x that satisfy Ax = 0. After noting that
1 1 1 1
1 2 2 1
1 3 3 1
1 4 4 1



x1
x2
x3
x4

 =


x1 + x2 + x3 + x4
x1 + 2x2 + 2x3 + x4
x1 + 3x2 + 3x3 + x4
x1 + 4x2 + 4x3 + x4

 ,
we see that ker(A) is the set of solutions to the equations

x1 + x2 + x3 + x4 = 0

x1 + 2x2 + 2x3 + x4 = 0

x1 + 3x2 + 3x3 + x4 = 0

x1 + 4x2 + 4x3 + x4 = 0.

These are easily solved to give x4 = −x1 and x3 = −x2 with x1 and x2 arbitrary. (In order to get the
canonical basis rather than any other basis, we need to write things this way around, with the higher-
numbered variables on the left written in terms of the lower-numbered variables on the right.) This
gives

x =


x1
x2
−x2
−x1

 = x1


1
0
0
−1

+ x2


0
1
−1
0

 .
From this we see that the canonical basis for ker(A) consists of the vectors

v1 =


1
0
0
−1

 and v2 =


0
1
−1
0

 .

6


