
Algebra and geometry of vectors



Basic definitions

Recall that a vector is a quantity with both magnitude and direction.

Examples
include:

(a) The velocity and acceleration of a particle are vectors.

(b) The separation between two particles is a vector.

(c) If we have chosen a point to count as the origin, then the displacement of
a particle from that origin is also a vector.

(d) The electric field at a point is a vector, and the magnetic field is another
vector.

By contrast, a scalar is a quantity that has a magnitude, but not a direction.
For example, the pressure, temperature and electric potential at a point are
scalars.
When answering questions in vector algebra or vector calculus, you should
always ask yourself whether your answer should be a scalar or a vector, and
make sure that what you have written has the right type. This simple check
will detect a substantial fraction of incorrect answers.
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Numerical vectors

Normally we will fix a coordinate system, and use it to rep-
resent vectors as triples of numbers.

For example, the triple
(3,−2, 4) represents the vector that goes 3 steps along the
x-axis, 2 steps backwards parallel to the y -axis, and 4 steps
parallel to the z-axis.

x

y

z

−2

4

3

We can add vectors in an obvious way, for example
(3,−2, 4) + (1, 1, 1) = (4,−1, 5). Geometrically, this corre-
sponds to joining the vectors together nose to tail.

Similarly, we can multiply a vector by a scalar to get a new
vector, for example 3(3,−2, 4) = (9,−6, 12). The new
vector has the same direction as the old one (if the scalar is
positive) or the opposite direction (if the scalar is negative).

a
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Length of vectors

The length of a vector a = (x , y , z) is given by

|a| =
√

x2 + y 2 + z2.

It is a useful fact that we always have |a + b| ≤ |a|+ |b|; this is called the
triangle inequality. To see why it is true, consider the parallelogram below.

a

a

b

b

a+b

The distance from the origin to a + b in a straight line is |a + b|, whereas the
distance via a is |a|+ |b|. The inequality just says that it is shorter to go in a
straight line.
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Unit vectors

A unit vector is a vector of length one.

We write â for the unit vector in the
same direction as a.

a

â

b

b̂

c
ĉ

This is given by

â =
a

|a|

=

(
x√

x2 + y 2 + z2
,

y√
x2 + y 2 + z2

,
z√

x2 + y 2 + z2

)
.

For example, if a = (1,−2, 2) then

|a| =
√

12 + (−2)2 + 22

=
√

1 + 4 + 4 = 3

â =
a

3
=

(
1

3
,−2

3
,

2

3

)
.

Note that |a| is a scalar, and â is a vector.
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same direction as a.

a

â
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Unit vectors

A unit vector is a vector of length one. We write â for the unit vector in the
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â

b

b̂

c
ĉ
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Vectors along the coordinate axes

The unit vectors along the three coordinate axes are denoted by i, j and k:

i = (1, 0, 0)

j = (0, 1, 0)

k = (0, 0, 1).

Note that

x i + y j + zk = (x , 0, 0) + (0, y , 0) + (0, 0, z) = (x , y , z).

For example, the vector (10, 0,−20) can also be expressed as 10i− 20k.
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Dot products

The dot product of vectors a = (x , y , z) and b = (u, v ,w) is given by

a.b = (x , y , z).(u, v ,w) = xu + yv + zw .

Note that this is a scalar, and that a.b is the same as b.a. For example, we have

(1, 2, 3).(10, 100, 1000) = 10 + 200 + 3000 = 3210.

Note also that a.a = x2 + y 2 + z2 = |a|2.
For the unit vectors i, j and k we have

i.i = 1 i.j = 0 i.k = 0 j.i = 0 j.j = 1 j.k = 0 k.i = 0 k.j = 0 k.k = 1.

Geometrically: a.b = |a||b| cos(θ), where θ is the angle between a and b. In
particular, as −1 ≤ cos(θ) ≤ 1 this means that −|a||b| ≤ a.b ≤ |a||b|, or
equivalently |a.b| ≤ |a||b|. This is called the Cauchy-Schwartz inequality. We
also see that a.b is zero when θ = π/2, which means that a and b are
perpendicular to each other.

