
VECTOR SPACES AND FOURIER THEORY

NEIL STRICKLAND

1. Introduction

This course involves many of the same themes as SOM201 (Linear Mathematics for Applications), but takes a more
abstract point of view. A central aim of the course is to help you become familiar and comfortable with mathematical
abstraction and generalisation, which plays an important role in pure mathematics. This has many benefits. For
example, we will be able to prove a single theorem that simultaneously tells us useful things about vectors, matrices,
polynomials, differential equations, and sequences satisfying a recurrence relation. Without the axiomatic approach,
we would have to give five different (but very similar) proofs, which would be much less efficient. We will also be led
to make some non-obvious but useful analogies between different situations. For example, we will be able to define
the distance or angle between two functions (by analogy with the distance or angle between two vectors in R3), and
this will help us to understand the theory of Fourier series. We will prove a number of things that were merely
stated in SOM201. Similarly, we will give abstract proofs of some things that were previously proved using matrix
manipulation. These new proofs will require a better understanding of the underlying concepts, but once you have
that understanding, they will often be considerably simpler.

2. Vector spaces

Predefinition 2.1. A vector space (over R) is a nonempty set V of things such that

(a) If u and v are elements of V , then u+ v is an also an element of V .
(b) If u is an element of V and t is a real number, then tu is an element of V .

This definition is not strictly meaningful or rigorous; we will pick holes in it later (see Example 2.12). But it will
do for the moment.

Example 2.2. The set R3 of all three-dimensional vectors is a vector space, because the sum of two vectors is a vector
(eg

[
1
2
3

]
+
[

3
2
1

]
=
[

4
4
4

]
) and the product of a real number and a vector is a vector (eg 3

[
1
2
3

]
=
[

3
6
9

]
). In the same way,

the set R2 of two-dimensional vectors is also a vector space.

Remark 2.3. For various reasons it will be convenient to work mostly with column vectors, as in the previous example.
However, this can be typographically awkward, so we use the following notational device: if u is a row vector, then
uT denotes the corresponding column vector, so for example

[ 1 2 3 4 ]T =
[

1
2
3
4

]
.

Example 2.4. For any natural number n the set Rn of vectors of length n is a vector space. For example, the vectors
u = [ 1 2 4 8 16 ]T and v = [ 1 −2 4 −8 16 ]T are elements of R5, with u + v = [ 2 0 8 0 32 ]T . We can even consider the set
R∞ of all infinite sequences of real numbers, which is again a vector space.

Example 2.5. The set {0} is a trivial example of a vector space (but it is important in the same way that the number
zero is important). This space can also be thought of as R0. Another trivial example is that R itself is a vector space
(which can be thought of as R1).

Example 2.6. The set U of physical vectors is a vector space. We can define some elements of U by

• a is the vector from Sheffield to London
• b is the vector from London to Cardiff
• c is the vector from Sheffield to Cardiff
• d is the vector from the centre of the earth to the north pole
• e is the vector from the south pole to the north pole.

We then have a + b = c and 2d = e.
1
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Once we have agreed on where our axes should point, and what units of length we should use, we can identify U with
R3. However, it is conceptually important (especially in the theory of relativity) that U exists in its own right without
any such choice of conventions.

Example 2.7. The set F (R) of all functions from R to R is a vector space, because we can add any two functions to
get a new function, and we can multiply a function by a number to get a new function. For example, we can define
functions f, g, h : R −→ R by

f(x) = ex

g(x) = e−x

h(x) = cosh(x) = (ex + e−x)/2,

so f , g and h are elements of F (R). Then f+g and 2h are again functions, in other words f+g ∈ F (R) and 2h ∈ F (R).
Of course we actually have f + g = 2h in this example.

For this to work properly, we must insist that f(x) is defined for all x, and is a real number for all x; it cannot be
infinite or imaginary. Thus the rules p(x) = 1/x and q(x) =

√
x do not define elements p, q ∈ F (R).

Remark 2.8. In order to understand the above example, you need to think of a function f : R → R as a single object
in its own right, and then think about the set F (R) of all possible functions as a single object; later you will need to
think about various different subsets of F (R). All this may seem quite difficult to deal with. However, it is a central
aim of this course for you to get to grips with this level of abstraction. So you should persevere, ask questions, study
the notes and work through examples until it becomes clear to you.

Example 2.9. In practise, we do not generally want to consider the set F (R) of all functions. Instead we consider
the set C(R) of continuous functions, or the set C∞(R) of “smooth” functions (those which can be differentiated
arbitrarily often), or the set R[x] of polynomial functions (eg p(x) = 1 +x+x2 +x3 defines an element p ∈ R[x]). If f
and g are continuous then f + g and tf are continuous, so C(R) is a vector space. If f and g are smooth then f + g
and tf are smooth, so C∞(R) is a vector space. If f and g are polynomials then f + g and tf are polynomials, so R[x]
is a vector space.

Example 2.10. We also let [a, b] denote the interval {x ∈ R | a ≤ x ≤ b}, and we write C[a, b] for the set of continuous
functions f : [a, b] −→ R. For example, the rule f(x) = 1/x defines a continuous function on the interval [1, 2]. (The
only potential problem is at the point x = 0, but 0 6∈ [1, 2], so we do not need to worry about it.) We thus have an
element f ∈ C[1, 2].

Example 2.11. The set M2R of 2 × 2 matrices (with real entries) is a vector space. Indeed, if we add two such
matrices, we get another 2× 2 matrix, for example

[ 1 0
0 4 ] + [ 0 2

3 0 ] = [ 1 2
3 4 ] .

Similarly, if we multiply a 2× 2 matrix by a real number, we get another 2× 2 matrix, for example

7 [ 1 2
3 4 ] = [ 7 14

21 28 ] .

We can identify M2R with R4, by the rule [
a b
c d

]
↔
[

a
b
c
d

]
.

More generally, for any n the set MnR of n×n square matrices is a vector space, which can be identified with Rn2
.

More generally still, for any n and m, the set Mn,mR of n×m matrices is a vector space, which can be identified with
Rnm.

Example 2.12. Let L be the set of all finite lists of real numbers. For example, the lists a = (10, 20, 30, 40) and
b = (5, 6, 7) and c = (1, π, π2) define three elements a,b, c ∈ L. Is L a vector space? In trying to answer this question,
we will reveal some inadequacies of Predefinition 2.1.
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It seems clear that L is closed under scalar multiplication: for example 100b = (500, 600, 700), which is another
element of L. The real issue is closure under addition. For example, is a + b an element of L? We cannot answer this
unless we know what a + b means. There are at least three possible meanings:

(1) a + b could mean (10, 20, 30, 40, 5, 6, 7) (the list a followed by the list c).
(2) a + b could mean (15, 26, 37) (chop off a to make the lists the same length, then add them together).
(3) a + b could mean (15, 26, 37, 40) (add zeros to the end of c to make the lists the same length, then add them

together.)
The point is that the expression a + b does not have a meaning until we decide to give it one. (Strictly speaking, the
same is true of the expression 100b, but in that case there is only one reasonable possibility for what it should mean.)
To avoid this kind of ambiguity, we should say that a vector space is a set together with a definition of addition etc.

Suppose we agree to use the third definition of addition, so that a + b = (15, 26, 37, 40). The ordinary rules of
algebra would tell us that (a + (−1).a) + b = b. However, in fact we have

(a + (−1).a) + b = ((10, 20, 30, 40) + (−10,−20,−30,−40)) + (5, 6, 7)

= (0, 0, 0, 0) + (5, 6, 7) = (5, 6, 7, 0)

6= (5, 6, 7) = b.

Thus, the ordinary rules of algebra do not hold. We do not want to deal with this kind of thing; we only want to
consider sets where addition and scalar multiplication work in the usual way. We must therefore give a more careful
definition of a vector space, which will allow us to say that L is not a vector space, so we need not think about it.

(If we used either of the other definitions of addition then things would still go wrong; details are left as an exercise.)

Our next attempt at a definition is as follows:

Predefinition 2.13. A vector space over R is a nonempty set V , together with a definition of what it means to add
elements of V or multiply them by real numbers, such that

(a) If u and v are elements of V , then u+ v is an also an element of V .
(b) If u is an element of V and t is a real number, then tu is an element of V .
(c) All the usual algebraic rules for addition and multiplication hold.

In the course we will be content with an informal understanding of the phrase “all the usual algebraic rules”, but
for completeness, we give an explicit list of axioms:

Definition 2.14. A vector space over R is a set V , together with an element 0 ∈ V and a definition of what it means
to add elements of V or multiply them by real numbers, such that

(a) If u and v are elements of V , then u+ v is an also an element of V .
(b) If v is an element of V and t is a real number, then tv is an element of V .
(c) For any elements u, v, w ∈ V and any real numbers s, t, the following equations hold:

(1) 0 + v = v
(2) u+ v = v + u
(3) u+ (v + w) = (u+ v) + w
(4) 0u = 0
(5) 1u = u
(6) (st)u = s(tu)
(7) (s+ t)u = su+ tu
(8) s(u+ v) = su+ sv.

Note that there are many rules that do not appear explicitly in the above list, such as the fact that t(u+v−w/t) =
tu + tv − w, but it turns out that all such rules can be deduced from the ones listed. We will not discuss any such
deductions.

In example 2.12, the only element 0 ∈ L with the property that 0 + v = v for all v is the empty list 0 = (). If u is
a nonempty list of length n, then 0u is a list of n zeros, which is not the same as the empty list, so the axiom 0u = 0
is not satisfied, so L is not a vector space. In all our other examples, it is obvious that the axioms hold, and we will
not discuss them further.

Remark 2.15. We will usually use the symbol 0 for the zero element of whatever vector space we are considering.
Thus 0 could mean the vector

[
0
0
0

]
(if we are working with R3) or the zero matrix [ 0 0 0

0 0 0 ] (if we are working with
M2,3R) or whatever. Occasionally it will be important to distinguish between the zero elements in different vector
spaces. In that case, we write 0V for the zero element of V . For example, we have 0R2 = [ 0

0 ] and 0M2R = [ 0 0
0 0 ].

One can also consider vector spaces over fields other than R; the most important case for us will be the field C of
complex numbers. We record the definitions for completeness.
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Definition 2.16. A field is a set K together with elements 0, 1 ∈ K and a definition of what it means to add or
multiply two elements of K, such that:

(a) The usual rules of algebra are valid. More explicitly, for all a, b, c ∈ K the following equations hold:
• 0 + a = a
• a+ (b+ c) = (a+ b) + c
• a+ b = b+ a
• 1.a = a
• a(bc) = (ab)c
• ab = ba
• a(b+ c) = ab+ ac

(b) For every a ∈ K there is an element −a with a+ (−a) = 0.
(c) For every a ∈ K with a 6= 0 there is an element a−1 ∈ K with aa−1 = 1.
(d) 1 6= 0.

Example 2.17. Recall that

Z = { integers } = {. . . ,−2,−1, 0, 1, 2, 3, 4, . . . }
Q = { rational numbers } = {a/b | a, b ∈ Z , b 6= 0}
R = { real numbers }
C = { complex numbers } = {x+ iy | x, y ∈ R},

so Z ⊂ Q ⊂ R ⊂ C. Then R, C and Q are fields. The ring Z is not a field, because axiom (c) is not satisfied: there
is no element 2−1 in the set Z for which 2.2−1 = 1. One can show that the ring Z/nZ is a field if and only if n is a
prime number.

Definition 2.18. A vector space over a field K is a set V , together with an element 0 ∈ V and a definition of what
it means to add elements of V or multiply them by elements of K, such that

(a) If u and v are elements of V , then u+ v is an also an element of V .
(b) If v is an element of V and t is an element of K, then tv is an element of V .
(c) For any elements u, v, w ∈ V and any elements s, t ∈ K, the following equations hold:

(1) 0 + v = v
(2) u+ v = v + u
(3) u+ (v + w) = (u+ v) + w
(4) 0u = 0
(5) 1u = u
(6) (st)u = s(tu)
(7) (s+ t)u = su+ tu
(8) s(u+ v) = su+ sv.

Example 2.19. Almost all our examples of real vector spaces work over any field K. For example, the set M4Q (of
4×4 matrices whose entries are rational numbers) is a vector space over Q. The set C[x] (of polynomials with complex
coefficients) is a vector space over C.

3. Linear maps

Definition 3.1. Let V and W be vector spaces, and let φ : V −→W be a function (so for each element v ∈ V we have
an element φ(v) ∈W ). We say that φ is linear if

(a) For any v and v′ in V , we have φ(v + v′) = φ(v) + φ(v′) in W .
(b) For any t ∈ R and v ∈ V we have φ(tv) = tφ(v) in W .

By taking t = v = 0 in (b), we see that a linear map must satisfy φ(0) = 0. Further simple arguments also show that
φ(v − v′) = φ(v)− φ(v′).

Remark 3.2. The definition can be reformulated slightly as follows. A map φ : V →W is linear iff

(c) For any t, t′ ∈ R and any v, v′ ∈ V we have φ(tv + t′v′) = tφ(v) + t′φ(v′).

To show that this reformulation is valid, we must show that if (c) holds, then so do (a) and (b); and conversely, if (a)
and (b) hold, then so does (c).

Condition (a) is the special case of (c) where t = t′ = 1, and condition (b) is the special case where t′ = 0 and
v′ = 0. Thus, if (c) holds then so do (a) and (b). Conversely, suppose that (a) and (b) hold, and that we have t, t′ ∈ R
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and v, v′ ∈ V . Condition (a) tells us that φ(tv + t′v′) = φ(tv) + φ(t′v′), and condition (b) tells us that φ(tv) = tφ(v)
and φ(t′v′) = t′φ(v′). Putting these together, we get

φ(tv + t′v′) = tφ(v) + t′φ(v′),

so condition (c) holds, as required.

Example 3.3. Consider the functions f, g : R −→ R given by f(x) = 2x and g(x) = x2. Then

g(x+ x′) = x2 + x′2 + 2xx′ 6= x2 + x′2 = g(x) + g(x′),

so g is not linear. Similarly, for general x and x′ we have sin(x+x′) 6= sin(x)+sin(x′) and exp(x+x′) 6= exp(x)+exp(x′),
so the functions sin and exp are not linear. On the other hand, we have

f(x+ x′) = 2(x+ x′) = 2x+ 2x′ = f(x) + f(x′)

f(tx) = 2tx = tf(x)

so f is linear.

Example 3.4. The obvious generalisation of the previous example is as follows. For any number m ∈ R, we can
define µm : R −→ R by µm(x) = mx (so f in the previous example is µ2). We have

µm(x+ x′) = m(x+ x′) = mx+mx′ = µm(x) + µm(x′)

µm(tx) = mtx = tmx = tµm(x),

so µm is linear (and in fact, these are all the linear maps from R to R). Note also that the graph of µm is a straight
line of slope m through the origin; this is essentially the reason for the word “linear”.

Example 3.5. For any v ∈ R2, we let ρ(v) be the vector obtained by rotating v through 90 degrees anticlockwise
around the origin. It is well-known that the formula for this is ρ [ x

y ] = [−y
x ].

x
y

−y
x

We thus have

ρ
([

x
y

]
+
[

x′

y′

])
= ρ

[
x+x′

y+y′

]
=
[
−y−y′

x+x′

]
=
[
−y
x

]
+
[
−y′

x′

]
= ρ

[
x
y

]
+ ρ

[
x′

y′

]
ρ
(
t
[

x
y

])
= ρ

[
tx
ty

]
=
[
−ty
tx

]
= tρ

[
x
y

]
,

so ρ is linear. (Can you explain this geometrically, without using the formula?)

Example 3.6. For any v ∈ R2, we let τ(v) be the vector obtained by reflecting v across the line y = 0. It is clear
that the formula is τ [ x

y ] = [ x
−y ], and using this we see that τ is linear.

x
y

x
−y

Example 3.7. Define θ : R2 −→ R by θ(v) = ‖v‖, so θ [ x
y ] =

√
x2 + y2. This is not linear, because θ(u + v) 6=

θ(u) + θ(v) in general. Indeed, if u = [ 1
0 ] and v =

[−1
0

]
then θ(u + v) = 0 but θ(u) + θ(v) = 1 + 1 = 2.

Example 3.8. Define σ : R2 −→ R2 by σ [ x
y ] =

[
x+1
y−1

]
. Then σ is not linear, because σ [ 0

0 ] 6= [ 0
0 ].

Example 3.9. Define α : R2 → R2 by
α [ x

y ] =
[

y3/(x2+y2)

x3/(x2+y2)

]
.

(This does not really make sense when x = y = 0, but for that case we make the separate definition that α [ 0
0 ] = [ 0

0 ].)
This map satisfies α(tv) = tα(v), but it does not satisfy α(u + v) = α(u) + α(v), so it is not linear. For example, if
u = [ 1

0 ] and v = [ 0
1 ] then α(u) = v and α(v) = u but α(u + v) = (u + v)/2 6= α(u) + α(v).
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Example 3.10. Given vectors u =
[

u1
u2
u3

]
and v =

[
v1
v2
v3

]
in R3, recall that the inner product and cross product are

defined by

〈u,v〉 = u.v = u1v1 + u2v2 + u3v3

u× v =
[ u2v3−u3v2

u3v1−u1v3
u1v2−u2v1

]
.

