
Constrained optimisation



Constrained optimisation

I So far we have tried to find the maximum value of a function f (x , y),
where both x and y can vary freely.

I This is like looking for the highest point in a certain area of land.
I What if we want to find the highest point on the road instead?
I The road will be given by some equation which we can put in the form

g(x , y) = 0. For example, g(x , y) = x2 + y 2 − 4 corresponds to a circular
road, and g(x , y) = x + y − 6 corresponds to an infinite straight road.

I We want to maximise f (x , y) subject to the constraint g(x , y) = 0.
I The maximum and minimum occur at points where the road is tangent to

the contours.
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Constrained optimisation - applications

I Suppose we want to build a 5kW motor that is as light as possible. We
have come up with a design with parameters a, b and c that we can
adjust. The weight is W (a, b, c) and the power (in kW) is P(a, b, c). We
want to minimise W (a, b, c) subject to the constraint P(a, b, c)− 5 = 0.

I More generally, whenever we design a device, there will be some
requirements that are not negotiable; these will be expressed by constraint
equations. There will be other functions that measure the effectiveness of
the device. We want to maximise these, but we have to do so subject to
the constraints.
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The Lagrange multiplier method

I To maximise or minimise f (x , y) subject to g(x , y) = 0, we find the
(unconstrained) critical points of the function
L(λ, x , y) = f (x , y)− λg(x , y).

I For example, suppose we want to minimise f (x , y) = x2 + y 2 subject to
3x + 4y = 5.

Then g(x , y) = 3x + 4y − 5 so

L(λ, x , y) = x2 + y 2 − λ(3x + 4y − 5).

I For a critical point, the derivatives must vanish:

Lλ = −3x − 4y + 5 = 0 (A)

Lx = 2x − 3λ = 0 (B)

Ly = 2y − 4λ = 0. (C)

I Here (B) and (C) give x = 3λ/2 and y = 2λ.

Substituting these values
in (A) gives −9λ/2− 8λ+ 5 = 0, which simplifies to λ = 2/5. This in
turn gives x = 3λ/2 = 3/5 and y = 2λ = 4/5. Thus, the only critical
point is (x , y) = (3/5, 4/5). The value of f here is (3/5)2 + (4/5)2 = 1.
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Geometric interpretation

f (x , y) = x2 + y 2 = squared distance from (x , y) to (0, 0)
g(x , y) = 3x + 4y − 5 = 0; minimum value of f is 1 at (3/5, 4/5).

Geometrically, we have found the closest point to the origin on the line
3x + 4y = 5.

(3/5, 4/5)

3x + 4y − 5 = 0
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Why does the method (usually) work?

I Suppose that (λ, x , y) is a critical point for L(λ, x , y) = f (x , y)−λg(x , y).

I We have Lλ(λ, x , y) = −g(x , y), and this must be zero as we are at a
critical point of L. This means that we are on the constraint curve.

I We also have Lx = Ly = 0, which means that fx = λgx and fy = λgy (at
this point).

I Now suppose we move a little way along the constraint curve, by (δx , δy)
say.

I The change in g is δx .gx + δy .gy .

I As we are staying on the constraint curve, g is still zero, so we must have
δx .gx + δy .gy = 0.

I This means that δx .λgx + δy .λgy = 0

, so δx .fx + δy .fy = 0, so δf = 0.

I We see from this that (x , y) is a critical point for the constrained problem.

I Geometrically, the vector u =

[
gx
gy

]
is normal to the constraint curve, and

v =

[
fx
fy

]
is normal to the contour of f . The equations fx = λgx and

fy = λgy say that v is a multiple of u, so the constraint curve is running
parallel to the contour.
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A constrained optimization example

Consider a metal tank, open at the top. The volume
is V = xyz , and the area is S = xy + 2xz + 2yz .
We want the volume to be 4m3, and we want to
minimise S , to use as little metal as possible.

x

y

z

I We are minimising S subject to V − 4 = 0, so
L = xy + 2xz + 2yz − λ(xyz − 4).

I Equations are

Lλ = 4− xyz = 0

xyz = 4

(A)

Lx = y + 2z − λyz = 0

z−1 + 2y−1 = λ

(B)

Ly = x + 2z − λxz = 0

z−1 + 2x−1 = λ

(C)

Lz = 2x + 2y − λxy = 0

2y−1 + 2x−1 = λ.

(D)

I Subtract (B) and (C) to get x−1 = y−1 so x = y .

Substitute in (D) to get
4x−1 = 4y−1 = λ, so x = y = 4/λ. Substitute in (C) to get
z−1 + λ/2 = λ, so z = 2/λ. Substitute in (A) to get 32 = 4λ3, so λ = 2

,
so (x , y , z) = (2, 2, 1).

I For these values, we have S = 12. Thus, the minimum possible area of
metal sheet that we need is 12m2.
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A constrained optimisation example

I Problem: maximise f (x , y) = x + y subject to x2/a + y 2/b = 1
(for some constants a, b > 0).