θ
a

b

θ < π
2

; a.b > 0

θ a

b

θ = π
2

; a.b = 0

θ a
b

θ > π
2

; a.b < 0
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The dot product of vectors a = (x , y , z) and b = (u, v ,w) is given by
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Angle example

Consider the vectors a = (3, 0, 4) and b = (2,−1, 2). We will find the angle θ
between a and b.

The inner products are

|a|2 = a.a = 32 + 02 + 42 = 25

|b|2 = b.b = 22 + (−1)2 + 22 = 9

|a||b| cos(θ) = a.b = 3× 2 + 0× (−1) + 4× 2 = 14.

From this we see that |a| =
√

25 = 5 and |b| =
√

9 = 3, so

cos(θ) =
a.b

|a||b|

=
14

5× 3
=

14

15
' 0.933.

This means that θ = arccos(0.933), which is 0.367 radians or 21.04 degrees.
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Methane

The hydrogen atoms in a molecule of methane lie at the
following positions:

a = (0, 0, 1) b =

(
2
√

2

3
, 0,−1

3

)
c =

(
−
√

2

3
,

√
6

3
,−1

3

)
d =

(
−
√

2

3
,−
√

6

3
,−1

3

)
.

a

b

c

d

θ

It is clear that a is a unit vector. We also have

|b|2 =

(
2
√

2

3

)2

+

(
1

3

)2

=
4× 2

9
+

1

9
= 1

|c|2 =

(√
2

3

)2

+

(√
6

3

)2

+

(
1

3

)2

=
2

9
+

6

9
+

1

9
= 1

so b and c are unit vectors, and d is also a unit vector by the same calculation
as for c. It is also clear that a.b = a.c = a.d = −1/3. In fact, we also have
b.c = b.d = c.d = −1/3.
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so θ is arccos(−1/3), which is 1.911 radians or 109.5 degrees. By the same
calculation, the angle between any two of the atoms is 109.5 degrees.
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If θ is the angle between a and b, then we have

cos(θ) =
a.b

|a||b| =
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so θ is arccos(−1/3), which is 1.911 radians or 109.5 degrees. By the same
calculation, the angle between any two of the atoms is 109.5 degrees.



Parallel and perpendicular components

Now suppose we have a vector a and a unit vector n.

We can write a as
a|| + a⊥, where a|| is the part parallel to n, and a⊥ is the part perpendicular to
n.

n

a||

a⊥
a=a||+a⊥

θ

In the picture, θ is the angle between a and a||, which is the same as the angle
between a and n. From this (and the fact that |n| = 1) it follows that

a.n = |a||n| cos(θ) = |a| cos(θ) = |a|||.

(Equation of scalars, valid for θ ≤ π
2

; for all θ we have |a.n| = |a|||.)

a|| = (a.n)n

a⊥ = a− (a.n)n.
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Parallel and perpendicular example

a|| = (a.n)n a⊥ = a− (a.n)n.

Consider the vector a = (3, 6, 9) and the unit vector n = (2/3, 2/3,−1/3).

We
have

a.n = 3.
2

3
+ 6.

2

3
+ 9.
−1

3
= 2 + 4− 3 = 3

a|| = (a.n)n = 3n = (2, 2,−1)

a⊥ = a− a|| = (3, 6, 9)− (2, 2,−1) = (1, 4, 10).
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Components parallel and perpendicular to a non-unit vector

I The formulae on the previous slides give the components of a parallel and
perpendicular to a unit vector n.

I Suppose we want the components parallel and perpendicular to a vector
m, which is not a unit vector.

I These are just a|| = (a.m̂)m̂ and a⊥ = a− (a.m̂)m̂, where m̂ = m/|m|.
I These formulae can also be written as

a|| =
a.m

m.m
m

a⊥ = a− a|| = a− a.m

m.m
m.

I Example: take a = (1, 2, 3) and m = (1, 1, 1).

a.m = 1 + 2 + 3 = 6

m.m = 1 + 1 + 1 = 3

a|| =
6

3
(1, 1, 1) = (2, 2, 2)

a⊥ = a− a|| = (1, 2, 3)− (2, 2, 2) = (−1, 0, 1).
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The cross product

We next recall the cross product operation. For vectors a = (x , y , z) and
b = (u, v ,w), we define

a× b = (x , y , z)× (u, v ,w) = (yw − zv , zu − xw , xv − yu).

a× b = det

 i j k
x y z
u v w

 = det

[
y z
v w

]
i− det

[
x z
u w

]
j + det

[
x y
u v

]
k.

