
Combinatorics Exam Solutions 2023-24

(1)

(a) State Pascal’s Identity for binomial coefficients. (2 marks)

(b) Suppose that r, s, k are integers with 0 ≤ k ≤ r ≤ s. Using proof by induction on s, or otherwise, show that

s∑
m=r

(
m

k

)
=

(
s+ 1

k + 1

)
−
(

r

k + 1

)
.

(5 marks)

Solution:

(a) Pascal’s relation says that for n, k ≥ 0 with (n, k) ̸= (0, 0) we have
(
n
k

)
=

(
n−1
k

)
+
(
n−1
k−1

)
. [2] Bookwork

(b) We argue by induction on s starting with s = r. If s = r then the claim is that
(
s
k

)
=

(
s+1
k

)
−

(
s

k+1

)
, which is a

rearrangement of Pascal’s identity. For s > r, we can assume inductively that

s−1∑
m=r

(
m

k

)
=

(
s

k + 1

)
−
(

r

k + 1

)
.

By adding
(
s
k

)
to both sides and using Pascal’s identity again, we get

s∑
m=r

(
m

k

)
=

(
s

k

)
+

(
s

k + 1

)
−

(
r

k + 1

)
=

(
s+ 1

k + 1

)
−

(
r

k + 1

)
,

as required. [5] Unseen

As a different approach, let Am be the set of subsets U ⊆ {1, . . . , s+ 1} with |U | = k + 1 and max(U) = m+ 1.
Put B = Ar ∪ · · · ∪ As. Then |Am| =

(
m
k

)
so the left hand side of our equation is |B|. On the other hand, the

right hand side is the number of subsets U ⊆ {1, . . . , s + 1} that are not contained in {1, . . . , r}, which is |B|
again.
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(2) Consider the equation
x1 + x2 + · · ·+ xk = n.

(a) How many solutions are there of this equation in which each xi is a non-negative integer? Give a brief reason
for your answer. (3 marks)

(b) How many of the solutions have each xi equal to 0 or 1? (3 marks)

(c) For a positive integer r, how many of the solutions have xr as the first positive number in the list x1, x2, . . . , xk?
(3 marks)

Solution:

(a) The number of solutions is
(
n+k−1
k−1

)
[1]. Indeed, this is the number of binary sequences of length n + k − 1

containing k − 1 ones. These ones separate the remaining n zeros into k blocks of lengths x1, . . . , xk ≥ 0 with∑
i xi = n. This gives a bijection between these binary sequences and solutions of the equation. [2] Bookwork

(b) Now consider solutions in which each xk lies in {0, 1}. We just need to choose n of the k variables to be equal
to one, and the rest wil be zero. It follows that there are

(
k
n

)
solutions. [3] Similar examples seen

(c) Now fix r and consider solutions x where xr > 0 but xi = 0 for i < r. If we put x′
r = xr − 1 ≥ 0, these are

equivalent to solutions of x′
r + xr+1 + · · · + xk = n − 1 with all variables nonnegative. Here the number of

variables is k′ = k − r + 1 so the number of solutions is(
n− 1 + k′ − 1

k′ − 1

)
=

(
n+ k − r − 1

k − r

)
.[3]

Similar examples seen
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(3) This question concerns routes in the grid illustrated:

A

B

C

D

(a) How many routes are there from A to B along the lines of the grid (always moving up or to the right, as usual)?
Give a brief reason for your answer. (3 marks)

(b) Find the number of such routes which do not pass through C or D. (8 marks)

Solution:

(a) The number of possible routes from A to B is n(A,B) =
(
12
8

)
= 495. [1]Indeed, we need to take 8 horizontal

steps and 4 vertical steps, and the route is specified by choosing which 8 of the 12 steps are to be horizontal. [2]
Bookwork

(b) Answers in terms of unevaluated binomial coefficients will be accepted. Similar examples have
been seen.