I Take L = x + y − λ(x2/a + y 2/b − 1). For a critical point:

Lλ = 1− x2/a− y 2/b = 0 x2/a + y 2/b = 1 (A)

Lx = 1− 2xλ/a = 0 x = a/(2λ) (B)

Ly = 1− 2yλ/b = 0 y = b/(2λ). (C)

I Substitute (B) and (C) in (A) to get (a + b)/(4λ2) = 1, so
λ = ±

√
a + b/2.

As x = a/(2λ) and y = b/(2λ) this gives

(x , y) = ±
(

a√
a + b

,
b√
a + b

)
.

I For these points we have

f (x , y) = x + y = ±(a + b)/
√
a + b = ±

√
a + b.

This means that the maximum possible value of f (subject to the
constraint) is

√
a + b, and the minimum is −

√
a + b.
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A constrained optimisation example

Problem: maximise f (x , y) = x + y subject to x2/a + y 2/b = 1
Maximum and minimum values are ±

√
a + b, at the points ±(a, b)/

√
a + b.

g(x , y) = 0

f (x , y) =
√
a + b

f (x , y) = −
√
a + b

(a/
√
a + b, b/

√
a + b)



Constrained optimisation example

I Problem: find the maximum and minimum of f (x , y) = y 2 − 8x + 17
subject to x2 + y 2 = 9.

I The constraint function is g(x , y) = x2 + y 2 − 9.

I We therefore need to find the unconstrained critical points of the function

L(λ, x , y) = f (x , y)− λg(x , y) = y 2 − 8x + 17− λx2 − λy 2 + 9λ.

I These are the points where the following equations hold:

Lλ = 9− x2 − y 2 (A)

Lx = −8− 2λx = 0 (B)

Ly = 2y − 2λy = 0. (C)

I Equation (C) gives (1− λ)y = 0, so either y = 0 or λ = 1.

If λ = 1
then (B) gives x = −4, so (A) gives y 2 = 9− (−4)2 = −7, which is
impossible as x and y are supposed to be real. We must therefore have
y = 0 instead. Substituting this into (A) gives x = ±3 (and then (B)
gives λ = −4/x = ∓4/3).

I Thus, the critical points for the constrained problem are at (−3, 0) (where
f = 02 − 8× (−3) + 17 = 41) and (3, 0) (where f = −7).

I We conclude that the minimum is −7 and the maximum is 41.
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Several constraints

I There is a similar method for problems with several constraints.

I For example: maximise z subject to x2 + y 2 + z2 = 9 and x + 2y + 4z = 3.
I Method: find unconstrained critical points of

L = z − λ(x2 + y 2 + z2 − 9)− µ(x + 2y + 4z − 3)

I Equations: Lλ = 9− x2 − y 2 − z2 = 0 (A)

Lµ = 3− x − 2y − 4z = 0 (B)

Lx = −2xλ− µ = 0 (C)

Ly = −2yλ− 2µ = 0 (D)

Lz = −2zλ− 4µ = 0 (E)

I These can be solved: use (B) to eliminate x

and (C) to eliminate µ, then
it works out that (D) rearranges to give y = (6− 8z)/5. Substituting
these into (A) gives −21z2/5 + 24z/5 + 36/5 = 0, which gives z = 2 or
z = −6/7. After a few more steps, we see that the solutions are

(λ, µ, x , y , z) = (1/12, 1/6,−1,−2, 2)

(λ, µ, x , y , z) = (−1/12, 3/14, 9/7, 18/7,−6/7).

I Thus, the minimum value of z is −6/7 at (9/7, 18/7,−6/7), and the
maximum is 2 at (−1, 2, 2).
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I For example: maximise z subject to x2 + y 2 + z2 = 9 and x + 2y + 4z = 3.
I Method: find unconstrained critical points of

L = z − λ(x2 + y 2 + z2 − 9)− µ(x + 2y + 4z − 3)

I Equations: Lλ = 9− x2 − y 2 − z2 = 0 (A)

Lµ = 3− x − 2y − 4z = 0 (B)

Lx = −2xλ− µ = 0 (C)

Ly = −2yλ− 2µ = 0 (D)

Lz = −2zλ− 4µ = 0 (E)

I These can be solved: use (B) to eliminate x and (C) to eliminate µ, then
it works out that (D) rearranges to give y = (6− 8z)/5. Substituting
these into (A) gives −21z2/5 + 24z/5 + 36/5 = 0, which gives z = 2 or
z = −6/7. After a few more steps, we see that the solutions are

(λ, µ, x , y , z) = (1/12, 1/6,−1,−2, 2)
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Several constraints

We wanted to maximise z subject to x2 + y 2 + z2 = 9 and x + 2y + 4z = 3.

The equation x2 + y 2 + z2 = 9 defines a sphere (shown in colour) and
x + 2y + 4z = 3 defines a plane (shown in grey).

The two constraints together
give the intersection of the sphere and the plane, which is the red curve. The
optimisation problem is to find the highest and lowest points on that curve.
The right-hand picture shows the planes z = −6/7 and z = 2, which we saw
were the minimum and maximum values.
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