Note that a× b is a vector, in contrast to a.b, which is a scalar.
Example: Consider the vectors a = (1, 2, 3) and b = (3, 2, 1).

We have

a× b = det

 i j k
1 2 3
3 2 1



= det

[
2 3
2 1

]
i− det

[
1 3
3 1

]
j + det

[
1 2
3 2

]
k =

− 4i− (−8)j + (−4)k = (−4, 8,−4).

Example: For the standard unit vectors you can check that

i× i = 0 i× j = k i× k = −j
j× i = −k j× j = 0 j× k = i

k× i = j k× j = −i k× k = 0.
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u v w

 = det

[
y z
v w

]
i− det

[
x z
u w

]
j + det

[
x y
u v

]
k.

Note that a× b is a vector, in contrast to a.b, which is a scalar.
Example: Consider the vectors a = (1, 2, 3) and b = (3, 2, 1). We have

a× b = det

 i j k
1 2 3
3 2 1

 = det

[
2 3
2 1

]
i− det

[
1 3
3 1

]
j + det

[
1 2
3 2

]
k =

− 4i− (−8)j + (−4)k = (−4, 8,−4).

Example: For the standard unit vectors you can check that

i× i = 0 i× j = k i× k = −j
j× i = −k j× j = 0 j× k = i

k× i = j k× j = −i k× k = 0.



Cross product geometry

Geometrically, it can be shown that a× b is perpendicular to both a and b, and
that

|a× b| = |a||b| sin(θ) = area of the parallelogram spanned by a and b,

where θ is again the angle between a and b.

a

b

θ θ

length=|b| sin(θ)

length=|a|

area=|a||b| sin(θ)

In particular, we see that a× b is zero when sin(θ) = 0, which means that
θ = 0 or θ = π, so a and b have the same direction or opposite directions.
Algebraically, we have the following identities:

a× a = 0

b× a = −a× b

a.(a× b) = 0 b.(a× b) = 0.
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The scalar triple product

Suppose we have vectors a = (x , y , z), b = (u, v ,w) and c = (p, q, r).

We can
take the cross product b× c, which is a vector, and then take the dot product
of that vector with a to get a scalar a.(b× c), which is called the scalar triple
product of a, b and c. Using the determinant formula for b× c we find that
a.(b× c) is also a determinant:

a.(b× c) = det

x y z
u v w
p q r

 .
x y z

u v w

p q r

x y

u v

p q

A convenient trick for expanding such determinants is as follows. We first
expand the matrix by repeating the first two columns at the end, then draw
sloping lines as shown. For each of the blue lines sloping down and to the right,
we have a term with a plus sign. For example, the first blue line joins x , v and
r , giving a term +xvr . Each of the red lines sloping down and to the left gives
a term with a minus sign. Altogether, the determinant is

a.(b× c) = det

x y z
u v w
p q r

 = xvr + ywp + zuq − zvp − xwq − yur .



The scalar triple product

Suppose we have vectors a = (x , y , z), b = (u, v ,w) and c = (p, q, r). We can
take the cross product b× c, which is a vector, and then take the dot product
of that vector with a to get a scalar a.(b× c), which is called the scalar triple
product of a, b and c.

Using the determinant formula for b× c we find that
a.(b× c) is also a determinant:

a.(b× c) = det

x y z
u v w
p q r

 .
x y z

u v w

p q r

x y

u v

p q

A convenient trick for expanding such determinants is as follows. We first
expand the matrix by repeating the first two columns at the end, then draw
sloping lines as shown. For each of the blue lines sloping down and to the right,
we have a term with a plus sign. For example, the first blue line joins x , v and
r , giving a term +xvr . Each of the red lines sloping down and to the left gives
a term with a minus sign. Altogether, the determinant is

a.(b× c) = det

x y z
u v w
p q r

 = xvr + ywp + zuq − zvp − xwq − yur .