Fix a vector a ∈ R3. Define α : R3 −→ R by α(v) = 〈a,v〉 and β : R3 −→ R3 by β(v) = a × v. Then both α and β
are linear. To prove this we must show that α(tv) = tα(v) and α(v + w) = α(v) + α(w) and β(tv) = tβ(v) and
β(v + w) = β(v) + β(w). We will write out only the last of these; the others are similar but easier.

β(v + w) = β
[ v1+w1

v2+w2
v3+w3

]
=
[

a2(v3+w3)−a3(v2+w2)
a3(v1+w1)−a1(v3+w3)
a1(v2+w2)−a2(v1+w1)

]
=
[ a2v3−a3v2

a3v1−a1v3
a1v2−a2v1

]
+
[ a2w3−a3w2

a3w1−a1w3
a1w2−a2w1

]
= β(v) + β(w).

Example 3.11. Let A be a fixed m× n matrix. Given a vector v of length n (so v ∈ Rn), we can multiply A by v
in the usual way to get a vector Av of length m. We can thus define φA : Rn −→ Rm by φA(v) = Av. It is clear that
A(v + v′) = Av +Av′ and Atv = tAv, so φA is a linear map. We will see later that every linear map from Rn to Rm

has this form. In particular, if we put

R =
[

0 −1
1 0

]
T =

[
1 0
0 −1

]
we find that

R [ x
y ] = [−y

x ] = ρ ([ x
y ]) T [ x

y ] = [ x
−y ] = τ ([ x

y ])
(where ρ and τ are as in Examples 3.5 and 3.6). This means that ρ = φR and τ = φT .

Example 3.12. For any continuous function f : R −→ R, we write

I(f) =
∫ 1

0

f(x)dx ∈ R.

This defines a map I : C(R) −→ R. If we put

p(x) = x2

q(x) = 2x− 1

r(x) = ex

we have I(p) = 1/3 and I(q) = 0 and I(r) = e− 1.
Using the obvious equations ∫ 1

0

f(x) + g(x)dx =
∫ 1

0

f(x)dx+
∫ 1

0

g(x)dx∫ 1

0

tf(x)dx = t

∫ 1

0

f(x)dx

we see that I is a linear map.

Definition 3.13. For any smooth function f : R −→ R we write D(f) = f ′ and L(f) = f ′′+f . These are again smooth
functions, so we have maps D : C∞(R) −→ C∞(R) and L : C∞(R) −→ C∞(R). If we put

p(x) = sin(x)

q(x) = cos(x)

r(x) = ex

then D(p) = q and D(q) = −p and D(r) = r. It follows that L(p) = L(q) = 0 and that L(r) = 2r. Using the obvious
equations

(f + g)′ = f ′ + g′

(tf)′ = t f ′

we see that D is linear. Similarly, we have

L(f + g) = (f + g)′′ + (f + g) = f ′′ + g′′ + f + g

= (f ′′ + f) + (g′′ + g) = L(f) + L(g)

L(tf) = (tf)′′ + tf = t f ′′ + tf

= tL(f).

This shows that L is also linear.
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Example 3.14. For any 2 × 2 matrix A =
[

a b
c d

]
, the trace and determinant are defined by trace(A) = a + d ∈ R

and det(A) = ad − bc ∈ R. We thus have two functions trace,det : M2R −→ R. It is easy to see that trace(A + B) =
trace(A) + trace(B) and trace(tA) = t trace(A), so trace : M2R −→ R is a linear map. On the other hand, we have
det(tA) = t2 det(A) and det(A+B) 6= det(A)+det(B) in general, so det : M2R −→ R is not a linear map. For a specific
counterexample, consider

A = [ 1 0
0 0 ] and B = [ 0 0

0 1 ]

Then det(A) = det(B) = 0 but det(A+B) = 1, so det(A+B) 6= det(A) + det(B).
None of this is really restricted to 2× 2 matrices. For any n we have a map trace : MnR −→ R given by trace(A) =∑n
i=1Aii, which is again linear. We also have a determinant map det : MnR −→ R which satisfies det(tI) = tn; this

shows that det is not linear, except in the silly case where n = 1.

Example 3.15. “Define” φ : M2R −→M2R by φ(A) = A−1, so

φ
[

a b
c d

]
=
[

d/(ad−bc) −b/(ad−bc)
−c/(ad−bc) a/(ad−bc)

]
.

This is not a linear map, simply because it is not a well-defined map at all: the “definition” does not make sense
when ad − bc = 0. Even if it were well-defined, it would not be linear, because φ(I + I) = (2I)−1 = I/2, whereas
φ(I) + φ(I) = 2I, so φ(I + I) 6= φ(I) + φ(I).

Example 3.16. Define φ : M3R −→M3R by

φ(A) = the row reduced echelon form of A.

For example, we have the following sequence of reductions:[
1 2 3
4 8 6
7 14 9

]
→
[

1 2 3
0 0 −6
0 0 −12

]
→
[

1 2 3
0 0 1
0 0 −12

]
→
[

1 2 0
0 0 1
0 0 0

]
,

which shows that

φ
[

1 2 3
4 8 6
7 14 9

]
=
[

1 2 0
0 0 1
0 0 0

]
.

The map is not linear, because φ(I) = I and also φ(2I) = I, so φ(2I) 6= 2φ(I).

Example 3.17. We can define a map trans : MnR −→MnR by trans(A) = AT . Here as usual, AT is the transpose of
A, which is obtained by flipping A across the main diagonal. For example:[

1 2 3
0 4 5
0 0 6

]T
=
[

1 0 0
2 4 0
3 5 6

]
.

In general, we have (AT )ij = Aji. It is clear that (A+B)T = AT +BT and (tA)T = tAT , so trans : MnR −→MnR is
a linear map.

Definition 3.18. We say that a linear map φ : V → W is an isomorphism if it is a bijection, so there is an inverse
map φ−1 : W −→ V with φ(φ−1(w)) = w for all w ∈ W , and φ−1(φ(v)) = v for all v ∈ V . (It turns out that φ−1 is
automatically a linear map - we leave this as an exercise.) We say that V and W are isomorphic if there exists an
isomorphism from V to W .

Example 3.19. We can now rephrase part of Example 2.11 as follows: there is an isomorphism φ : M2R −→ R4 given
by φ

[
a b
c d

]
= [a, b, c, d]T , so M2R is isomorphic to R4. Similarly, the space Mp,qR is isomorphic to Rpq.

Example 3.20. Let U be the space of physical vectors, as in Example 2.6. A choice of axes and length units gives
rise to an isomorphism from R3 to U . More explicitly, choose a point P on the surface of the earth (for example, the
base of the Eiffel Tower) and put

u = the vector of length 1 km pointing east from P

v = the vector of length 1 km pointing north from P

w = the vector of length 1 km pointing vertically upwards from P .

Define φ : R3 → U by φ(x, y, z) = xu + yv + zw. Then φ is an isomorphism.

We will be able to give more interesting examples of isomorphisms after we have learnt about subspaces.
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4. Subspaces

Definition 4.1. Let V be a vector space. A vector subspace (or just subspace) of V is a subset W ⊆ V such that
(a) 0 ∈W
(b) Whenever u and v lie in W , the element u+ v also lies in W . (In other words, W is closed under addition.)
(c) Whenever u lies in W and t lies in R, the element tu also lies in W . (In other words, W is closed under scalar

multiplication.)
These conditions mean that W is itself a vector space.

Remark 4.2. Strictly speaking, a vector space is a set together with a definition of addition and scalar multiplication
such that certain identities hold. We should therefore specify that addition in W is to be defined using the same rule
as for V , and similarly for scalar multiplication.

Remark 4.3. The definition can be reformulated slightly as follows: a set W ⊆ V is a subspace iff
(a) 0 ∈W
(d) Whenever u, v ∈W and t, s ∈ R we have tu+ sv ∈W .

To show that this reformulation is valid, we must check that if condition (d) holds then so do (b) and (c); and
conversely, that if (b) and (c) hold then so does (d).

In fact, conditions (b) is the special cases of (d) where t = s = 1, and condition (c) is the special case of (d) where
v = 0; so if (d) holds then so do (b) and (c). Conversely, suppose that (b) and (c) hold, and that u, v ∈ W and
t, s ∈ R. Then condition (c) tells us that tu ∈W , and similarly that sv ∈W . Given these, condition (b) tells us that
tu+ sv ∈W ; we conclude that condition (d) holds, as required.

Example 4.4. There are two silly examples: {0} is always a subspace of V , and V itself is always a subspace of V .

Example 4.5. Any straight line through the origin is a subspace of R2. These are the only subspaces of R2 (except
for the two silly examples).

Example 4.6. In R3, any straight line through the origin is a subspace, and any plane through the origin is also a
subspace. These are the only subspaces of R3 (except for the two silly examples).

Example 4.7. The set W = {A ∈ M2R | trace(A) = 0} is a subspace of M2R. To check this, we first note that
0 ∈W . Suppose that A,A′ ∈W and t, t′ ∈ R. We then have trace(A) = trace(A′) = 0 (because A,A′ ∈W ) and so

trace(tA+ t′A′) = t trace(A) + t′ trace(A′) = t.0 + t′.0 = 0,

so tA+ t′A′ ∈W . Thus, conditions (a) and (d) in Remark 4.3 is satisfied, showing that W is a subspace as claimed.

Example 4.8. Recall that R[x] denotes the set of all polynomial functions in one variable (so the functions p(x) = x+1
and q(x) = (x + 1)5 − (x − 1)5 and r(x) = 1 + 4x4 + 8x8 define elements p, q, r ∈ R[x]). It is clear that the sum of
two polynomials is another polynomial, and any polynomial multiplied by a constant is also a polynomial, so R[x] is
a subspace of the vector space F (R) of all functions on R.

We write R[x]≤d for the set of polynomials of degree at most d, so a general element f ∈ R[x]≤d has the form

f(x) = a0 + a1x+ . . .+ adx
d =

d∑
i=0

aix
i

for some a0, . . . , ad ∈ R. It is easy to see that this is a subspace of R[x].
If we let f correspond to the vector [ a0 ··· ad ]T ∈ Rd+1, we get a one-to-one correspondence between R[x]≤d and

Rd+1. More precisely, there is an isomorphism φ : Rd+1 → R[x]≤d given by

φ([ a0 ··· ad ]T ) =
d∑

i=0

aix
i.

Remark 4.9. It is a common mistake to think that R[x]≤d is isomorphic to Rd (rather than Rd+1), but this is not
correct. Note that the list 0, 1, 2, 3 has four entries (not three), and similarly, the list 0, 1, 2, . . . , d has d + 1 entries
(not d).

Example 4.10. A function f : R −→ R is said to be even if f(−x) = f(x) for all x, and odd if f(−x) = −f(x) for all x.
For example, cos(−x) = cos(x) and sin(−x) = − sin(x), so cos is even and sin is odd. (Of course, most functions are
neither even nor odd.) We write EF for the set of even functions, so EF is a subset of the set F (R) of all functions
from R to R, and cos ∈ EF . If f and g are even, it is clear that f + g is also even. If f is even and t is a constant,
then it is clear that tf is also even; and the zero function is certainly even as well. This shows that EF is actually a
subspace of F (R). Similarly, the set OF of odd functions is a subspace of F (R).
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Example 4.11. Let V be the vector space of smooth functions u(x, t) in two variables x and t (to be thought of as
position and time).

• We say that u is a solution of the Wave Equation if

∂2u

∂x2
+
∂2u

∂t2
= 0.

This equation governs the propagation of small waves in deep water, or of electromagnetic waves in empty
space.

• We say that u is a solution of the Heat Equation if

∂u

∂t
− ∂2u

∂x2
= 0.

This governs the flow of heat along an iron bar.
• We say that u is a solution of the Korteweg-de Vries (KdV) equation if

∂u

∂t
+
∂3u

∂x3
− 6u

∂u

∂x
= 0.

This equation governs the propagation of large waves in shallow water.
The set of solutions of the Wave Equation is a vector subspace of V , as is the set of solutions to the Heat Equation.
However, the sum of two solutions to the KdV equation does not satisfy the KdV equation, so the set of solutions is
not a subspace of V . In other words, the Wave Equation and the Heat Equation are linear, but the KdV equation is
not.

The distinction between linear and nonlinear differential equations is of fundamental importance in physics. Linear
equations can generally be solved analytically, or by efficient computer algorithms, but nonlinear equations require
far more computing power. The equations of electromagnetism are linear, which explains why hundreds of different
radio, TV and mobile phone channels can coexist, together with visible light (which is also a form of electromagnetic
radiation), with little or no interference. The motion of fluids and gasses is governed by the Navier-Stokes equation,
which is nonlinear; because of this, massive supercomputers are needed for weather forecasting, climate modelling,
and aircraft design.

Example 4.12. Consider the following sets of 3× 3 matrices:

U0 = {symmetric matrices} = {A ∈M3R | AT = A}
U1 = {antisymmetric matrices} = {A ∈M3R | AT = −A}
U2 = {trace-free matrices} = {A ∈M3R | trace(A) = 0}
U3 = { diagonal matrices } = {A ∈M3R | Aij = 0 whenever i 6= j}
U4 = { strictly upper-triangular matrices } = {A ∈M3R | Aij = 0 whenever i ≥ j}
U5 = { invertible matrices } = {A ∈M3R | det(A) 6= 0}
U6 = { noninvertible matrices } = {A ∈M3R | det(A) = 0}

Then U0, . . . , U4 are all subspaces of M3R. We will prove this for U0 and U4; the other cases are similar. Firstly, it is
clear that the zero matrix has 0T = 0, so 0 ∈ U0. Suppose that A,B ∈ U0 (so AT = A and BT = B) and s, t ∈ R.
Then

(sA+ tB)T = sAT + tBT = sA+ tB,

so sA + tB ∈ U0. Using Remark 4.3, we conclude that U0 is a subspace. Now consider U4. The elements of U4 are
the matrices of the form

A =

0 a12 a13

0 0 a23

0 0 0


In particular, the zero matrix is an element of U4 (with a12 = a13 = a23 = 0). Now suppose that A,B ∈ U4 and
s, t ∈ R. We have

sA+ tB = s

0 a12 a13

0 0 a23

0 0 0

+ t

0 b12 b13
0 0 b23
0 0 0

 =

0 sa12 + tb12 sa13 + tb13
0 0 sa23 + tb23
0 0 0

 ,
which shows that sA+ tB is again strictly upper triangular, and so is an element of U4. Using Remark 4.3 again, we
conclude that U4 is also a subspace.
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On the other hand, U5 is not a subspace, because it does not contain the zero matrix. Similarly, U6 is not a
subspace: if we put

A =
[

1 0 0
0 0 0
0 0 0

]
B =

[
0 0 0
0 1 0
0 0 1

]
then A,B ∈ U6 but A+B = I 6∈ U6.

Definition 4.13. Let U be a vector space, and let V and W be subspaces of U . We put

V +W = {u ∈ U | u = v + w for some v ∈ V and w ∈W}.

Example 4.14. If U = R3 and

V = {
[

x
0
0

]
| x ∈ R} W = {

[
0
0
z

]
| z ∈ R}

then
V +W = {

[
x
0
z

]
| x, z ∈ R}

Example 4.15. If U = M2R and

V = {[ a b
0 0 ] | a, b ∈ R} W = {

[
0 b
0 d

]
| b, d ∈ R}

then
V +W = {

[
a b
0 d

]
| a, b, d ∈ R}.

Indeed, any matrix of the form A =
[

a b
0 d

]
can be written as A = [ a b

0 0 ] + [ 0 0
0 d ] with [ a b

0 0 ] ∈ V and [ 0 0
0 d ] ∈ W , so

A ∈ V +W . Conversely, any A ∈ V +W can be written as A = B + C with B ∈ V and C ∈ W . This means that
B has the form B =

[
a b1
0 0

]
for some a, b1 ∈ R and C has the form C =

[
0 b2
0 d

]
for some b2, d ∈ R, so A =

[
a b1+b2
0 d

]
,

which lies in V +W .

Proposition 4.16. Let U be a vector space, and let V and W be subspaces of U . Then both V ∩W and V +W are
subspaces of U .

Proof. We first consider V ∩W . As V is a subspace we have 0 ∈ V , and as W is a subspace we have 0 ∈ W , so
0 ∈ V ∩W . Next, suppose we have x, x′ ∈ V ∩W . Then x, x′ ∈ V and V is a subspace, so x + x′ ∈ V . Similarly,
we have x, x′ ∈ W and W is a subspace so x + x′ ∈ W . This shows that x + x′ ∈ V ∩W , so V ∩W is closed under
addition. Finally consider x ∈ V ∩W and t ∈ R. Then x ∈ V and V is a subspace so tx ∈ V . Similarly x ∈ W and
W is a subspace so tx ∈ W . This shows that tx ∈ V ∩W , so V ∩W is closed under scalar multiplication, so V ∩W
is a subspace.