– The number of routes passing through C is n(A,C)n(C,B) =
(
5
4

)(
7
4

)
= 175. [2]

– The number of routes passing through D is n(A,D)n(D,B) =
(
8
6

)(
4
2

)
= 168. [2]

– The number of routes passing through both C and D is n(A,C)n(C,D)n(D,B) =
(
5
4

)(
3
2

)(
4
2

)
= 90. [2]

– Thus, by the IEP, the number of paths not passing through C or D is 495− 175− 168 + 90 = 242. [2]
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(4)

(a) Suppose that you are given 22 (not necessarily different) integers such that when you multiply them together
you get 1. Show that when you add them up it is impossible to get 0. (4 marks)

(b) Suppose that the numbers 1 to 10 are written in a row, and between each adjacent pair of numbers we insert
either a plus sign or a minus sign, giving an expression such as 1−2−3+4+5−6+7−8+9−10. Is it possible
to choose the plus and minus signs in such a way that the value of the resulting expression is zero? (4 marks)

Solution:

(a) Suppose we have x1, . . . , x22 ∈ Z with
∏

i xi = 1. This is only possible if each of the numbers xi is ±1 [1].
Suppose that m of the numbers are −1, and the other 22 − m are +1 [1]. Because

∏
i xi = 1, we see that m

must be even, say m = 2k [1]. Now
∑

i xi = 2k × (−1) + (22− 2k)× (+1) = 22− 4k. As 22 is not divisible by
4, this cannot be zero [1]. Unseen

(b) If we had an equation of the form ±1± 2± · · · ± 10 = 0, we could reduce it mod 2 (remembering that −k = k
(mod 2)) to get 1 + 2 + · · ·+ 10 = 0 (mod 2) [2]. However, by the standard arithmetic progression formula the
left hand side is

(
11
2

)
= 55, which is not zero mod 2 [2]. Unseen
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(5)

(a) State the Pigeonhole Principle. (2 marks)

(b) Show that there exists an integer whose decimal representation consists entirely of 1s (that is, an integer of the
form 11 · · · 11) which is divisible by 13× 17× 19.
[Hint: as well as numbers of the form 11 · · · 11, it may be helpful to consider numbers of the form 11 · · · 10 · · · 00.]
(5 marks)

Solution:

(a) Suppose we have a set B with |B| = n, and subsets A1, . . . , Am ⊆ B with B = A1 ∪ · · · ∪Am. Suppose also that
m < n; then there exists i such that |Ai| > 1. [2]
Bookwork. Full marks will be given for any correct statement of the same general type.

(b) Put d = 13× 17× 19 and D = {0, 1, . . . , d− 1} so |D| = d. Let an be the number 11 · · · 11 with n ones and put
bn = an (mod d) ∈ D. The numbers b1, . . . , bd+1 cannot all be distinct, so we can choose n < m with bn = bm,
which means that am − an is divisible by d [2]. Now am − an consists of m − n ones followed by n zeros, i.e.
am − an = 10nam−n, so d divides 10nam−n [1]. It is clear that the numbers d = 13× 17× 19 and 10n = 2n × 5n

are coprime, so d must divide am−n, as required [2].

Alternatively, one can use the formula an = (10n− 1)/9 together with Fermat’s Little Theorem to prove that an
is divisible by d whenever n id divisible by the least common multiple of 13− 1, 17− 1 and 19− 1, which is 144.

This is fairly similar to other pigeonhole arguments about congruence that have been seen.
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(6)

(a) State the Inclusion/Exclusion Principle. (3 marks)

(b) Put N = {1, 2, 3, 4, 5, 6, 7, 8, 9} and M = {3, 6, 9}. Use the Inclusion/Exclusion Principle to find the number of
permutations of the set N that fix at least one member of M . (6 marks)

Solution:

(a) Consider a finite set B, with a list of subsets B1, . . . , Bn ⊆ B. For I ⊆ {1, . . . , n} put BI =
⋂

i∈I Bi, with the
convention that B∅ = B. The IEP says that

|B1 ∪ · · · ∪Bn| =
∑
I ̸=∅

(−1)|I|−1|BI |, [3]

or equivalently

|B \ (B1 ∪ · · · ∪Bn)| =
∑
I

(−1)|I||BI |.

Bookwork. Full marks will be given for either of the equivalent forms. Versions with ellipses
instead of summation notation will be accepted if they are sufficiently clear.