The scalar triple product

Suppose we have vectors a = (x , y , z), b = (u, v ,w) and c = (p, q, r). We can
take the cross product b× c, which is a vector, and then take the dot product
of that vector with a to get a scalar a.(b× c), which is called the scalar triple
product of a, b and c. Using the determinant formula for b× c we find that
a.(b× c) is also a determinant:

a.(b× c) = det

x y z
u v w
p q r

 .

x y z

u v w

p q r

x y

u v

p q

A convenient trick for expanding such determinants is as follows. We first
expand the matrix by repeating the first two columns at the end, then draw
sloping lines as shown. For each of the blue lines sloping down and to the right,
we have a term with a plus sign. For example, the first blue line joins x , v and
r , giving a term +xvr . Each of the red lines sloping down and to the left gives
a term with a minus sign. Altogether, the determinant is

a.(b× c) = det

x y z
u v w
p q r

 = xvr + ywp + zuq − zvp − xwq − yur .



The scalar triple product

Suppose we have vectors a = (x , y , z), b = (u, v ,w) and c = (p, q, r). We can
take the cross product b× c, which is a vector, and then take the dot product
of that vector with a to get a scalar a.(b× c), which is called the scalar triple
product of a, b and c. Using the determinant formula for b× c we find that
a.(b× c) is also a determinant:

a.(b× c) = det

x y z
u v w
p q r

 .
x y z

u v w

p q r

x y

u v

p q

A convenient trick for expanding such determinants is as follows.

We first
expand the matrix by repeating the first two columns at the end, then draw
sloping lines as shown. For each of the blue lines sloping down and to the right,
we have a term with a plus sign. For example, the first blue line joins x , v and
r , giving a term +xvr . Each of the red lines sloping down and to the left gives
a term with a minus sign. Altogether, the determinant is

a.(b× c) = det

x y z
u v w
p q r

 = xvr + ywp + zuq − zvp − xwq − yur .



The scalar triple product

Suppose we have vectors a = (x , y , z), b = (u, v ,w) and c = (p, q, r). We can
take the cross product b× c, which is a vector, and then take the dot product
of that vector with a to get a scalar a.(b× c), which is called the scalar triple
product of a, b and c. Using the determinant formula for b× c we find that
a.(b× c) is also a determinant:

a.(b× c) = det

x y z
u v w
p q r

 .
x y z

u v w

p q r

x y

u v

p q

A convenient trick for expanding such determinants is as follows. We first
expand the matrix by repeating the first two columns at the end

, then draw
sloping lines as shown. For each of the blue lines sloping down and to the right,
we have a term with a plus sign. For example, the first blue line joins x , v and
r , giving a term +xvr . Each of the red lines sloping down and to the left gives
a term with a minus sign. Altogether, the determinant is

a.(b× c) = det

x y z
u v w
p q r

 = xvr + ywp + zuq − zvp − xwq − yur .



The scalar triple product

Suppose we have vectors a = (x , y , z), b = (u, v ,w) and c = (p, q, r). We can
take the cross product b× c, which is a vector, and then take the dot product
of that vector with a to get a scalar a.(b× c), which is called the scalar triple
product of a, b and c. Using the determinant formula for b× c we find that
a.(b× c) is also a determinant:

a.(b× c) = det

x y z
u v w
p q r

 .
x y z

u v w

p q r

x y

u v

p q

A convenient trick for expanding such determinants is as follows. We first
expand the matrix by repeating the first two columns at the end, then draw
sloping lines as shown.

For each of the blue lines sloping down and to the right,
we have a term with a plus sign. For example, the first blue line joins x , v and
r , giving a term +xvr . Each of the red lines sloping down and to the left gives
a term with a minus sign. Altogether, the determinant is

a.(b× c) = det

x y z
u v w
p q r

 = xvr + ywp + zuq − zvp − xwq − yur .



The scalar triple product

Suppose we have vectors a = (x , y , z), b = (u, v ,w) and c = (p, q, r). We can
take the cross product b× c, which is a vector, and then take the dot product
of that vector with a to get a scalar a.(b× c), which is called the scalar triple
product of a, b and c. Using the determinant formula for b× c we find that
a.(b× c) is also a determinant:

a.(b× c) = det

x y z
u v w
p q r

 .
x y z

u v w

p q r

x y

u v

p q

A convenient trick for expanding such determinants is as follows. We first
expand the matrix by repeating the first two columns at the end, then draw
sloping lines as shown. For each of the blue lines sloping down and to the right,
we have a term with a plus sign.