Now consider the space V +W . We can write 0 as 0 + 0 with 0 ∈ V and 0 ∈ W , so 0 ∈ V +W . Now suppose we
have x, x′ ∈ V + W . As x ∈ V + W we can find v ∈ V and w ∈ W such that x = v + w. As x′ ∈ V + W we can
also find v′ ∈ V and w′ ∈ W such that x′ = v′ + w′. We then have v + v′ ∈ V (because V is closed under addition)
and w + w′ ∈ W (because W is closed under addition). We also have x + x′ = (v + v′) + (w + w′) with v + v′ ∈ V
and w + w′ ∈ W , so x + x′ ∈ V + W . This shows that V + W is closed under addition. Now suppose we have
t ∈ R. Then tv ∈ V (because V is closed under scalar multiplication) and tw ∈ W (because W is closed under scalar
multiplication). We thus have tx = tv + tw with tv ∈ V and tw ∈W , so tx ∈ V +W . This shows that V +W is also
closed under scalar multiplication, so it is a subspace. �

Example 4.17. Take U = R3 and

V = {[x, y, z]T | x+ 2y + 3z = 0}
W = {[x, y, z]T | 3x+ 2y + z = 0}.

We claim that
V ∩W = {[x,−2x, x]T | x ∈ R}.

and V +W = R3. Indeed, a vector [x, y, z]T lies in V ∩W iff we have x+ 2y+ 3z = 0 and also 3x+ 2y+ z = 0. If we
subtract these two equations and divide by two, we find that z = x. If we feed this back into the first equation, we
see that y = −2x. Conversely, if y = −2x and z = x we see directly that both equations are satisfied. It follows that
V ∩W = {[x,−2x, x]T | t ∈ R} as claimed.

Next, consider an arbitrary vector u = [x, y, z] ∈ R3. Put

v =
1
12

12x+ 8y + 4z
3x+ 2y + z
−6x− 4y − 2z

 w =
1
12

 −8y − 4z
−3x+ 10y − z
6x+ 4y + 14z

 ,
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so v + w = u. One can check that

(12x+ 8y + 4z) + 2(3x+ 2y + z) + 3(−6x− 4y − 2z) = 0

3(−8y − 4z) + 2(−3x+ 10y − z) + (6x+ 4y + 14z) = 0

so v ∈ V and w ∈W . This shows that u ∈ V +W , so V +W = R3.

Example 4.18. Take

U = R[x]≤4

V = {f ∈ U | f(0) = f ′(0) = 0}
W = {f ∈ U | f(−x) = f(x) for all x}.

To understand these, it is best to write the defining conditions more explicitly in terms of the coefficients of f . Any
element f ∈ U can be written as f(x) = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 for some a0, . . . , a4. We then have

f(0) = a0

f ′(x) = a1 + 2a2x+ 3a3x
2 + 4a4x

3

f ′(0) = a1

f(−x) = a0 − a1x+ a2x
2 − a3x

3 + a4x
4

f(x)− f(−x) = 2a1x+ 2a3x
3

Thus f ∈ V iff a0 = a1 = 0, and f ∈W iff f(x) = f(−x) iff a1 = a3 = 0. This means that

U = {a0 + a1x+ a2x
2 + a3x

3 + a4x
4 | a0, . . . , a4 ∈ R}

V = {a2x
2 + a3x

3 + a4x
4 | a2, a3, a4 ∈ R}

W = {a0 + a2x
2 + a4x

4 | a0, a2, a4 ∈ R}
From this we see that f ∈ V ∩W iff a0 = a1 = a3 = 0, so

V ∩W = {a2x
2 + a4x

4 | a2, a4 ∈ R}.
We next claim that f ∈ V +W iff a1 = 0, so f has no term in x1. Indeed, from the formulae above we see that any
polynomial in V or in W has no term in x1, so if we add together a polynomial in V and a polynomial in W we will
still have no term in x1, so for f ∈ V +W we have a1 = 0 as claimed. Conversely, if f has no term in x1 then we can
write

f(x) = a0 + a2x
2 + a3x

3 + a4x
4 = a3x

3 + (a0 + a2x
2 + a4x

4),
with a3x

3 ∈ V and a0 + a2x
2 + a4x

4 ∈W , so f ∈ V +W .
In particular, the polynomial f(x) = x does not lie in V +W , so V +W 6= U .

Definition 4.19. Let U and V be vector spaces, and let φ : U −→ V be a linear map. Then we write

ker(φ) = {u ∈ U | φ(u) = 0}
image(φ) = {v ∈ V | v = φ(u) for some u ∈ U}.

Example 4.20. Define π : R3 → R3 by π
[

x
y
z

]
=
[

0
y
z

]
. Then

ker(π) = {
[

x
0
0

]
| x ∈ R}

image(π) = {
[

0
y
z

]
| y, z ∈ R}

Proposition 4.21. Let U and V be vector spaces, and let φ : U −→ V be a linear map. Then ker(φ) is a subspace of
U , and image(φ) is a subspace of V .

Proof. Firstly, we have φ(0U ) = 0V , which shows both that 0U ∈ ker(φ) and that 0V ∈ image(φ). Next, suppose that
u, u′ ∈ ker(φ), which means that φ(u) = φ(u′) = 0. As φ is linear this implies that φ(u+u′) = φ(u)+φ(u′) = 0+0 = 0,
so u+ u′ ∈ ker(φ). This shows that ker(φ) is closed under addition. Now suppose we have t ∈ R. Using the linearity
of φ again, we have φ(tu) = tφ(u) = t.0 = 0, so tu ∈ ker(φ). This means that ker(φ) is also closed under scalar
multiplication, so it is a subspace of U . Now suppose we have v, v′ ∈ image(φ). This means that we can find x, x′ ∈ U
with φ(x) = v and φ(x′) = v′. We thus have x+x′, tx ∈ U and as φ is linear we have φ(x+x′) = φ(x)+φ(x′) = v+ v′

and φ(tx) = tφ(x) = tv. This shows that v+ v′ and tv lie in image(φ), so image(φ) is closed under addition and scalar
multiplication, so it is a subspace. �
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Example 4.22. Define φ : R3 −→ R3 by φ([x, y, z]T ) = [x− y, y − z, z − x]T . Then

ker(φ) = {[x, y, z]T ∈ R3 | x = y = z} = {[t, t, t]T | t ∈ R}
image(φ) = {[x, y, z]T ∈ R3 | x+ y + z = 0} = {[x, y,−x− y]T | x, y ∈ R2}.

Indeed, for the kernel we have [x, y, z]T ∈ ker(φ) iff φ([x, y, z]T ) = [0, 0, 0]T iff x− y = y− z = z − x = 0 iff x = y = z,
which means that [x, y, z]T = [t, t, t]T for some t.

For the image, note that if x+ y + z = 0 then

φ([0,−x,−x− y]T ) = [0− (−x), (−x)− (−x− y),−x− y − 0]T = [x, y, z]T ,

so [x, y, z]T ∈ image(φ). Conversely, if [x, y, z]T ∈ image(φ) then [x, y, z]T = φ([u, v, w]T ) for some u, v, w ∈ R, which
means that x = u− v and y = v − w and z = w − u, so

x+ y + z = (u− v) + (v − w) + (w − u) = 0.

Thus ker(φ) is a line through the origin (and thus a one-dimensional subspace) and image(φ) is a plane through the
origin (and thus a two-dimensional subspace).

Example 4.23. Define φ : MnR −→ MnR by φ(A) = A − AT (which is linear). Then clearly φ(A) = 0 iff A = AT iff
A is a symmetric matrix. Thus

ker(φ) = {n× n symmetric matrices }.
We claim that also

image(φ) = {n× n antisymmetric matrices }.
For brevity, we write W for the set of antisymmetric matrices, so we must show that image(φ) = W . For any A we
have φ(A)T = (A − AT )T = AT − ATT , but ATT = A, so φ(A)T = AT − A = −φ(A). This shows that φ(A) is
always antisymmetric, so image(φ) ⊆ W . Next, if B is antisymmetric then BT = −B so φ(B/2) = B/2 − BT /2 =
B/2 + B/2 = B. Thus B is φ(something), so B ∈ image(φ). This shows that W ⊆ image(φ), so W = image(φ) as
claimed.

Example 4.24. Define φ : R[x]≤1 → R3 by φ(f) = [f(0), f(1), f(2)]T . More explicitly, we have

φ(ax+ b) = [b, a+ b, 2a+ b]T = a[0, 1, 2]T + b[1, 1, 1]T .

If ax + b ∈ ker(φ) then we must have φ(ax + b) = 0, or in other words b = a + b = 2a + b = 0, which implies that
a = b = 0 and so ax+ b = 0. This means that ker(φ) = {0}.

Next, we claim that
image(φ) = {[u, v, w]T | u− 2v + w = 0}.

Indeed, if [u, v, w]T ∈ image(φ) then we must have [u, v, w] = φ(ax+b) = [b, a+b, 2a+b] for some a, b ∈ R. This means
that u − 2v + w = b − 2(a + b) + 2a + b = 0, as required. Conversely, suppose that we have a vector [u, v, w]T ∈ R3

with u− 2v + w = 0. We then have w = 2v − u and so

φ((v − u)x+ u) =
[

u
(v−u)+u
2(v−u)+u

]
=
[

u
v

2v−u

]
=
[

u
v
w

]
,

so [u, v, w]T is in the image of φ.

Remark 4.25. How did we arrive at our description of the image, and our proof that that description is correct? We
need to consider a vector [u, v, w]T and ask whether it can be written as φ(f) for some polynomial f(x) = ax+ b. In
other words, we want to have [u, v, w]T = [b, a + b, 2a + b]T , which means that u = b and v = a + b and w = 2a + b.
The first two equations tell us that the only possible solution is to take a = v − u and b = u, so f(x) = (v − u)x+ u.
This potential solution is only a real solution if the third equation w = 2a + b is also satisfied, which means that
w = 2(v − u) + u = 2v − u, which means that w − 2v + u = 0.

Example 4.26. Define φ : R[x]≤2 → R2 by φ(f) = [f(1), f ′(1)]T . More explicitly, we have

φ(ax2 + bx+ c) = [a+ b+ c, 2a+ b]T .

It follows that ax2 + bx+ c lies in ker(φ) iff a+ b+ c = 0 = 2a+ b, which gives b = −2a and c = −a− b = −a+2a = a,
so

ax2 + bx+ c = ax2 − 2ax+ a = a(x2 − 2x+ 1) = a(x− 1)2.
It follows that ker(φ) = {a(x− 1)2 | a ∈ R}. In particular, ker(φ) is nonzero, so φ is not injective. Explicitly, we have
x2 + 1 6= 2x but φ(x2 + 1) = [2, 2]T = φ(2x).

On the other hand, we claim that φ is surjective. Indeed, for any vector a = [u, v]T ∈ R2 we check that

φ(vx+ u− v) = [v + u− v, v]T = [u, v]T = a,

so a is φ(something) as required.
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Remark 4.27. How did we arrive at the proof of surjectivity? We need to find a polynomial f(x) = ax2 + bx + c
such that φ(f) = [u, v]T , or equivalently [a + b + c, 2a + b] = [u, v], which means that a + b + c = u and 2a + b = v.
These equations can be solved to give b = v − 2a and c = u − v + a, with a arbitrary. We can choose to take a = 0,
giving b = v and c = u− v, so f(x) = vx+ u− v.

Recall that a map φ : U −→ V is surjective if every element v ∈ V has the form φ(u) for some u ∈ U . Moreover, φ
is said to be injective if whenever φ(u) = φ(u′) we have u = u′.

Proposition 4.28. Let U and V be vector spaces, and let φ : U −→ V be a linear map. Then φ is injective iff
ker(φ) = {0}, and φ is surjective iff image(φ) = V .

Proof. • Suppose that φ is injective, so whenever φ(u) = φ(u′) we have u = u′. Suppose that u ∈ ker(φ). Then
φ(u) = 0 = φ(0). As φ is injective and φ(u) = φ(0), we must have u = 0. Thus ker(φ) = {0}, as claimed.

• Conversely, suppose that ker(φ) = {0}. Suppose that φ(u) = φ(u′). Then φ(u − u′) = φ(u) − φ(u′) = 0, so
u− u′ ∈ ker(φ) = {0}, so u− u′ = 0, so u = u′. This means that φ is injective.

• Recall that image(φ) is the set of those v ∈ V such that v = φ(u) for some u ∈ U . Thus image(φ) = V iff
every element v ∈ V has the form φ(u) for some u ∈ U , which is precisely what it means for φ to be surjective.

�

Corollary 4.29. φ : U −→ V is an isomorphism iff ker(φ) = 0 and image(φ) = V . �

Example 4.30. Consider the map φ : R3 → R3 given by

φ([x, y, z]T ) = [x− y, y − z, z − x]T

as in Example 4.22. Then ker(φ) = {[t, t, t]T | t ∈ R}, which is not zero, so φ is not injective. Explicitly, we have
[1, 2, 3]T 6= [4, 5, 6]T but

φ([1, 2, 3]T ) = [1− 2, 2− 3, 3− 1]T = [−1,−1, 2]T = φ([4, 5, 6]T ),

so [1, 2, 3]T and [4, 5, 6]T are distinct points with the same image under φ, so φ is not injective. Moreover, we have
seen that

image(φ) = {[u, v, w]T | u+ v + w = 0},
which is not all of R3. In particular, the vector [1, 1, 1]T does not lie in image(φ) (because 1 + 1 + 1 6= 0), so it cannot
be written as φ([x, y, z]T ) for any [x, y, z]. This means that φ is not surjective.

Example 4.31. Consider the map φ : R[x]≤1 → R3 given by φ(f) = [f(0), f(1), f(2)]T as in Example 4.24. We saw
there that ker(φ) = {0}, so φ is injective. However, we have image(φ) = {[u, v, w]T ∈ R3 | u − 2v + w = 0}, which is
not the whole of R3. In particular, the vector a = [1, 0, 0]T does not lie in image(φ) (because 1− 2.0 + 0 6= 0), so φ is
not surjective.

Example 4.32. Consider the map φ : R[x]≤2 → R2 given by φ(f) = [f(1), f ′(1)]T , as in Example 4.26. We saw
there that the polynomial f(x) = (x − 1)2 is a nonzero element of ker(φ), so φ is not injective. We also saw that
image(φ) = R2, so φ is surjective.

Definition 4.33. Let V and W be vector spaces. We define V ⊕W to be the set of pairs (v, w) with v ∈ V and
w ∈W . Addition and scalar multiplication are defined in the obvious way:

(v, w) + (v′, w′) = (v + v′, w + w′)

t.(v, w) = (tv, tw).

This makes V ⊕W into a vector space, called the direct sum of V and W . We may sometimes use the notation V ×W
instead of V ⊕W .

Example 4.34. An element of Rp ⊕ Rq is a pair (x,y), where x is a list of p real numbers, and y is a list of q real
numbers. Such a pair is essentially the same thing as a list of p+ q real numbers, so Rp ⊕ Rq = Rp+q.

Remark 4.35. Strictly speaking, Rp⊕Rq is only isomorphic to Rp+q, not equal to it. This is a pedantic distinction if
you are doing things by hand, but it becomes more significant if you are using a computer. Maple would represent an
element of R2⊕R3 as something like a=[<10,20>,<7,8,9>], and an element of R5 as something like b=<10,20,7,8,9>.
To convert from the second form to the first, you can use syntax like this:
a := [b[1..2],b[3..5]];

Conversion the other way is a little more tricky. It is easiest to define an auxiliary function called strip() as follows:
strip := (u) -> op(convert(u,list));

This converts a vector (like <7,8,9>) to an unbracketed sequence (like 7,8,9). You can then do
b := < strip(a[1]), strip(a[2]) >;
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Now suppose that V and W are subspaces of a third space U . We then have a space V ⊕W as above, and also a
subspace V +W ≤ U as in Definition 4.13. We need to understand the relationship between these.

Proposition 4.36. The rule σ(v, w) = v + w defines a linear map σ : V ⊕W → U , whose image is V + W , and
whose kernel is the space X = {(x,−x) ∈ V ⊕W | x ∈ V ∩W}. Thus, if V ∩W = 0 then ker(σ) = 0 and σ gives an
isomorphism V ⊕W → V +W .

Proof. We leave it as an exercise to check that σ is a linear map. The image is the set of things of the form v +w for
some v ∈ V and w ∈W , which is precisely the definition of V +W . The kernel is the set of pairs (x, y) ∈ V ⊕W for
which x+ y = 0. This means that x ∈ V and y ∈ W and y = −x. Note then that x = −y and y ∈ W so x ∈ W . We
also have x ∈ V , so x ∈ V ∩W . This shows that ker(σ) = {(x,−x) | x ∈ V ∩W}, as claimed. If V ∩W = 0 then we
get ker(σ) = 0, so σ is injective (by Proposition 4.28). If we regard it as a map to V +W (rather than to U) then it
is also surjective, so it is an isomorphism V ⊕W → V +W , as claimed. �

Remark 4.37. If V ∩W = 0 and V + W = U then σ gives an isomorphism V ⊕W → U . In this situation it is
common to say that U = V ⊕W . This is not strictly true (because U is only isomorphic to V ⊕W , not equal to it),
but it is a harmless abuse of language. Sometimes people call V ⊕W the external direct sum of V and W , and they
say that U is the internal direct sum of V and W if U = V +W and V ∩W = 0.