(b) Let P be the set of all permutations of N , so |P | = 9! [1]. Let Pk be the subset of permutations that send k to
itself [1], and put Q = P3 ∪ P6 ∪ P9. We need to find |Q|. By the IEP, this is

|Q| = |P3|+ |P6|+ |P9| − |P36| − |P39| − |P69|+ |P369|.[1]

The set P3 is essentially the set of permutations of N \ {3}, so |P3| = 8!. Similarly, |P6| = |P9| = 8! [1]. The set
P36 is essentially the set of permutations of N \ {3, 6}, so |P36| = 7!. Similarly, |P39| = |P69| = 7! [1]. The set
P36 is essentially the set of permutations of N \ {3, 6, 9}, so |P369| = 6!. We therefore have

|Q| = 3× 8!− 3× 7! + 6! = (3× 8× 7− 3× 7 + 1)× 6! = 148× 720

= 106560[1]

Standard application of IEP
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(7)

(a) Let B be part of an n× n board, and let C and D be subsets of B.

(i) Explain what it means to say that B is the fully disjoint union of C and D. (3 marks)

(ii) If B is the fully disjoint union of C and D, what is the relationship between the corresponding rook
polynomials? (1 marks)

(b) Calculate the rook polynomial of the (unshaded) board B:

(8 marks)

(c) For each of the following polynomials pk(x), either find a board Bk whose rook polynomial is pk(x), or explain
why that is not possible. (8 marks)

p1(x) = 1 + 10x− 3x2 + x3 p2(x) = 4 + 3x+ 2x2 + x3

p3(x) = 1 + 4x+ 4x3 + x4 p4(x) = 1 + 16x+ 72x2 + 96x3 + 24x4

p5(x) = 1 + 8x+ 14x2 + 4x3 p6(x) = 1 + 4x+ 6x2 + 4x3 + x4

Solution:

(a) (i) Bookwork. We say that B is the fully disjoint union of C and D if

* B = C ∪D

* No row meets both C and D

* No column meets both C and D. [3]

(ii) If so, then rB(x) = rC(x)rD(x). [1]

(b) We call the original board B1 and introduce additional boards as follows:

1
2

4 4

5

5

3

6 6 6

6 6

7

7

7

7
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Let rk(x) be the rook polynomial of Bk. We have

r4(x) = r5(x) = 1 + 2x[1]

r6(x) = 1 + 5x+ 4x2[1]

r7(x) = 1 + 4x+ 2x2[1]

r3(x) = r6(x) r7(x) = 1 + 9x+ 26x2 + 26x3 + 8x4[1]

r2(x) = r4(x) r5(x) = 1 + 4x+ 4x2[1]

r1(x) = r3(x) + x r2(x) = 1 + 10x+ 30x2 + 30x3 + 8x4.[1]

(Indeed, the polynomials r4(x) to r7(x) are obtained by inspection, then r3(x) = r6(x)r7(x) because B3 is the
fully disjoint union of B6 and B7, and r2(x) = r4(x)r5(x) because B2 is the fully disjoint union of B4 and B5,
and r1(x) = r3(x)+x r2(x) by the blocking and stripping theorem. [2]) Thus, the rook polynomial of the original
board B is 1 + 10x+ 30x2 + 30x3 + 8x4. Standard calculation.

(c) – p1(x) cannot be a rook polynomial because it has a negative coefficient. [1]

– p2(x) cannot be a rook polynomial because the constant term is not equal to one. [1]

– p3(x) also cannot be the rook polynomial of any board B. Indeed, the coefficient of x2 is zero, which would
mean that it it is not possible to place two non-challenging rooks, which would also mean that it is not
possible to place three non-challenging rooks, contradicting the fact that the coefficent of x3 is nonzero. [2]

– p4(x) is
∑4

k=0

(
4
k

)2
k!xk, which is the rook polynomial of a full 4× 4 board. [1]

– p5(x) is the rook polynomial of a 3× 3 board with a single square blocked off. [2]

– p6(x) is (1 + x)4, which is the rook polynomial of a 4 × 4 board in which only the diagonal squares are
unblocked. [1]

Similar examples have been seen, but not for the case of p3(x).
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(8)

(a) State Landau’s theorem on scores in tournaments. (4 marks)

(b) Suppose we have a tournament with 6 players, in which 3 players score x and the other 3 players score y, where
x > y. What are the possible values of x and y? (4 marks)

(c) For each of the pairs (x, y) that you found in (b), give an example of a corresponding tournament. (4 marks)

Solution:

(a) Bookwork. Landau’s theorem is as follows. Consider a list s1, . . . , sn of nonnegative integers with
∑

i si =
(
n
2

)
[1]. Then the following conditions are equivalent:

(1) There is an n-player tournament in which player i wins si games for all i [1]

(2) The sum of any k of the terms si is at least
(
k
2

)
[1]

(3) The sum of any k of the terms si is at most
(
k
2

)
+ k(n− k). [1]

(b) Similar problems have been seen. Suppose that the score sequence (in decreasing order) is (x, x, x, y, y, y).
By Landau’s theorem, we must have

y ≥
(
1

2

)
= 0 2y ≥

(
2

2

)
= 1 3y ≥

(
3

2

)
= 3

x+ 3y ≥
(
4

2

)
= 6 2x+ 3y ≥

(
5

2

)
= 10 3x+ 3y =

(
6

2

)
= 15.[2]

The final equation 3x+3y = 15 gives y = 5−x. As x > y we have x > 5−x so x ≥ 3. The third relation 3y ≥ 3
gives y ≥ 1 so x ≤ 4. We thus have (x, y) = (3, 2) or (x, y) = (4, 1) [2]. It is easy to see that all six of the above
relations hold in these cases.

(c) Similar problems have been seen. One possible solution is as follows: [4]

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L W

LW

L

0

1

2

3

4

5

0 1 2 3 4 5

scores (4, 4, 4, 1, 1, 1)

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L
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5
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scores (3, 3, 3, 2, 2, 2)

Full credit will be given for correct examples constructed by any means.
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(9) Let p, n be integers with 0 < p < n. Let L be a p × (n − p) latin rectangle with entries in {1, . . . , n}. Using an
appropriate theorem from the notes, show that X can be extended to an n× n latin square. (5 marks)

Solution: Unseen.
The standard extension theorem refers to a p× q latin rectangle with entries in {1, . . . , n}; in the present case we

have q = n − p so p + q = n [1]. Let mL(k) be the number of occurrences of k in L; it is clear that mL(k) ≥ 0 [1].
The standard theorem is formulated in terms of the numbers eL(k) = mL(k)+n− p− q [1], which is just the same as
mL(k) in this case [1]. The theorem says that L can be extended provided that eL(k) ≥ 0 for all k, and this is clearly
satisfied. [1]
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(10)

(a) Let p = 4m+3 be a prime number. Explain how to use quadratic residues modulo p to construct a block design
with parameters (4m+ 3, 4m+ 3, 2m+ 1, 2m+ 1,m). You should explain the key facts that need to be proved
to verify that your construction works, but you do not need to prove any of them. (7 marks)

(b) Consider a (v, b, r, k, λ) design. Give two equations expressing r in terms of the other parameters of the design.
(2 marks)

(c) Do there exist designs with the following parameters? Give brief reasons for your answers.

(i) (11, 11, 5, 5, 2).

(ii) (11, 11, 4, 6, 2).

(iii) (11, 11, 6, 6, 2).

(3 marks)

Solution:

(a) Bookwork. Put V = B = Z/p, so |V | = |B| = p = 4m + 3 [1]. Let Q be the set of quadratic residues mod
p [1]; it can then be shown that |Q| = (p − 1)/2 = 2m + 1 [1]. For each j ∈ B, put Cj = j + Q ⊆ V , so
|Cj | = |Q| = 2m + 1 [1]. The corresponding row set Ri = {j | i ∈ Cj} is then Ri = i −Q, so |Ri| = 2m + 1 as
well [1]. It can be shown that when i ̸= j we have |Ri ∩ Rj | = m [1], so the sets Cj give a block design with
parameters (4m+ 3, 4m+ 3, 2n+ 1, 2n+ 1, n) [1].

(b) Bookwork. The standard relations for a block design can be written as

r =
bk

v
[1] = λ

v − 1

k − 1
[1].

(c) For the parameters in the question we have

v b r k λ bk/v λ(v − 1)/(k − 1)
11 11 5 5 2 5 5
11 11 4 6 2 6 4
11 11 6 6 2 6 4

Case (i) is the list of parameters for the quadratic residue design mod 11 (which is 4m+ 3 with m = 2) [1]. In
cases (ii) and (iii), the relations in (b) are violated, so these cannot be the parameter list for any block design
[2].
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