For example, the first blue line joins x , v and
r , giving a term +xvr . Each of the red lines sloping down and to the left gives
a term with a minus sign. Altogether, the determinant is

a.(b× c) = det

x y z
u v w
p q r

 = xvr + ywp + zuq − zvp − xwq − yur .



The scalar triple product

Suppose we have vectors a = (x , y , z), b = (u, v ,w) and c = (p, q, r). We can
take the cross product b× c, which is a vector, and then take the dot product
of that vector with a to get a scalar a.(b× c), which is called the scalar triple
product of a, b and c. Using the determinant formula for b× c we find that
a.(b× c) is also a determinant:

a.(b× c) = det

x y z
u v w
p q r

 .
x y z

u v w

p q r

x y

u v

p q

A convenient trick for expanding such determinants is as follows. We first
expand the matrix by repeating the first two columns at the end, then draw
sloping lines as shown. For each of the blue lines sloping down and to the right,
we have a term with a plus sign. For example, the first blue line joins x , v and
r , giving a term +xvr .

Each of the red lines sloping down and to the left gives
a term with a minus sign. Altogether, the determinant is

a.(b× c) = det

x y z
u v w
p q r

 = xvr + ywp + zuq − zvp − xwq − yur .



The scalar triple product

Suppose we have vectors a = (x , y , z), b = (u, v ,w) and c = (p, q, r). We can
take the cross product b× c, which is a vector, and then take the dot product
of that vector with a to get a scalar a.(b× c), which is called the scalar triple
product of a, b and c. Using the determinant formula for b× c we find that
a.(b× c) is also a determinant:

a.(b× c) = det

x y z
u v w
p q r

 .
x y z

u v w

p q r

x y

u v

p q

A convenient trick for expanding such determinants is as follows. We first
expand the matrix by repeating the first two columns at the end, then draw
sloping lines as shown. For each of the blue lines sloping down and to the right,
we have a term with a plus sign. For example, the first blue line joins x , v and
r , giving a term +xvr . Each of the red lines sloping down and to the left gives
a term with a minus sign.

Altogether, the determinant is

a.(b× c) = det

x y z
u v w
p q r

 = xvr + ywp + zuq − zvp − xwq − yur .



The scalar triple product

Suppose we have vectors a = (x , y , z), b = (u, v ,w) and c = (p, q, r). We can
take the cross product b× c, which is a vector, and then take the dot product
of that vector with a to get a scalar a.(b× c), which is called the scalar triple
product of a, b and c. Using the determinant formula for b× c we find that
a.(b× c) is also a determinant:

a.(b× c) = det

x y z
u v w
p q r

 .
x y z

u v w

p q r

x y

u v

p q

A convenient trick for expanding such determinants is as follows. We first
expand the matrix by repeating the first two columns at the end, then draw
sloping lines as shown. For each of the blue lines sloping down and to the right,
we have a term with a plus sign. For example, the first blue line joins x , v and
r , giving a term +xvr . Each of the red lines sloping down and to the left gives
a term with a minus sign. Altogether, the determinant is

a.(b× c) = det

x y z
u v w
p q r

 = xvr + ywp + zuq − zvp − xwq − yur .



The scalar triple product

a = (x , y , z) b = (u, v ,w) c = (p, q, r)

a.(b× c) = det

x y z
u v w
p q r

 .
There are a number of slight variants of the scalar triple product, but they all
turn out to be the same, at least up to a plus or minus sign.

Specifically, we
have

a.(b× c) = b.(c× a) = c.(a× b)

= −a.(c× b) = −b.(a× c) = −c.(b× a).

We also have a.(b× c) = (b× c).a and so on, just because u.v = v.u for any
vectors u and v.
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Vector triple products

We can take the cross product of the vector a with the vector b× c to get
another vector a× (b× c).

Warning: this is not the same as (a× b)× c.
However, both of these iterated cross products, and various variants, can be
described in terms of dot products as follows:

a× (b× c) = (a.c)b− (a.b)c

(a× b)× c = (a.c)b− (b.c)a.

The following observations may help you remember the rules:

(a) The vector outside the brackets on the left occurs in both the dot
products on the right.

(b) Each of the vectors inside the brackets on the left occurs in one of the dot
products on the right.

(c) The dot product of the first vector with the last vector occurs with a plus
sign. The other dot product occurs with a minus sign.
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