Example 4.38. Consider the space F of all functions from R to R, and the subspaces EF and OF of even functions
and odd functions. We claim that F = EF ⊕OF . To prove this, we must check that EF ∩OF = 0 and EF +OF = F .
Suppose that f ∈ EF ∩OF . Then for any x we have f(x) = f(−x) (because f ∈ EF ), but f(−x) = −f(x) (because
f ∈ OF ), so f(x) = −f(x), so f(x) = 0. Thus EF ∩OF = 0, as required. Next, consider an arbitrary function g ∈ F .
Put

g+(x) = (g(x) + g(−x))/2
g−(x) = (g(x)− g(−x))/2.

Then

g+(−x) = (g(−x) + g(x))/2 = g+(x)

g−(−x) = (g(−x)− g(x))/2 = −g−(x),

so g+ ∈ EF and g− ∈ OF . It is also clear from the formulae that g = g+ + g−, so g ∈ EF + OF . This shows that
EF +OF = F , so F = EF ⊕OF as claimed.

Example 4.39. Put

U = M2R
V = {A ∈M2R | trace(A) = 0} = {

[
a b
c −a

]
| a, b, c ∈ R}

W = {tI | t ∈ R} = {[ t 0
0 t ] | t ∈ R}.

We claim that U = V ⊕W . To check this, first suppose that A ∈ V ∩W . As A ∈W we have A = tI for some t ∈ R,
but trace(A) = 0 (because A ∈ V ) whereas trace(tI) = 2t, so we must have t = 0, which means that A = 0. This
shows that V ∩W = 0. Next, consider an arbitrary matrix B = [ p q

r s ] ∈ U . We can write this as B = C +D, where

C =
[

(p−s)/2 q
r (s−p)/2

]
∈ V

D =
[

(p+s)/2 0
0 (p+s)/2

]
=
p+ s

2
I ∈W.

This shows that U = V +W .

Remark 4.40. How did we find these formulae? We have a matrix B = [ p q
r s ] ∈ U , and we want to write it as

B = C +D with C ∈ U and D ∈ W . We must then have C =
[

a b
c −a

]
for some a, b, c and D = [ t 0

0 t ] for some t, and
we want to have

[ p q
r s ] =

[
a b
c −a

]
+ [ t 0

0 t ] =
[

t+a b
c t−a

]
,

so b = q and c = r and t+ a = p and t− a = s, which gives a = (p− s)/2 and t = (p+ s)/2 as before.

5. Independence and spanning sets

Two randomly-chosen vectors in R2 will generally not be parallel; it is an important special case if they happen to
point in the same direction.

Similarly, given three vectors u, v and w in R3, there will usually not be any plane that contains all three vectors.
This means that we can get from the origin to any point by travelling a certain (possibly negative) distance in the
direction of u, then a certain distance in the direction of v, then a certain distance in the direction of w. The case where
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u, v and w all lie in a common plane will have special geometric significance in any purely mathematical problem, and
will often have special physical significance in applied problems.

Our task in this section is to generalise these ideas, and study the corresponding special cases in an arbitrary vector
space V . The abstract picture will be illuminating even in the case of R2 and R3.

Definition 5.1. Let V be a vector space, and let V = v1, . . . , vn be a list of elements of V . A linear relation between
the vi’s is a vector [λ1, . . . , λn]T ∈ Rn such that λ1v1 + . . . + λnvn = 0. The vector [0, . . . , 0]T is obviously a linear
relation, called the trivial relation. If there is a nontrivial linear relation, we say that the list V is linearly dependent.
Otherwise, if the only relation is the trivial one, we say that the list V is linearly independent.

Example 5.2. Consider the following vectors in R3:

v1 =
[

1
2
3

]
v2 =

[
4
5
6

]
v3 =

[
7
8
9

]
Then one finds that v1 − 2v2 + v3 = 0, so [1,−2, 1]T is a nontrivial linear relation, so the list v1,v2,v3 is linearly
dependent.

Example 5.3. Consider the following vectors:

v1 =
[

1
1
1

]
v2 =

[
0
1
1

]
v3 =

[
0
0
1

]
.

A linear relation between these is a vector [λ1, λ2, λ3]T such that λ1v1 + λ2v2 + λ3v3 = 0, or equivalently[
λ1

λ1+λ2
λ1+λ2+λ3

]
=
[

0
0
0

]
.

From this we see that λ1 = 0, then from the equation λ1 + λ2 = 0 we see that λ2 = 0, then from the equation
λ1 + λ2 + λ3 = 0 we see that λ3 = 0. Thus, the only linear relation is the trivial one where [λ1, λ2, λ3] = [0, 0, 0], so
our vectors v1, v2, v3 are linearly independent.

Example 5.4. Consider the polynomials pn(x) = (x+ n)2, so

p0(x) = x2

p1(x) = x2 + 2x+ 1

p2(x) = x2 + 4x+ 4

p3(x) = x2 + 6x+ 9.

I claim that the list p0, p1, p2 is linearly independent. Indeed, a linear relation between them is a vector [λ0, λ1, λ2]T

such that λ0p0 + λ1p1 + λ2p2 = 0, or equivalently

(λ0 + λ1 + λ2)x2 + (2λ1 + 4λ2)x+ (λ1 + 4λ2) = 0

for all x, or equivalently
λ0 + λ1 + λ2 = 0, 2λ1 + 4λ2 = 0, λ1 + 4λ2 = 0.

Subtracting the last two equations gives λ1 = 0, putting this in the last equation gives λ2 = 0, and now the first
equation gives λ0 = 0. Thus, the only linear relation is [λ0, λ1, λ2]T = [0, 0, 0]T , so the list p0, p1, p2 is independent.

I next claim, however, that the list p0, p1, p2, p3 is linearly dependent. Indeed, you can check that p3−3p2+3p1−p0 =
0, so [1,−3, 3,−1]T is a nontrivial linear relation. (The entries in this list are the coefficients in the expansion of
(T − 1)3 = T 3 − 3T 2 + 3T − 1; this is not a coincidence, but the explanation would take us too far afield.)

Example 5.5. Consider the functions

f1(x) = ex

f2(x) = e−x

f3(x) = sinh(x)

f4(x) = cosh(x).

These are linearly dependent, because sinh(x) is by definition just (ex − e−x)/2, so

f1 − f2 − 2f3 = ex − e−x − (ex − e−x) = 0,

so [1,−1, 2, 0]T is a nontrivial linear relation. Similarly, we have cosh(x) = (ex + e−x)/2, so [1, 1, 0,−2]T is another
linear relation.
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Example 5.6. Consider the matrices

E1 = [ 1 0
0 0 ] E2 = [ 0 1

0 0 ] E3 = [ 0 0
1 0 ] E4 = [ 0 0

0 1 ] .

A linear relation between these is a vector [λ1, λ2, λ3, λ4]T such that λ1E1 + λ2E2 + λ3E3 + λ4E4 is the zero matrix.
But

λ1E1 + λ2E2 + λ3E3 + λ4E4 =
[

λ1 λ2
λ3 λ4

]
,

and this is only the zero matrix if λ1 = λ2 = λ3 = λ4 = 0. Thus, the only linear relation is the trivial one, showing
that E1, . . . , E4 are linearly independent.

Remark 5.7. Let V be a vector space, and let V = v1, . . . , vn be a list of elements of V . We have a linear map
µV : Rn −→ V , given by

µV([λ1, . . . , λn]T ) = λ1v1 + . . .+ λnvn.

By definition, a linear relation between the vi’s is just a vector λ = [λ1, . . . , λn]T ∈ Rn such that µV(λ) = 0, or in
other words, an element of the kernel of µV . Thus, V is linearly independent iff ker(µV) = {0} iff µV is injective (by
Proposition 4.28).

Definition 5.8. Let C∞(R) be the vector space of smooth functions f : R → R. Given f1, . . . , fn ∈ C∞(R), their
Wronskian matrix is the matrix WM(f1, . . . , fn) whose entries are the derivatives f (j)

i for i = 1, . . . , n and j =
0, . . . , n− 1. For example, in the case n = 4, we have

WM(f1, f2, f3, f4) =


f1 f2 f3 f4
f ′1 f ′2 f ′3 f ′4
f ′′1 f ′′2 f ′′3 f ′′4
f ′′′1 f ′′′2 f ′′′3 f ′′′4

 .
The Wronskian of f1, . . . , fn is the determinant of the Wronskian matrix; it is written W (f1, . . . , fn). Note that the
entries in the Wronskian matrix are all functions, so the determinant is again a function.

Example 5.9. Consider the functions exp and sin and cos, so exp′ = exp and sin′ = cos and cos′ = − sin and
sin2 +cos2 = 1. We have

W (exp, sin, cos) = det

exp sin cos
exp sin′ cos′

exp sin′′ cos′′

 = det

exp sin cos
exp cos − sin
exp − sin − cos


= exp .(− cos2− sin2)− exp .(− sin . cos + sin . cos) + exp .(− sin2− cos2) = −2 exp .

Proposition 5.10. If f1, . . . , fn are linearly dependent, then W (f1, . . . , fn) = 0. (More precisely, the function w =
W (f1, . . . , fn) is the zero function, ie w(x) = 0 for all x.)

Proof. We will prove the case n = 3. The general case is essentially the same, but it just needs more complicated
notation. If f1, f2, f3 are linearly dependent, then there are numbers λ1, λ2, λ3 (not all zero) such that λ1f1+λ2f2+λ3f3
is the zero function, which means that

λ1f1(x) + λ2f2(x) + λ3f3(x) = 0

for all x. We can differentiate this identity to see that λ1f
′
1(x)+λ2f

′
2(x)+λ3f

′
3(x) = 0 for all x, and then differentiate

again to see that λ1f
′′
1 (x) + λ2f

′′
2 (x) + λ3f

′′
3 (x) = 0 for all x. Thus, if we let ui be the vector

[
fi(x)

f ′i(x)

f ′′i (x)

]
(which is the

i’th column of the Wronskian matrix), we see that λ1u1 + λ2u2 + λ3u3 = 0. This means that the columns of the
Wronskian matrix are linearly dependent, which means that the determinant is zero, as claimed. �

Corollary 5.11. If W (f1, . . . , fn) 6= 0, then f1, . . . , fn are linearly independent. �

Remark 5.12. Consider a pair of smooth functions like this:
f1(x) f2(x)

Suppose that f1(x) is zero (not just small) for x ≥ 0, and that f2(x) is zero for x ≤ 0. (It is not easy to write
down formulae for such functions, but it can be done; we will not discuss this further here.) For x ≤ 0, the matrix

WM(f1, f2)(x) has the form
[
f1(x) 0
f ′1(x) 0

]
, so the determinant is zero. For x ≥ 0, the matrix WM(f1, f2)(x) has the
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form
[
0 f2(x)
0 f ′2(x)

]
, so the determinant is again zero. Thus W (f1, f2)(x) = 0 for all x, but f1 and f2 are not linearly

dependent. This shows that the test in Proposition 5.10 is not reversible: if the functions are dependent then the
Wronskian vanishes, but if the Wronskian vanishes then the functions need not be dependent. In practice it is rare to
find such counterexamples, however.

Definition 5.13. Given a list V = v1, . . . , vn of elements of a vector space V , we write span(V) for the set of all
vectors w ∈ V that can be written in the form w = λ1v1 + . . .+ λnvn for some λ1, . . . , λn ∈ R. Equivalently, span(V)
is the image of the map µV : Rn −→ V (which shows that span(V) is a subspace of V ). We say that V spans V if
span(V) = V , or equivalently, if µV is surjective.

Remark 5.14. Often V will be a subspace of some larger space U . If you are asked whether certain vectors v1, . . . , vn

span V , the first thing that you have to check is that they are actually elements of V .

There is an obvious spanning list for Rn.

Definition 5.15. Let ei be the vector in Rn whose i’th entry is 1, with all other entries being zero. For example, in
R3 we have

e1 =
[

1
0
0

]
e2 =

[
0
1
0

]
e3 =

[
0
0
1

]
Example 5.16. The list e1, . . . , en spans Rn. Indeed, any vector x ∈ Rn can be written as x1e1 + . . .+ xnen, which
is a linear combination of e1, . . . , en, as required. For example, in R3 we have[

x1
x2
x3

]
= x1

[
1
0
0

]
+ x2

[
0
1
0

]
+ x3

[
0
0
1

]
= x1e1 + x2e2 + x3e3.

Example 5.17. The list 1, x, . . . , xn spans R[x]≤n. Indeed, any element of R[x]≤n is a polynomial of the form
f(x) = a0 + a1x+ · · ·+ anx

n, and so is visibly a linear combination of 1, x, . . . , xn.

Example 5.18. Consider the vectors

u1 =
[

1
1
1
1

]
u2 =

[
1
1
1
0

]
u3 =

[
0
1
1
1

]
u4 =

[
0
1
0
0

]
We claim that these span R4. Indeed, consider an arbitrary vector v = [ a b c d ]T ∈ R4. We have

(a− c+ d)u1 + (c− d)u2 + (c− a)u3 + (b− c)u3 =

[
a−c+d
a−c+d
a−c+d
a−c+d

]
+
[ c−d

c−d
c−d
0

]
+
[

0
c−a
c−a
c−a

]
+
[

0
b−c
0
0

]
=
[

a
b
c
d

]
= v,

which shows that v is a linear combination of u1, . . . ,u4, as required.
This is a perfectly valid argument, but it does rely on a formula that we pulled out of a hat. Here is an explanation

of how the formula was constructed. We want to find p, q, r, s such that v = pu1 + qu2 + ru3 + su4, or equivalently[
a
b
c
d

]
= p

[
1
1
1
1

]
+ q

[
1
1
1
0

]
+ r

[
0
1
1
1

]
+ s

[
0
1
0
0

]
=

 p+q
p+q+r+s

p+q+r
p+r

 , or

p+ q = a (1) p+ q + r + s = b (2) p+ q + r = c (3) p+ r = d (4)
Subtracting (3) and (4) gives q = c− d; subtracting (1) and(3) gives r = c− a; subtracting (2) and(3) gives s = b− c;
putting q = c− d in (1) gives p = a− c+ d. With these values we have

(a − c + d)u1 + (c − d)u2 + (c − a)u3 + (b − c)u3 =

 a−c+d
a−c+d
a−c+d
a−c+d

 +

[ c−d
c−d
c−d
0

]
+

[ 0
c−a
c−a
c−a

]
+

[ 0
b−c
0
0

]
=

[
a
b
c
d

]
= v

as required.

Example 5.19. Consider the polynomials pi(x) = (x + i)2. We claim that the list p−2, p−1, p0, p1, p2 spans R[x]≤2.
Indeed, we have

p0(x) = x2

p1(x)− p−1(x) = (x+ 1)2 − (x− 1)2 = 4x

p2(x) + p−2(x)− 2p0(x) = (x+ 2)2 + (x− 2)2 − 2x2 = 8.

Thus for an arbitrary quadratic polynomial f(x) = ax2 + bx+ c, we have

f(x) = ap0(x) + 1
4b(p1(x)− p−1(x)) + 1

8c(p2(x) + p−2(x)− 2p0(x))

= c
8p−2(x)− b

4p−1(x) + (a− c
4 )p0(x) + b

4p1(x) + c
8p2(x).
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Example 5.20. Put V = {f ∈ C∞(R) | f ′′ + f = 0}. We claim that the functions sin and cos span V . In other
words, we claim that if f is a solution to the equation f ′′(x) = −f(x) for all x, then there are constants a and b such
that f(x) = a sin(x) + b cos(x) for all x. You have probably heard in a differential equations course that this is true,
but you may not have seen a proof, so we will give one.

Firstly, we have sin′ = cos and cos′ = − sin, so sin′′ = − sin and cos′′ = − cos, so sin and cos are indeed elements of
V . Consider an arbitrary element f ∈ V . Put a = f ′(0) and b = f(0), and put g(x) = f(x)− a sin(x)− b cos(x). We
claim that g = 0. First, we have

g(0) = f(0)− a sin(0)− b cos(0) = b− a.0− b.1 = 0

g′(0) = f ′(0)− a sin′(0)− b cos′(0) = a− a cos(0) + b sin(0) = a− a.1− b.0 = 0.

Now put h(x) = g(x)2 + g′(x)2; the above shows that h(0) = 0. Next, we have g ∈ V , so g′′ = −g, so

h′(x) = 2g(x)g′(x) + 2g′(x)g′′(x) = 2g′(x)(g(x) + g′′(x)) = 0.

This means that h is constant, but h(0) = 0, so h(x) = 0 for all x. However, h(x) = g(x)2 + g′(x)2, which is the sum
of two nonnegative quantities; the only way we can have h(x) = 0 is if g(x) = 0 = g′(x). This means that g = 0, so
f(x)− a sin(x)− b cos(x) = 0, so f(x) = a sin(x) + b cos(x), as required.

This argument has an interesting physical interpretation. You should think of g(x) as representing some kind of
vibration. The term g(x)2 gives the elastic energy and g′(x)2 gives the kinetic energy, so the equation h′(x) = 0 is
just conservation of total energy.

Definition 5.21. A vector space V is finite-dimensional if there is a (finite) list V = v1, . . . , vn of elements of V that
spans V .

Example 5.22. Using our earlier examples of spanning sets, we see that the spaces Rn, Mn,mR and R[x]≤n are
finite-dimensional.

Example 5.23. The space R[x] is not finite-dimensional. To see this, consider a list P = p1, . . . , pn of polynomials.
Let d be the maximum of the degrees of p1, . . . , pn. Then pi lies in R[x]≤d for all i, so the span of P is contained in
R[x]≤d. In particular, the polynomial xd+1 does not lie in span(P), so P does not span all of R[x].

Definition 5.24. A basis for a vector space V is a list V of elements of V that is linearly independent and also spans
V . Equivalently, a list V = v1, . . . , vn is a basis iff the map µV : Rn −→ V is a bijection.

Example 5.25. We will find a basis for the space V of antisymmetric 3× 3 matrices. Such a matrix has the form

X =
[

0 a b
−a 0 c
−b −c 0

]
.

In other words, if we put
A =

[
0 1 0
−1 0 0
0 0 0

]
B =

[
0 0 1
0 0 0
−1 0 0

]
C =

[
0 0 0
0 0 1
0 −1 0

]
,

then any antisymmetric matrix X can be written in the form X = aA + bB + cC. This means that the matrices A,
B and C span V , and they are clearly independent, so they form a basis.

Example 5.26. Put V = {A ∈M3R | AT = A and trace(A) = 0}. Any matrix X ∈ V has the form

X =
[

a b c
b d e
c e −a−d

]
for some a, b, c, d, e ∈ R. In other words, if we put

A =
[

1 0 0
0 0 0
0 0 −1

]
B =

[
0 1 0
1 0 0
0 0 0

]
C =

[
0 0 1
0 0 0
1 0 0

]
D =

[
0 0 0
0 1 0
0 0 −1

]
E =

[
0 0 0
0 0 1
0 1 0

]
then any matrix X ∈ V can be written in the form

X = aA+ bB + cC + dD + eE.

This means that the matrices A, . . . , E span V , and they are also linearly independent, so they form a basis for V .

Example 5.27. There are several interesting bases for the space Q = R[x]≤2 of polynomials of degree at most two.
A typical element f ∈ Q has f(x) = ax2 + bx+ c for some a, b, c ∈ R.

• The list p0, p1, p2, where pi(x) = xi. This is the most obvious basis. For f as above we have

f = c p0 + b p1 + a p2 = f(0) p0 + f ′(0) p1 + 1
2
f ′′(0)p2.

• The list q0, q1, q2, where qi(x) = (x+ 1)i, is another basis. For f as above, one checks that

ax2 + bx+ c = a(x+ 1)2 + (b− 2a)(x+ 1) + (a− b+ c)

so f = (a− b+ c)q0 + (b− 2a)q1 + a q2 = f(−1)q0 + f ′(−1)q1 + 1
2f

′′(−1)q2.
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• The list r0, r1, r2, where ri(x) = (x+ i)2, is another basis. Indeed, we have

p0(x) = 1 = 1
2 ((x+ 2)2 − 2(x+ 1)2 + x2)

= 1
2 (r2(x)− 2r1(x) + r0(x))

p1(x) = x = − 1
4 ((x+ 2)2 − 4(x+ 1)2 + 3x2)

= − 1
4 (r2(x)− 4r1(x) + 3r0(x))

p2(x) = x2 = r0(x).

This implies that p0, p1, p2 ∈ span(r0, r1, r2) and thus that span(r0, r1, r2) = Q.
• The list

s0(x) = (x2 − 3x+ 2)/2

s1(x) = −x2 + 2x

s2(x) = (x2 − x)/2.

These functions have the property that

s0(0) = 1 s0(1) = 0 s0(2) = 0
s1(0) = 0 s1(1) = 1 s1(2) = 0
s2(0) = 0 s2(1) = 0 s2(2) = 1

Given f ∈ Q we claim that f = f(0).s0 + f(1).s1 + f(2).s2. Indeed, if we put g(x) = f(x) − f(0)s0(x) −
f(1)s1(x) − f(2).s2(x), we find that g ∈ Q and g(0) = g(1) = g(2) = 0. A quadratic polynomial with three
different roots must be zero, so g = 0, so f = f(0).s0 + f(1).s1 + f(2).s2.

• The list

t0(x) = 1

t1(x) =
√

3(2x− 1)

t2(x) =
√

5(6x2 − 6x+ 1).

These functions have the property that∫ 1

0

ti(x)tj(x) dx =

{
1 if i = j

0 if i 6= j.

Using this, we find that f = λ0t0 + λ1t1 + λ2t2, where λi =
∫ 1

0
f(x)ti(x) dx.

Example 5.28. Put V = {f ∈ R[x]≤4 | f(1) = f(−1) = 0 and f ′(1) = f ′(−1)}. Consider a polynomial f ∈ R[x]≤4,
so f(x) = a+ bx+ cx2 + dx3 + ex4

for some constants a, . . . , e. We then have

f(1) = a+ b+ c+ d+ e

f(−1) = a− b+ c− d+ e

f ′(1)− f ′(−1) = (b+ 2c+ 3d+ 4e)− (b− 2c+ 3d− 4e) = 4c+ 8e

It follows that f ∈ V iff a+ b+ c+ d+ e = a− b+ c− d+ e = 4c+ 8e = 0.
This simplifies to c = −2e and a = e and b = −d, so

f(x) = e− dx− 2ex2 + dx3 + ex4 = d(x3 − x) + e(x4 − 2x2 + 1).

Thus, if we put p(x) = x3 − x and q(x) = x4 − 2x2 + 1 = (x2 − 1)2, then p, q is a basis for V .

Example 5.29. A magic square is a 3 × 3 matrix in which the sum of every row is the same, and the sum of every
column is the same. More explicitly, a matrix

X =
[

a b c
d e f
g h i

]
is a magic square iff we have

a+ b+ c = d+ e+ f = g + h+ i

a+ d+ g = b+ e+ h = c+ f + i.

Let V be the set of magic squares, which is easily seen to be a subspace of M3R; we will find a basis for V .
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First, we write

R(X) = a+ b+ c = d+ e+ f = g + h+ i

C(X) = a+ d+ g = b+ e+ h = c+ f + i

T (X) = a+ b+ c+ d+ e+ f + g + h+ i.

on the one hand, we have

T (X) = a+ b+ c+ d+ e+ f + g + h+ i = (a+ b+ c) + (d+ e+ f) + (g + h+ i) = 3R(X).

We also have

T (X) = a+ d+ g + b+ e+ h+ c+ f + i = (a+ d+ g) + (b+ e+ h) + (c+ f + i) = 3C(X).

It follows that R(X) = C(X) = T (X)/3.
It is now convenient to consider the subspace W = {X ∈ V | T (X) = 0}, consisting of squares as above for which

a+ b+ c = d+ e+ f = g + h+ i = 0
a+ d+ g = b+ e+ h = c+ f + i = 0.

For such a square, we certainly have

c = −a− b

f = −d− e

g = −a− d

h = −b− e.

Substituting this back into the equation g + h+ i = 0 (or into the equation c+ f + i = 0) gives i = a+ b+ d+ e. It
follows that any element of W can be written in the form

X =
[

a b −a−b
d e −d−e

−a−d −b−e a+b+d+e

]
.

Equivalently, if we put

A =
[

1 0 −1
0 0 0
−1 0 1

]
B =

[
0 1 −1
0 0 0
0 −1 1

]
D =

[
0 0 0
1 0 −1
−1 0 1

]
E =

[
0 0 0
0 1 −1
0 −1 1

]
,

then any element of W can be written in the form

X = aA+ bB + dD + eE

for some list a, b, d, e of real numbers. This means that A,B,D,E spans W , and these matrices are clearly linearly
independent, so they form a basis for W .

Next, observe that the matrix

Q =
[

1 1 1
1 1 1
1 1 1

]
lies in V but not in W (because T (Q) = 9). We claim that Q,A,B,D,E is a basis for V . Indeed, given X ∈ V
we can put t = T (X)/9 and Y = X − tQ. We then have Y ∈ V and T (Y ) = T (X) − tT (Q) = 0, so Y ∈ W .
As A,B,D,E is a basis for W , we see that Y = aA + bB + dD + eE for some a, b, d, e ∈ R. It follows that
X = tQ+ Y = tQ+ aA+ bB + dD + eE. This means that Q,A,B,D,E spans V .

Suppose we have a linear relation

qQ+ aA+ bB + dD + eE = 0

for some q, a, b, d, e ∈ R. Applying T to this equation gives 9q = 0 (because T (A) = T (B) = T (D) = T (E) = 0 and
T (Q) = 9), and so q = 0. This leaves aA + bB + dD + eE = 0, and we have noted that A,B,D and E are linearly
independent, so a = b = d = e = 0 as well. This means that Q,A,B,D and E are linearly independent as well as
spanning V , so they form a basis for V . Thus dim(V ) = 5.
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6. Linear maps out of Rn

We next discuss linear maps Rn −→ V (for any vector space V ). We will do the case n = 2 first; the general case is
essentially the same, but with more complicated notation.

Definition 6.1. Let V be a vector space, and let v and w be elements of V . We then define µv,w : R2 −→ V by

µv,w ([ x
y ]) = xv + yw.

This makes sense because:
• x is a number and v ∈ V and V is a vector space, so xv ∈ V .
• y is a number and w ∈ V and V is a vector space, so yw ∈ V .
• xv and yw lie in the vector space V , so xv + yw ∈ V .

It is clear that µv,w is a linear map.

Proposition 6.2. Any linear map φ : R2 −→ V has the form φ = µv,w for some v, w ∈ V .

Proof. The vector e1 = [ 1
0 ] is an element of R2, and φ is a map from R2 to V , so we have an element v = φ(e1) ∈ V .

Similarly, the vector e2 = [ 0
1 ] is an element of R2, and φ is a map from R2 to V , so we have an element w = φ(e2) ∈ V .

We claim that φ = µv,w. Indeed, as φ is linear, we have

φ(xe1 + ye2) = xφ(e1) + yφ(e2)
= xv + yw

= µv,w(x, y).

On the other hand, it is clear that
xe1 + ye2 = x [ 1

0 ] + y [ 0
1 ] = [ x

y ] ,

so the previous equation reads
φ ([ x

y ]) = µv,w ([ x
y ]) .

This holds for all x and y, so φ = µv,w as claimed. �

The story for general n is as follows. Recall that for any list V = v1, . . . , vn of elements of V , we can define a linear
map µV : Rn −→ V by

µV([x1, . . . , xn]T ) =
∑

i

xivi = x1v1 + . . .+ xnvn.

Proposition 6.3. Any linear map φ : Rn −→ V has the form φ = µV for some list V = v1, . . . , vn of elements of V
(which are uniquely determined by the formula vi = φ(ei), where ei is as in Definition 5.15). Thus, a linear map
Rn −→ V is essentially the same thing as a list of n elements of V .

Proof. Put vi = φ(ei) ∈ V . For any x ∈ Rn we have

x = x1e1 + . . .+ xnen =
∑

i

xiei,

so
φ(x) =

∑
i

xiφ(ei) =
∑

i

xivi = µv1,...,vn(x),

so φ = µv1,...,vn . (The first equality holds because φ is linear, the second by the definition of vi, and the third by the
definition of µV . �

Example 6.4. Consider the map φ : R3 →M3R given by

φ
[

a
b
c

]
=
[

a a+b a
a+b a+b+c a+b

a a+b a

]
Put A = A1, A2, A3, where

A1 = φ(e1) =
[

1 1 1
1 1 1
1 1 1

]
A2 = φ(e2) =

[
0 1 0
1 1 1
0 1 0

]
A3 = φ(e3) =

[
0 0 0
0 1 0
0 0 0

]
Then

µA

[
a
b
c

]
= a

[
1 1 1
1 1 1
1 1 1

]
+ b

[
0 1 0
1 1 1
0 1 0

]
+ c

[
0 0 0
0 1 0
0 0 0

]
=
[

a a+b a
a+b a+b+c a+b

a a+b a

]
= φ

[
a
b
c

]
so φ = µA.



22 NEIL STRICKLAND

Example 6.5. Consider the map φ : R3 → R[x] given by

φ
[

a
b
c

]
= (a+ b+ c)x2 + (a+ b)(x+ 1)2 + a(x+ 2)2.

Put P = p1, p2, p3, where

p1(x) = φ(e1)= x2 + (x+ 1)2 + (x+ 2)2 = 3x2 + 6x+ 5

p2(x) = φ(e2)= x2 + (x+ 1)2 = 2x2 + 2x+ 1

p3(x) = φ(e3)= x2.

Then
µP

[
a
b
c

]
= a(3x2 + 6x+ 5) + b(2x2 + 2x+ 1) + cx2= φ

[
a
b
c

]
.

Corollary 6.6. Every linear map α : Rn −→ Rm has the form φA (as in Example 3.11) for some m × n matrix A
(which is uniquely determined). Thus, a linear map α : Rn −→ Rm is essentially the same thing as an m× n matrix.

Proof. A linear map α : Rn −→ Rm is essentially the same thing as a list v1, . . . ,vn of elements of Rm. If we write each
vi as a column vector, then the list can be visualised in an obvious way as an m× n matrix. For example, the list

[ 1
2 ] , [ 3

4 ] , [ 5
6 ] , [ 7

8 ]

corresponds to the matrix
[ 1 3 5 7
2 4 6 8 ] .

Thus, a linear map α : Rn −→ Rm is essentially the same thing as an m× n matrix. There are some things to check to
see that this is compatible with Example 3.11, but we shall not go through the details. �

Example 6.7. Consider the linear map ρ : R3 → R3 defined by

ρ
[

x
y
z

]
=
[

y
z
x

]
(so ρ(v) is obtained by rotating v through 2π/3 around the line x = y = z). Then

ρ(e1) =
[

0
0
1

]
ρ(e2) =

[
1
0
0

]
ρ(e3) =

[
0
1
0

]
This means that ρ = φR, where

R =

0 1 0
0 0 1
1 0 0


Example 6.8. Consider a vector a = [a, b, c]T ∈ R3, and define β : R3 −→ R3 by β(v) = a × v. This is linear, so it
must have the form β = φB for some 3× 3 matrix B. To find B, we note that

β
[

x
y
z

]
=
[

bz−cy
cx−az
ay−bx

]
,

so
β(e1) =

[
0
c
−b

]
β(e2) =

[−c
0
a

]
β(e3) =

[
b
−a
0

]
.

These three vectors are the columns of B, so

B =
[

0 −c b
c 0 a
−b a 0

]
.

(Note incidentally that the matrices arising in this way are precisely the 3× 3 antisymmetric matrices.)

Example 6.9. Consider a unit vector a = [a, b, c]T ∈ R3 (so a2 + b2 + c2 = 1) and let P be the plane perpendicular
to a. For any v ∈ R3, we let π(v) be the projection of v onto P . The formula for this is

π(v) = v − 〈v,a〉a
(where 〈v,a〉 denotes the inner product, also written as v.a.) You can just take this as given if you are not familiar
with it. From the formula one can check that π is a linear map, so it must have the form π(v) = Av for some 3 × 3
matrix A. To find A, we observe that

π
[

x
y
z

]
=
[

x
y
z

]
− (ax+ by + cz)

[
a
b
c

]
=
[

x−a2x−aby−acz

y−abx−b2y−bcz

z−acx−bcy−c2z

]
.

It follows that

π(e1) =
[

1−a2

−ab
−ac

]
π(e2) =

[
−ab
1−b2

−bc

]
π(e3) =

[
−ac
−bc
1−c2

]
.
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These three vectors are the columns of A, so

A =
[

1−a2 −ab −ac
−ab 1−b2 −bc
−ac −bc 1−c2

]
.

It is an exercise to check that A2 = AT = A and det(A) = 0.

7. Matrices for linear maps

Let V and W be finite-dimensional vector spaces, with bases V = v1, . . . , vn and W = w1, . . . , wm say. Let
α : V → W be a linear map. Then α(vj) is an element of W , so it can be expressed (uniquely) in terms of the basis
W, say

α(vj) = a1jw1 + · · ·+ amjwm.

These numbers aij form an m× n matrix A, which we call the matrix of α with respect to V and W.

Remark 7.1. Often we consider the case where W = V and so we have a map α : V → V , and V and W are bases
for the same space. It is often natural to take W = V, but everything still makes sense even if W 6= V.

Example 7.2. Let a be a unit vector in R3, and define β, π : R3 −→ R3 by

β(x) = a× x

π(x) = x− 〈a,x〉a.

We have already calculated the matrices of these maps with respect to the standard basis of R3. However, it is
sometimes useful to find a different basis that is specially suited to these particular maps, and find matrices with
respect to that basis instead. To do this, choose any unit vector b orthogonal to a, and then put c = a × b, so
c is another unit vector that is orthogonal to both a and b. By standard properties of the cross product, we have
β(a) = a× a = 0, and β(b) = a× b = c by definition of c, and

β(c) = a× (a× b) = 〈a,b〉a− 〈a,a〉b = −b.

In summary, we have

β(a) = 0 = 0a + 0b + 0c

β(b) = c = 0a + 0b + 1c

β(c) = −b = 0a− 1b + 0c.

The columns in the matrix we want are the lists of coefficients in the three equations above: the first equation gives
the first column, the second equation gives the second column, and the third equation gives the third column. Thus,
the the matrix of β with respect to the basis a,b, c is[

0 0 0
0 0 −1
0 1 0

]
.

Similarly, we have π(a) = 0 and π(b) = b and π(c) = c, so the matrix of π with respect to the basis a,b, c is[
0 0 0
0 1 0
0 0 1

]
.

Example 7.3. Define φ : R[x]<4 −→ R[x]<4 by φ(xk) = (x+ 1)k. We then have

φ(1) = 1

φ(x) = 1 + x

φ(x2) = 1 + 2x+ x2

φ(x3) = 1 + 3x+ 3x2 + x3,

or in other words

φ(x0) = 1.x0 + 0.x1 + 0.x2 + 0.x3

φ(x1) = 1.x0 + 1.x1 + 0.x2 + 0.x3

φ(x2) = 1.x0 + 2.x1 + 1.x2 + 0.x3

φ(x3) = 1.x0 + 3.x1 + 3.x2 + 1.x3.

Thus, the matrix of φ with respect to the usual basis is[
1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

]
.
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Example 7.4. Define φ : R[x]<5 −→ R4 by

φ(f) = [f(1), f(2), f(3), f(4)]T .

Then

φ(1) =
[

1
1
1
1

]
φ(x) =

[
1
2
3
4

]
φ(x2) =

[
1
4
9
16

]
φ(x3) =

[
1
8
27
64

]
φ(x4) =

[
1
16
81
256

]
so the matrix of φ with respect to the usual bases is[

1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 128

]
.

Example 7.5. Define φ : R4 −→ R4 by

φ

[
x1
x2
x3
x4

]
=
[

x4
x3
x2
x1

]
.

The associated matrix is [
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

]
.

Example 7.6. Let V be the space of solutions of the differential equation f ′′ + f = 0, and define φ : V −→ V by
φ(f)(x) = f(x+ π/4). As

sin(x+ π/4) = sin(x) cos(π/4) + cos(x) sin(π/4) = (sin(x) + cos(x))/
√

2,

we have φ(sin) = (sin+ cos)/
√

2. As

cos(x+ π/4) = cos(x) cos(π/4)− sin(x) sin(π/4) = (cos(x)− sin(x))/
√

2,

we have φ(cos) = (− sin+ cos)/
√

2. It follows that the matrix of φ with respect to the basis {sin, cos} is

1√
2

[
1 −1
1 1

]
.

Example 7.7. Define φ, ψ : M2R −→M2R by φ(A) = AT and ψ(A) = A− trace(A)I/2. In terms of the usual basis

E1 = [ 1 0
0 0 ] E2 = [ 0 1

0 0 ] E3 = [ 0 0
1 0 ] E4 = [ 0 0

0 1 ]

we have φ(E1) = E1, φ(E2) = E3, φ(E3) = E2, and φ(E4) = E4. The matrix of φ is thus[
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

]
.

We also have

ψ(E1) = E1 − I/2 =
[ 1

2 0

0 − 1
2

]
= 1

2E1 − 1
2E4

ψ(E2) = E2

ψ(E3) = E3

ψ(E4) = E4 − I/2 =
[
− 1

2 0

0
1
2

]
= − 1

2E1 + 1
2E4.

The matrix is thus  1
2 0 0 − 1

2
0 1 0 0
0 0 1 0

− 1
2 0 0

1
2

 .
The following result gives another important way to think about the matrix of a linear map.

Proposition 7.8. For any x ∈ Rn, we have µW(φA(x)) = α(µV(x)), so the two routes around the square below are
the same:

Rn

µV

��

φA // Rm

µW

��
V α

// W

(This is often expressed by saying that the square commutes.)
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Proof. We will do the case where n = 2 and m = 3; the general case is essentially the same, but with more complicated
notation. In our case, v1, v2 is a basis for V , and w1, w2, w3 is a basis for W . From the definitions of aij and A, we
have

α(v1) = a11w1 + a21w2 + a31w3

α(v2) = a12w1 + a22w2 + a32w3

A =

a11 a12

a21 a22

a31 a32


Now consider a vector x = [ x1

x2 ] ∈ R2. We have µV(x) = x1v1 + x2v2 (by the definition of µV). It follows that

α(µV(x)) = α(x1v1 + x2v2) = x1α(v1) + x2α(v2)

= x1(a11w1 + a21w2 + a31w3) + x2(a12w1 + a22w2 + a32w3)

= (a11x1 + a12x2)w1 + (a21x1 + a22x2)w2 + (a31x1 + a32x2)w3

On the other hand, we have

φA(x) = Ax =

a11 a12

a21 a22

a31 a32

[x1

x2

]
=

a11x1 + a12x2

a21x1 + a22x2

a31x1 + a32x2

 ,
so

µW(φA(x)) = µW

a11x1 + a12x2

a21x1 + a22x2

a31x1 + a32x2


= (a11x1 + a12x2)w1 + (a21x1 + a22x2)w2 + (a31x1 + a32x2)w3

= α(µV(x)).

�

Proposition 7.9. Suppose we have linear maps U
β−→ V

α−→W (which can therefore be composed to give a linear map
αβ : U −→ W ). Suppose that we have bases U , V and W for U , V and W . Let A be the matrix of α with respect to V
and W, and let B be the matrix of β with respect to U and V. Then the matrix of αβ with respect to U and W is AB.

Proof. By the definition of matrix multiplication, the matrix C = AB has entries cik =
∑

j aijbjk. By the definitions
of A and B, we have

α(vj) =
∑

i

aijwi

β(uk) =
∑

j

bjkvj

so

αβ(uk) = α

∑
j

bjkvj

 =
∑

j

bjkα(vj)

=
∑

j

bjk

∑
i

aijwi =
∑

i

∑
j

aijbjk

wi

=
∑

i

cikwi.

This means precisely that C is the matrix of αβ with respect to U and W. �

Definition 7.10. Let V be a finite-dimensional vector space, with two different bases V = v1, . . . , vn and V ′ =
v′1, . . . , v

′
n. We then have

v′j = p1jv1 + · · ·+ pnjvn

for some scalars pij . Let P be the n× n matrix with entries pij . This is called the change-of-basis matrix from V to
V ′. One can check that it is invertible, and that P−1 is the change of basis matrix from V ′ to V.
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Example 7.11. Consider the following bases of R[x]≤3:

v1 = x3 v2 = x2 v3 = x v4 = 1
v′1 = x3 + x2 + x + 1 v′2 = x3 + x2 + x v′3 = x3 + x2 v′4 = x3

Then

v′1 = 1.v1 + 1.v2 + 1.v3 + 1.v4
v′2= 1.v1 + 1.v2 + 1.v3 + 0.v4
v′3= 1.v1 + 1.v2 + 0.v3 + 0.v4
v′4= 1.v1 + 0.v2 + 0.v3 + 0.v4

so the change of basis matrix is

P =
[

1 1 1 1
1 1 1 0
1 1 0 0
1 0 0 0

]
Example 7.12. Consider the following bases of M2R:

A1 = [ 1 0
0 0 ] A2 = [ 1 1

0 0 ] A3 = [ 1 1
1 0 ] A4 = [ 1 1

1 1 ]
A′

1 = [ 1 −1
1 1 ] A′

2 =
[

1 1
1 −1

]
A′

3 =
[

1 1
−1 −1

]
A′

4 = [ 1 1
1 1 ]

Then

A′1 = 2.A1 + (−2).A2 + 0.A3 + 1.A4

A′2= 0.A1 + 0.A2 + 2.A3 + (−1).A4

A′3= 0.A1 + 2.A2 + 0.A3 + (−1).A4

A′4= 0.A1 + 0.A2 + 0.A3 + 1.A4

so the change of basis matrix is

P =
[

2 0 0 0
−2 0 2 0
0 2 0 0
1 −1 −1 1

]
Lemma 7.13. In the situation above, for any x ∈ Rn we have µV(φP (x)) = µV(Px) = µV′(x), so the following
diagram commutes:

Rn

µV′   B
BB

BB
BB

B
φP // Rn

µV~~||
||

||
||

V

Proof. We have Px = y, where yi =
∑

j pijxj . Thus

µV(Px) =
∑

i

yivi =
∑
i,j

pijxjvi

=
∑

j

xj

(∑
i

pijvi

)
=
∑

j

xjv
′
j

= µV′(x).

�

Proposition 7.14. Let α : V → W be a linear map between finite-dimensional vector spaces. Suppose we have two
bases for V (say V and V ′, with change-of basis matrix P ) and two bases for W (say W and W ′, with change-of-basis
matrix Q). Let A be the matrix of α with respect to V and W, and let A′ be the matrix with respect to V ′ and W ′.
Then A′ = Q−1AP .

Proof. We actually prove that QA′ = AP , which comes to the same thing. For any x ∈ Rn, we have

µW(QA′x) = µW′(A′x) (Lemma 7.13)

= α(µV′(x)) (Proposition 7.8)

= α(µV(Px)) (Lemma 7.13)

= µW(APx) (Proposition 7.8).



VECTOR SPACES AND FOURIER THEORY 27

This shows that µW((QA′−AP )x) = 0. Moreover, W is linearly independent, so µW is injective and has trivial kernel,
so (QA′ − AP )x = 0. This applies for any vector x, so the matrix QA′ − AP must be zero, as claimed. The upshot
is that all parts of the following diagram commute:

Rm

µV′

��

φP

""E
EE

EE
EE

E
φA′ // Rn

φQ

}}{{
{{

{{
{{

µW′

��

Rm

µV
||yy

yy
yy

yy φA

// Rn

µW !!C
CC

CC
CC

C

V α
// W

�

Remark 7.15. Suppose we have a finite-dimensional vector space V and a linear map α from V to itself. We can
now define the trace, determinant and characteristic polynomial of α. We pick any basis V, let A be the matrix of α
with respect to V and V, and put

trace(α) = trace(A)

det(α) = det(A)

char(α)(t) = char(A)(t) = det(tI −A).

This is not obviously well-defined: what if we used a different basis, say V ′, giving a different matrix, say A′? The
proposition tells us that P−1AP = A′, and it follows that P−1(tI − A)P = tI − A′. Using the rules trace(MN) =
trace(NM) and det(MN) = det(M) det(N) we see that

trace(A′) = trace(P−1(AP )) = trace((AP )P−1) = trace(A(PP−1)) = trace(A)

det(A′) = det(P )−1 det(A) det(P ) = det(A)

char(A′)(t) = det(P )−1 det(tI −A) det(P ) = char(A)(t).

This shows that definitions are in fact basis-independent.

Example 7.16. Let a ∈ R3 be a unit vector, and define β : R3 −→ R3 by β(x) = a × x. The matrix B of β with
respect to the standard basis is found as follows:

β(e1) =
[

0
a3
−a2

]
β(e2) =

[−a3
0
a1

]
β(e3) =

[ a2
−a1
0

]
B =

[ 0 −a3 a2
a3 0 −a1
−a2 a1 0

]
We have trace(B) = 0 and

det(B) = 0. det
[

0 −a1
a1 0

]
− (−a3). det

[
a3 −a1
−a2 0

]
+ a2. det

[
a3 0
−a2 a1

]
= 0 − (−a3)(a3.0 − (−a2)(−a1)) + a2(a3a1 − 0.(−a2)) = 0

We can insead choose a unit vector b orthogonal to a and then put c = a×b. With respect to the basis a,b, c, the map
β has matrix B′ =

[
0 0 0
0 0 −1
0 1 0

]
. It is easy to see that trace(B′) = 0 = det(B′). Either way we have trace(β) = 0 = det(β).

We also find that char(β)(t) = char(B′)(t) = t3 + t. This is much more complicated using B.

Example 7.17. Let a ∈ R3 be a unit vector, and define π : R3 −→ R3 by π(x) = x− 〈x,a〉a. The matrix P of π with
respect to the standard basis is found as follows:

π(e1) =

[
1−a2

1
−a1a2
−a1a3

]
π(e2) =

[−a2a1
1−a2

2
−a2a3

]
π(e3) =

[−a3a1
−a3a2
1−a2

3

]
P =

 1−a2
1 −a1a2 −a1a3

−a1a2 1−a2
2 −a2a3

−a1a3 −a2a3 1−a2
3


We have trace(P ) = 1 − a2

1 + 1 − a2
2 + 1 − a2

3 = 3 − (a2
1 + a2

2 + a2
3) = 2. We can instead choose a unit vector b

orthogonal to a and then put c = a × b. With respect to the basis a,b, c, the map π has matrix P ′ =
[

0 0 0
0 1 0
0 0 1

]
. It

is easy to see that trace(P ′) = 2. Either way we have trace(π) = 2. We also find that det(π) = det(P ′) = 0 and
char(π)(t) = char(P ′)(t) = t(t− 1)2. This is much more complicated using P .

Remark 7.18. Suppose again that we have a finite-dimensional vector space V and a linear map α from V to itself.
One can show that the following are equivalent:

(a) α is injective
(b) α is surjective
(c) α is an isomorphism
(d) det(α) 6= 0.

(It is important here that α goes from V to itself, not to some other space.) We shall not give proofs, however.
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8. Theorems about bases

For the next two results, we let V be a vector space, and let V = v1, . . . , vn be a list of elements in V . We put
Vi = span(v1, . . . , vi) (with the convention that V0 = 0).

There may or may not be any nontrivial linear relations for V. If there is a nontrivial relation λ, so that λ1v1 +
· · ·+λnvn = 0 and λk 6= 0 for some k, then we define the height of λ to be the largest i such that λi 6= 0. For example,
if n = 6 and 5v1 − 2v2 − 2v3 + 3v4 = 0 then [5,−2,−2, 3, 0, 0]T is a nontrivial linear relation of height 4.

Proposition 8.1. The following are equivalent (so if any one of them is true, then so are the other two):
(a) The list V has a nontrivial linear relation of height i
(b) vi ∈ Vi−1

(c) Vi = Vi−1.

Example 8.2. Consider the following vectors in R3:

v1 =

1
2
3

 v2 =

2
3
4

 v3 =

3
4
5

 v4 =

4
5
6


Then v1−2v2+v3 = 0, so [1,−2, 1, 0]T is a linear relation of height 3. The equation can be rearranged as v3 = −v1+2v2,
showing that v3 ∈ span(v1, v2) = V2. One can check that

V2 = V3 = {[x, y, z]T | x+ z = 2y}.
Thus, in this example, with i = 2, we see that (a), (b) and (c) all hold.

Proof. (a)⇒(b): Let λ = [λ1, . . . , λn]T be a nontrivial linear relation of height i, so λ1v1 + . . . + λnvn = 0. The fact
that the height is i means that λi 6= 0 but λi+1 = λi+2 = · · · = 0. We can thus rearrange the linear relation as

λivi =− λ1v1 − · · · − λi−1vi−1 − λi+1vi+1 − · · · − λnvn

=− λ1v1 − · · · − λi−1vi−1 − 0.vi+1 − · · · − 0.vn

=− λ1v1 − · · · − λi−1vi−1

so

vi =− λ1λ
−1
i v1 − · · · − λi−1λ

−1
i vi−1 ∈ Vi−1.

(b)⇒(a) Suppose that vi ∈ Vi−1 = span(v1, . . . , vi−1), so vi = µ1v1 + · · · + µi−1vi−1 for some scalars µ1, . . . , µi−1.
We can rewrite this as a nontrivial linear relation

µ1v1 + · · ·+ µi−1vi−1 + (−1).vi + 0.vi+1 + · · ·+ 0.vn = 0,

which clearly has height i.

(b)⇒(c): Suppose again that vi ∈ Vi−1 = span(v1, . . . , vi−1), so vi = µ1v1 + · · · + µi−1vi−1 for some scalars
µ1, . . . , µi−1. We need to show that Vi = Vi−1, but it is clear that Vi−1 ≤ Vi, so it will be enough to show that
Vi ≤ Vi−1. Consider an element w ∈ Vi; we must show that w ∈ Vi−1. As w ∈ Vi we have w = λ1v1 + · · · + λivi for
some scalars λ1, . . . , λi. This can be rewritten as

w =λ1v1 + · · ·+ λi−1vi−1 + λi(µ1v1 + · · ·+ µi−1vi−1)

=(λ1 + λiµ1)v1 + (λ2 + λiµ2)v1 + · · ·+ (λi−1 + λiµi−1)vi−1.

This is a linear combination of v1, . . . , vi−1, showing that w ∈ Vi−1, as claimed.
(c)⇒(b): Suppose that Vi = Vi−1. It is clear that the element vi lies in span(v1, . . . , vi) = Vi, but Vi = Vi−1, so

vi ∈ Vi−1. �

Corollary 8.3. If for all i we have vi 6∈ Vi−1, then there cannot be a linear relation of any height, so V must be
linearly independent. �

Corollary 8.4. The following are equivalent:
(a) The list V has no nontrivial linear relation of height i
(b) vi 6∈ Vi−1 (c) Vi 6= Vi−1.

If these three things are true, we say that i is a jump.
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Lemma 8.5. Let V be a vector space, and let V = (v1, . . . , vn) be a finite list of elements of V that spans V . Then
some sublist V ′ ⊆ V is a basis for V .

Proof. Let I ′ be the set of those integers i ≤ n for which vi 6∈ Vi−1, and put V ′ = {vi | i ∈ I ′}.
We first claim that V ′ is linearly independent. If not, then there is a nontrivial relation. If we write only the

nontrivial terms, and keep them in the obvious order, then the relation takes the form λi1vi1 + · · ·+ λir
vir

= 0 with
ik ∈ I ′ for all k, and λik

6= 0 for all k, and i1 < · · · < ir. This can be regarded as a nontrivial linear relation for V, of
height ir. Proposition 8.1 therefore tells us that vir

∈ Vir−1, which is impossible, as ir ∈ I ′. This contradiction shows
that V ′ must be linearly independent, after all.

Now put V ′ = span(V ′). We will show by induction that Vi ≤ V ′ for all i ≤ n. For the initial step, we note that
V0 = 0 so certainly V0 ≤ V ′. Suppose that Vi−1 ≤ V ′. There are two cases to consider:

(a) Suppose that i ∈ I ′. Then (by the definition of V ′) we have vi ∈ V ′ and so vi ∈ V ′. As Vi = Vi−1 + Rvi and
Vi−1 ≤ V ′ and Rvi ≤ V ′, we conclude that Vi ≤ V ′.

(b) Suppose that i 6∈ I ′, so (by the definition of I ′) we have vi ∈ Vi−1 and so Vi = Vi−1. By the induction
hypothesis we have Vi−1 ≤ V ′, so Vi ≤ V ′.

Either way we have Vi ≤ V ′, which proves the induction step. We therefore have Vi ≤ V ′ for all i ≤ n. In particular,
we have Vn ≤ V ′. However, Vn is just span(V), and we assumed that V spans V , so Vn = V . This proves that V ≤ V ′,
and it is clear that V ′ ≤ V , so V = V ′. This means that V ′ is a spanning list as well as being linearly independent,
so it is a basis for V . �

Corollary 8.6. Every finite-dimensional vector space has a basis.

Proof. By Definition 5.21, we can find a finite list V that spans V . By Lemma 8.5, some sublist V ′ ⊆ V is a basis. �

Lemma 8.7. Let V be a vector space, and let V = (v1, . . . , vn) and W = (w1, . . . , wm) be finite lists of elements of V
such that V spans V and W is linearly independent. Then n ≥ m. (In other words, any spanning list is at least as
long as any linearly independent list.)

Proof. As before, we put Vi = span(v1, . . . , vi), so Vn = span(V) = V . We will show by induction that any linearly
independent list in Vi has length at most i. In particular, this will show that any linearly independent list in V = Vn

has length at most n, as claimed.
For the initial step, note that V0 = 0. This means that the only linearly independent list in V0 is the empy list,

which has length 0, as required.
Now suppose (for the induction step) that every linearly independent list in Vi−1 has length at most i−1. Suppose we

have a linearly independent list (x1, . . . , xp) in Vi; we must show that p ≤ i. The elements xj lie in Vi = span(v1, . . . , vi).
We can thus find scalars ajk such that

xj = aj1v1 + aj2v2 + · · ·+ aj,i−1vi−1 + ajivi.

We need to consider two cases:
(a) Suppose that for each j the last coefficient aji is zero. This means that

xj = aj1v1 + aj2v2 + · · ·+ aj,i−1vi−1,

so xj ∈ span(v1, . . . , vi−1) = Vi−1. This means that x1, . . . , xp is a linearly independent list in Vi−1, so the
induction hypothesis tells us that p ≤ i− 1, so certainly p ≤ i.

(b) Otherwise, for some xj we have aji 6= 0. It is harmless to reorder the x’s, so for notational convenience we
move this xj to the end of the list, which means that api 6= 0. Now put αk = akia

−1
pi and

yk = xk − αkxp.

We will show that y1, . . . , yp−1 is a linearly independent list in Vi−1. Assuming this, the induction hypothesis
gives p− 1 ≤ i− 1, and so p ≤ i as required. First, we have

yk =xk − akia
−1
pi xp

=ak1v1 + · · ·+ akivi

− akia
−1
pi (ap1v1 + · · ·+ apivi)

=(ak1 − akia
−1
pi ap1)v1 + (ak2 − akia

−1
pi ap2)v2 + · · ·+ (aki − akia

−1
pi api)vi.

In the last term, the coefficient aki − akia
−1
pi api is zero, so yk is actually a linear combination of v1, . . . , vi−1,

so yk ∈ Vi−1. Next, suppose we have a linear relation λ1y1 + · · ·+ λp−1yp−1 = 0. Put

λp = −λ1α1 − λ2α2 − · · · − λp−1αp−1.
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By putting yk = xk − αkxp in the relation λ1y1 + · · · + λp−1yp−1 = 0 and expanding it out, we get λ1x1 +
. . . + λp−1xp−1 + λpxp = 0. As x1, . . . , xp is linearly independent, this means that we must have λ1 = · · · =
λp−1 = λp = 0. It follows that our original relation among the y’s was trivial. We conclude that the list
y1, . . . , yp−1 is a linearly independent list in Vi−1. As explained before, the induction hypothesis now tells us
that p− 1 ≤ i− 1, so p ≤ i.

�

Corollary 8.8. Let V be a finite-dimensional vector space. Then V has a finite basis, and any two bases have the
same number of elements, say n. This number is called the dimension of V . Moreover, any spanning list for V has at
least n elements, and any linearly independent list has at most n elements.

Proof. We already saw in Corollary 8.6 that V has a basis, say V = (v1, . . . , vn). Let X be a linearly independent
listin V . As V is a spanning list and X is linearly independent, Lemma 8.7 tells us that V is at least as long as X , so
X has at most n elements. Now let Y be a spanning list for V . As Y spans and V is linearly independent, Lemma 8.7
tells us that Y is at least as long as V, so Y has at least n elements. Now let V ′ be another basis for V . Then V ′ has
at least n elements (because it spans) and at most n elements (because it is independent) so it must have exactly n
elements. �

Corollary 8.9. If V is a finite-dimensional vector space over K with dimension n, then we can choose a basis V of
length n, and the map µV : Kn → V is an isomorphism, so K is isomorphic to Kn.

Proposition 8.10. Let V be a finite-dimensional vector space, and let W be a subspace of V . Then W is also
finite-dimensional, and dim(W ) ≤ dim(V ).

Proof. Put n = dim(V ). We define a list W = (w1, w2, . . . ) as follows. If W = 0 then we take W to be the empty
list. Otherwise, we let w1 be any nonzero vector in W . If w1 spans W we take W = (w1). Otherwise, we can
choose an element w2 ∈ W that is not in span(w1). If span(w1, w2) = W then we stop and take W = (w1, w2).
Otherwise, we can choose an element w3 ∈W that is not in span(w1, w2). We continue in this way, so we always have
wi 6∈ span(w1, . . . , wi−1), so the w’s are linearly independent (by Corollary 8.3). However, V has a spanning set of
length n, so Lemma 8.7 tells us that we cannot have a linearly independent list of length greater than n, so our list
of w’s must stop before we get to wn+1. This means that for some p ≤ n we have W = span(w1, . . . , wp), so W is
finite-dimensional, with dim(W ) = p ≤ n. �

Proposition 8.11. Let V be an n-dimensional vector space, and let V = (v1, . . . , vp) be a linearly independent list of
elements of V . Then p ≤ n, and V can be extended to a list V ′ = (v1, . . . , vn) such that V ′ is a basis of V .

Proof. Corollary 8.8 tells us that p ≤ n. If span(v1, . . . , vp) = V then we take V ′ = (v1, . . . , vp). Otherwise, we choose
some vp+1 6∈ span(v1, . . . , vp). If span(v1, . . . , vp+1) = V then we stop and take V ′ = (v1, . . . , vp+1). Otherwise, we
choose some vp+2 6∈ span(v1, . . . , vp+1) and continue in the same way. We always have vi 6∈ span(v1, . . . , vi−1), so the
v’s are linearly independent (by Corollary 8.3). Any linearly independent list has length at most n (by Corollary 8.8)
so our process must stop before we get to vn+1. This means that V ′ = (v1, . . . , vm) with m ≤ n, and as the process
has stopped, we must have span(V ′) = V . As V ′ is also linearly independent, we see that it is a basis, and so m = n
(by Corollary 8.8 again). �

Proposition 8.12. Let V be an n-dimensional vector space.
(a) Any spanning list for V with exactly n elements is linearly independent, and so is a basis.
(b) Any linearly independent list in V with exactly n elements is a spanning list, and so is a basis.

Proof. (a) Let V = (v1, . . . , vn) be a spanning list. Lemma 8.5 tells us that some sublist V ′ ⊆ V is a basis for V .
As dim(V ) = n, we see that V ′ has length n, but V also has length n, so V ′ must be all of V. Thus, V itself
must be a basis.

(b) Let W = (w1, . . . , wn) be a linearly independent list. Proposition 8.11 tells us that W can be extended to a
list W ′ ⊇ W such that W ′ is a basis. In particular, W ′ must have length n, so it must just be the same as W,
so W itself is a basis.

�

Corollary 8.13. Let V be an finite-dimensional vector space, and let W be a subspace with dim(W ) = dim(V ); then
W = V .

Proof. Put n = dim(V ) = dim(V ), and let W = (w1, . . . , wn) be a basis for W . Then W is a linearly independent list
in V with n elements, so part (b) of the Proposition tells us that W spans V . Thus V = span(W) = W . �

Proposition 8.14. Let U be a finite-dimensional vector space, and let V and W be subspaces of U . Then one can
find lists (u1, . . . , up), (v1, . . . , vq) and (w1, . . . , wr) (for some p, q, r ≥ 0) such that
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• (u1, . . . , up) is a basis for V ∩W
• (u1, . . . , up, v1, . . . , vq) is a basis for V
• (u1, . . . , up, w1, . . . , wr) is a basis for W
• (u1, . . . , up, v1, . . . , vq, w1, . . . , wr) is a basis for V +W .

In particular, we have

dim(V ∩W ) = p

dim(V ) = p+ q

dim(W ) = p+ r

dim(V +W ) = p+ q + r,

so dim(V ) + dim(W ) = 2p+ q + r = dim(V ∩W ) + dim(V +W ).

Proof. Choose a basis U = (u1, . . . , up) for V ∩W . Then U is a linearly independent list in V , so it can be extended
to a basis for V , say (u1, . . . , up, v1, . . . , vq). Similarly U is a linearly independent list in W , so it can be extended to
a basis for W , say (u1, . . . , up, w1, . . . , wr). All that is left is to prove that the list

X = (u1, . . . , up, v1, . . . , vq, w1, . . . , wr)

is a basis for V +W . Consider an element

x = α1u1 + · · ·+ αpup + β1v1 + · · ·+ βqvq + γ1w1 + · · ·+ γrwr ∈ span(X ).

Put y =
∑

i αiui +
∑

j βjvj and z =
∑

k γkwk, so x = y + z. We have ui, vj ∈ V and wk ∈W so y ∈ V and z ∈W so
x = y + z ∈ V +W . Thus span(X ) ≤ V +W .

Now suppose we start with an element x ∈ V +W . We can then find y ∈ V and z ∈ W such that x = y + z. As
(u1, . . . , up, v1, . . . , vq) is a basis for V , we have

y = λ1u1 + · · ·+ λpup + β1v1 + · · ·+ βqvq

for some scalars λi, βj . Similarly, we have

z = µ1u1 + · · ·+ µpup + γ1w1 + · · ·+ γrwr

for some scalars µi, γk. If we put αi = λi + µi we get

x = y + z = α1u1 + · · ·+ αpup + β1v1 + · · ·+ βqvq + γ1w1 + · · ·+ γrwr ∈ span(X ).

It follows that span(X ) = V +W .
Finally, suppose we have a linear relation

α1u1 + · · ·+ αpup + β1v1 + · · ·+ βqvq + γ1w1 + · · ·+ γrwr = 0.

We again put y =
∑

i αiui +
∑

j βjvj and z =
∑

k γkwk, so y + z = 0, so z = −y. Now y ∈ V , so z also lies in V ,
because z = −y. On the other hand, it is clear from our definition of z that it lies in W , so z ∈ V ∩W . We know that
U is a basis for V ∩W , so z = λ1u1 + · · ·+ λpup for some λ1, . . . , λp. This means that

λ1u1 + · · ·+ λpup − γ1w1 − · · · − γrwr = 0.

We also know that (u1, . . . , up, w1, . . . , wr) is a basis for W , so the above equation implies that λ1 = · · · = λp = γ1 =
· · · = γr = 0. Feeding this back into our original, relation, we get

α1u1 + · · ·+ αpup + β1v1 + · · ·+ βqvq = 0.

However, we also know that (u1, . . . , up, v1, . . . , vq) is a basis for V , so the above equation implies that α1 = · · · =
αp = β1 = · · · = βq = 0. As all α’s, β’s and γ’s are zero, we see that our original linear relation was trivial. This
shows that the list X is linearly independent, so it gives a basis for V +W as claimed. �

Example 8.15. Put U = M3R and

V = {A ∈ U | all rows sum to 0 } = {A ∈ U | A
[

1
1
1

]
=
[

0
0
0

]
W = {A ∈ U | all columns sum to 0 } = {A ∈ U | [1, 1, 1]A = [0, 0, 0]}

Then V ∩W is the set of all matrices of the form
A =

[
a b −a−b
c d −c−d

−a−c −b−d a+b+c+d

]
= a

[
1 0 −1
0 0 0
−1 0 1

]
+ b

[
0 1 −1
0 0 0
0 −1 1

]
+ c

[
0 0 0
1 0 −1
−1 0 1

]
+ d

[
0 0 0
0 1 −1
0 −1 1

]
It follows that the list

u1 =

[
1 0 −1
0 0 0
−1 0 1

]
, u2 =

[
0 1 −1
0 0 0
0 −1 1

]
, u3 =

[
0 0 0
1 0 −1
−1 0 1

]
, u4 =

[
0 0 0
0 1 −1
0 −1 1

]
is a basis for V ∩W . Now put

v1 =

[
0 0 0
0 0 0
1 0 −1

]
, v2 =

[
0 0 0
0 0 0
0 1 −1

]
, w1 =

[
0 0 1
0 0 0
0 0 −1

]
, w2 =

[
0 0 0
0 0 1
0 0 −1

]
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so vi ∈ V and wi ∈W . A typical element of V has the form

A =

[
a b −a−b
c d −c−d
e f −e−f

]
= au1 + bu2 + cu3 + du4 +

[
0 0 0
0 0 0

e−a−c f−b−d a+b+c+d−e−f

]
= au1 + bu2 + cu3 + du4 + (e − a − c)v1 + (f − b − d)v2.

Using this, we see that u1, . . . , u4, v1, v2 is a basis for V . Similarly, u1, . . . , u4, w1, w2 is a basis for W . It follows that

u1, u2, u3, u4, v1, v2, w1, w2

is a basis for V +W .

Example 8.16. Put U = R[x]≤3 and

V = {f ∈ U | f(1) = 0} = {(x− 1)g(x) | g(x) ∈ R[x]≤2}
W = {f ∈ U | f(−1) = 0} = {(x+ 1)h(x) | h(x) ∈ R[x]≤2}

so V ∩W = {f ∈ U | f is divisible by (x+ 1)(x− 1) = x2 − 1}

Any f(x) ∈ V ∩W has the form (ax+b)(x2−1) = a(x3−x)+b(x2−1). It follows that the list u1 = x3−x, u2 = x2−1
is a basis for V ∩W . Now put v1 = x− 1 ∈ V and w1 = x+ 1 ∈W . We claim that u1, u2, v1 is a basis for V . Indeed,
any element of V has the form

f(x) = (ax2 + bx+ c).(x− 1) = (ax2 + (b− c)x+ c(x+ 1)).(x− 1) = au1 + (b− c)u2 + cv1,

so the list spans V . If we have a linear relation au1 + bu2 + cv1 = 0 then a(x3 − x) + b(x2 − 1) + c(x− 1) = 0 for all
x, so ax3 + bx2 + (c− a)x− c = 0 for all x, which implies that a = b = c = 0. Our list is thus independent as well as
spanning V , so it is a basis. Similarly u1, u2, w1 is a basis for W . It follows that u1, u2, v1, w1 is a basis for V +W .

Theorem 8.17. Let α : U → V be a linear map between finite-dimensional vector spaces. Then one can choose a
basis U = u1, . . . , um for U , and a basis V = v1, . . . , vn for V , and an integer r ≤ min(m,n) such that

(a) α(ui) = vi for 1 ≤ i ≤ r
(b) α(ui) = 0 for r < i ≤ m
(c) ur+1, . . . , um is a basis for ker(α) ≤ U
(d) v1, . . . , vr is a basis for image(α) ≤ V .

Proof. Let v1, . . . , vr be any basis for image(α) (so (d) is satisfied). By Proposition 8.11, this can be extended to a
list V = v1, . . . , vn which is a basis for all of V . Next, for j ≤ r we have vj ∈ image(α), so we can choose uj ∈ U with
α(uj) = vj (so (a) is satisfied). This gives us a list u1, . . . , ur of elements of U ; to these, we add vectors ur+1, . . . , um

forming a basis for ker(α) (so that (b) and (c) are satisfied). Now everything is as claimed except that we have not
shown that the list U = u1, . . . , un is a basis for U .

Consider an element x ∈ U . We then have α(x) ∈ image(α), and v1, . . . , vr is a basis for image(α), so there exist
numbers x1, . . . , xr such that α(x) = x1v1 + . . .+ xrvr. Now put x′ = x1u1 + . . .+ xrur, and x′′ = x− x′. We have

α(x′) = x1α(u1) + · · ·+ xrα(ur) = x1v1 + · · ·+ xrvr = α(x),

so α(x′′) = α(x) − α(x′) = 0, so x′′ ∈ ker(α). We also know that ur+1, . . . , um is a basis for ker(α), so there exist
numbers xr+1, . . . , xm with x′′ = xr+1ur+1 + · · ·+ xmum. Putting this together, we get

x = x′ + x′′ = (x1u1 + · · ·+ xrur) + (xr+1ur+1 + · · ·+ xmum),

which is a linear combination of u1, . . . , um. It follows that the list U spans U .
Now suppose we have a linear relation λ1u1 + · · ·+ λmum = 0. We apply α to both sides of this equation to get

0 = λ1α(u1) + · · ·+ λrα(ur) + λr+1α(ur+1) + · · ·+ λmα(um)
= λ1v1 + · · ·+ λrvr + λr+1.0 + · · ·+ λm.0
= λ1v1 + · · ·+ λrvr.

This is a linear relation between the vectors v1, . . . , vr, but these form a basis for image(α), so this must be the trivial
relation, so λ1 = · · · = λr = 0. This means that our original relation has the form

λr+1ur+1 + · · ·+ λmum = 0

As ur+1, . . . , um is a basis for ker(α), these vectors are linearly independent, so the above relation must be trivial,
so λr+1 = · · · = λm = 0. This shows that all the λ’s are zero, so the original relation was trivial. Thus, the vectors
u1, . . . , um are linearly independent, as claimed. �

Remark 8.18. If we use bases as in the theorem, then the matrix of α with respect to those bases has the form

A =
[

Ir 0r,m−r

0n−r,r 0n−r,m−r

]
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Corollary 8.19. If α : U −→ V is a linear map then

dim(ker(α)) + dim(image(α)) = dim(U).

Proof. Choose bases as in the theorem. Then dim(U) = m and dim(image(α)) = r and

dim(ker(α)) = |{ur+1, . . . , um}| = m− r.

The claim follows. �

Example 8.20. Consider the map φ : M2R →M2R given by φ(A) = [ 1 1
1 1 ]A [ 0 1

1 0 ], or equivalently

φ
[

a b
c d

]
= [ 1 1

1 1 ]
[

a b
c d

]
[ 0 1
1 0 ] = [ 1 1

1 1 ]
[

b a
d c

]
=
[

b+d a+c
b+d a+c

]
= (b+ d) [ 1 0

1 0 ] + (a+ c) [ 0 1
0 1 ] .

It follows that if we put
u1 = [ 0 1

0 0 ] u2 = [ 1 0
0 0 ] v1 = [ 1 0

1 0 ] v2 = [ 0 1
0 1 ]

then φ(u1) = v1, φ(u2) = v2, and v1, v2 is a basis for image(φ). It can be extended to a basis for all of M2R by adding
v3 = [ 0 0

1 0 ] and v4 = [ 0 0
0 1 ]. Moreover, we have φ(A) = 0 iff a+ c = b+ d = 0 iff c = −a and d = −b, in which case

A =
[

a b
−a −b

]
= a

[
1 0
−1 0

]
+ b

[
0 1
0 −1

]
.

This means that the matrices u3 =
[

1 0
−1 0

]
and u4 =

[
0 1
0 −1

]
form a basis for ker(φ). Putting this together, we see that

u1, . . . , u4 and v1, . . . , v4 are bases for M2R such that φ(ui) = vi for i ≤ 2, and φ(ui) = 0 for i > 2.

9. Eigenvalues and eigenvectors

Definition 9.1. Let V be a finite-dimensional vector space over C, and let α : V → V be a C-linear map. Let λ be a
complex number. An eigenvector for α, with eigenvalue λ is a nonzero element v ∈ V such that α(v) = λv. If such a
v exists, we say that λ is an eigenvalue of α.

Remark 9.2. Suppose we choose a basis V for V , and let A be the matrix of α with respect to V and V. Then the
eigenvalues of α are the same as the eigenvalues of the matrix A, which are the roots of the characteristic polynomial
det(tI −A).

Example 9.3. Put V = C[x]≤4, and define φ : V −→ V by φ(f)(x) = f(x+1). We claim that 1 is the only eigenvalue.
Indeed, the corresponding matrix P (with respect to the basis 1, x, . . . , x4) is

P =

[
1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

]
The characteristic polynomial is thus

det(tI − P ) = det

[ t−1 −1 −1 −1 −1
0 t−1 −2 −3 −4
0 0 t−1 −3 −6
0 0 0 t−1 −4
0 0 0 0 t−1

]
= (t− 1)5

so 1 is the only root of the characteristic polynomial. The eigenvectors are just the polynomials f with φ(f) = 1.f or
equivalently f(x+ 1) = f(x) for all x. These are just the constant polynomials.

Example 9.4. Put V = C[x]≤4, and define φ : V −→ V by φ(f)(x) = f(ix), so φ(xk) = ikxk. The corresponding
matrix P (with respect to 1, x, x2, x3, x4) is

P =

[
1 0 0 0 0
0 i 0 0 0
0 0 −1 0 0
0 0 0 −i 0
0 0 0 0 1

]
The characteristic polynomial is thus

det(tI − P ) = (t− 1)(t− i)(t+ 1)(t+ i)(t− 1) = (t− 1)(t2 + 1)(t2 − 1) = t5 − t4 − t+ 1

so the eigenvalues are 1, i,−1 and −i.
• The eigenvectors of eigenvalue 1 are functions f ∈ V with f(ix) = f(x). These are the functions of the form
f(x) = a+ ex4.

• The eigenvectors of eigenvalue i are functions f ∈ V with f(ix) = if(x). These are the functions of the form
f(x) = bx.

• The eigenvectors of eigenvalue −1 are functions f ∈ V with f(ix) = −f(x). These are the functions of the
form f(x) = cx2.

• The eigenvectors of eigenvalue −i are functions f ∈ V with f(ix) = −if(x). These are the functions of the
form f(x) = dx3.
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Example 9.5. Let u be a unit vector in R3 and define α : C3 −→ C3 by α(v) = u × v. Choose a unit vector b
orthogonal to a and put c = a× b. We saw previously that the matrix of α with respect to a,b, c is

A =
[

0 0 0
0 0 −1
0 1 0

]
The characteristic polynomial is thus

det(tI −A) = det
[

t 0 0
0 t 1
0 −1 t

]
= t3 + t = t(t+ i)(t− i).

The eigenvalues are thus 0, i and −i.
• The eigenvectors of eigenvalue 0 are the multiples of a.
• The eigenvectors of eigenvalue i are the multiples of b− ic.
• The eigenvectors of eigenvalue −i are the multiples of b + ic.

Example 9.6. Let u and v be non-orthogonal vectors in R3, and define φ : C3 −→ C3 by φ(x) = 〈u,x〉v. We claim
that the characteristic polynomial of φ is t2(t − u.v). Indeed, the matrix P with respect to the standard basis is
calculated as follows:

φ(e1) = u1v =

[ u1v1
u1v2
u1v3

]
φ(e2) = u2v =

[ u2v1
u2v2
u2v3

]
φ(e3) = u3v =

[ u3v1
u3v2
u3v3

]

P =

[ u1v1 u2v1 u3v1
u1v2 u2v2 u3v2
u1v3 u2v3 u3v3

]
The characteristic polynomial is det(tI − P ) = −det(P − tI), which is found as follows:

det(P − tI)

= det

[
u1v1−t u2v1 u3v1

u1v2 u2v2−t u3v2
u1v3 u2v3 u3v3−t

]

=(u1v1 − t) det
[

u2v2−t u3v2
u2v3 u3v3−t

]
− u2v1 det

[ u1v2 u3v2
u1v3 u3v3−t

]
+ u3v1 det

[
u1v2 u2v2−t
u1v3 u2v3

]

det
[

u2v2−t u3v2
u2v3 u3v3−t

]
= (u2v2 − t)(u3v3 − t) − u2v3u3v2 = t

2 − (u2v2 + u3v3)t

det
[ u1v2 u3v2

u1v3 u3v3−t

]
= u1v2(u3v3 − t) − u1v3u3v2 = −u1v2t

det
[

u1v2 u2v2−t
u1v3 u2v3

]
= u1v2u2v3 − u1v3(u2v2 − t) = u1v3t

det(P − tI) = (u1v1 − t)(t
2 − (u2v2 + u3v3)t) − u2v1(−u1v2t) + u3v1u1v3t

= (u1v1 + u2v2 + u3v3)t
2 − t

3

det(tI − P ) = t
3 − (u1v1 + u2v2 + u3v3)t

2
= t

2
(t − 〈u, v〉)

The eigenvalues are thus 0 and 〈u,v〉. The eigenvectors of eigenvalue 0 are the vectors orthogonal to u. The
eigenvectors of eigenvalue 〈u,v〉 are the multiples of v.

If we had noticed this in advance then the whole argument would have been much easier. We could have chosen a
basis of the form a,b,v with a and b orthogonal to u. With respect to that basis, φ would have matrix

[
0 0 0
0 0 0
0 0 〈u,v〉

]
which immediately gives the characteristic polynomial.

10. Inner products

Definition 10.1. Let V be a vector space over R. An inner product on V is a rule that gives a number 〈u, v〉 ∈ R for
each u, v ∈ V , with the following properties:

(a) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 for all u, v, w ∈ V .
(b) 〈tu, v〉 = t〈u, v〉 for all u, v ∈ V and t ∈ R.
(c) 〈u, v〉 = 〈v, u〉 for all u, v ∈ V .
(d) We have 〈u, u〉 ≥ 0 for all u ∈ V , and 〈u, u〉 = 0 iff u = 0.

Given an inner product, we will write ‖u‖ =
√
〈u, u〉, and call this the norm of u. We say that u is a unit vector if

‖u‖ = 1.

Remark 10.2. Unlike most of the other things we have done, this does not immediately generalise to fields K other
than R. The reason is that axiom (d) involves the condition 〈u, u〉 ≥ 0, and in an arbitrary field K (such as Z/5, for
example) we do not have a good notion of positivity. Moreover, all our examples will rely heavily on the fact that
x2 ≥ 0 for all x ∈ R, and of course this ceases to be true if we work over C. We will see in Section 13 how to fix things
up in the complex case.

Example 10.3. We can define an inner product on Rn by

〈(x1, . . . , xn), (y1, . . . , yn)〉 =
n∑

i=1

xiyi = x1y1 + x2y2 + · · ·+ xnyn.
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Properties (a) to (c) are obvious. For property (d), note that if u = [u1, . . . , un]T ∈ Rn then

〈u,u〉 = u2
1 + u2

2 + · · ·+ u2
n.

All the terms in this sum are at least zero, so the sum must be at least zero. Moreover, there can be no cancellation,
so the only way that 〈u,u〉 can be zero is if all the individual terms are zero, which means u1 = u2 = · · · = un = 0,
so u = 0 as a vector.

Remark 10.4. If x,y ∈ Rn then we can regard x and y as n× 1 matrices, so xT is a 1× n matrix, so xT y is a 1× 1
matrix, or in other words a number. This number is just 〈x,y〉. This is most easily explained by example: in the case
n = 4 we have [

x1
x2
x3
x4

]T [ y1
y2
y3
y4

]
= [ x1 x2 x3 x4 ]

[ y1
y2
y3
y4

]
= x1y1 + x2y2 + x3y3 + x4y4 = 〈x,y〉.

Example 10.5. Although we usually use the standard inner product on Rn, there are many other inner products.
For example, we can define a different inner product on R3 by

〈(u, v, w), (x, y, z)〉′ = ux+ (u+ v)(x+ y) + (u+ v + w)(x+ y + z).

In particular, this gives

〈(u, v, w), (u, v, w)〉′ = u2 + (u+ v)2 + (u+ v + w)2 = 3u2 + 2v2 + w2 + 4uv + 2vw + 2uw.

The corresponding norm is thus

‖(u, v, w)‖′ =
√
〈(u, v, w), (u, v, w)〉′ =

√
3u2 + 2v2 + w2 + 4uv + 2vw + 2uw.

Example 10.6. Let U be the set of physical vectors, as in Example 2.6. Given u,v ∈ U we can define

〈u,v〉 = (length of u in miles)× (length of v in miles)× cos( angle between u and v ).

This turns out to give an inner product on U . Of course we could use a different unit of length instead of miles, and
that would just change the inner product by a constant factor.

Example 10.7. We can define an inner product on C[0, 1] by

〈f, g〉 =
∫ 1

x=0

f(x)g(x) dx.

Properties (a) to (c) are obvious. For property (d), note that if f ∈ C[0, 1] then

〈f, f〉 =
∫ 1

0

f(x)2 dx

As f(x)2 ≥ 0 for all x, we have 〈f, f〉 ≥ 0. If 〈f, f〉 = 0 then the area between the x-axis and the graph of f(x)2 is
zero, so f(x)2 must be zero for all x, so f = 0 as required.

Here is a slightly more careful version of the argument. Suppose that f is nonzero. We can then find some number
a with 0 ≤ a ≤ 1 and f(a) > 0. Put ε = f(a)/2. As f is continuous, there exists δ > 0 such that whenever x ∈ [0, 1]
and |x− a| < δ we have |f(x)− f(a)| < ε. For such x we have

f(a)− ε < f(x) < f(a) + ε,

but f(a) = 2ε so f(x) > ε. Usually we will be able to say that f is greater than ε on the interval (a− δ, a+ δ) which
has length 2δ > 0, so ∫ 1

0

f(x)2 dx ≥
∫ a+δ

a−δ

ε2 dx = 2δε2 > 0.

This will not be quite right, however, if a− δ < 0 or a+ δ > 1, because then the interval (a− δ, a+ δ) is not contained
in the domain where f is defined. However, we can still put a− = max(a − δ, 0) and a+ = min(a + δ, 1) and we find
that a− < a+ and

〈f, f〉 =
∫ 1

0

f(x)2 dx ≥
∫ a+

a−

ε2 dx = (a+ − a−)ε2 > 0,

as required.

Example 10.8. We can define an inner product on the space MnR by

〈A,B〉 = trace(ABT )

Consider for example the case n = 3, so

A =
[

a11 a12 a13
a21 a22 a23
a31 a32 a33

]
B =

[
b11 b12 b13
b21 b22 b23
b31 b32 b33

]
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so
AB

T
=

[ a11 a12 a13
a21 a22 a23
a31 a32 a33

] [
b11 b21 b31
b12 b22 b32
b13 b23 b33

]
=

[
a11b11+a12b12+a13b13 a11b21+a12b22+a13b23 a11b31+a12b32+a13b33
a21b11+a22b12+a23b13 a21b21+a22b22+a23b23 a21b31+a22b32+a23b33
a31b11+a32b12+a33b13 a31b21+a32b22+a33b23 a31b31+a32b32+a33b33

]
so

〈A,B〉 = trace(ABT ) =a11b11 + a12b12 + a13b13+
a21b21 + a22b22 + a23b23+
a31b31 + a32b32 + a33b33

=
3∑

i=1

3∑
j=1

aijbij .

In other words 〈A,B〉 is the sum of the entries of A multiplied by the corresponding entries in B. Thus, if we identify
M3R with R9 in the usual way, then our inner product on M3R corresponds to the standard inner product on R9.
Similarly, if we identify MnR with Rn2

in the usual way, then our inner product on MnR corresponds to the standard
inner product on Rn2

.

Example 10.9. For any a < b we can define an inner product 〈,̇〉̇[a,b] on R[x]≤2 by

〈u, v〉[a,b] =
∫ b

a

u(x)v(x) dx.

In particular, we have

〈xi, xj〉[a,b] =
∫ b

a

xi+j dx=
[
xi+j+1

i+ j + 1

]b

a

=
bi+j+1 − ai+j+1

i+ j + 1

This gives an infinite family of different inner products on R[x]≤2. For example:

〈1, x2〉[−1,1]=
13 − (−1)3

3
= 2/3

〈x, x2〉[−1,1]=
14 − (−1)4

4
= 0

‖x2‖[−1,1]=

√
15 − (−1)5

5
=
√

2/5

‖x2‖[0,5]=

√
55 − 05

5
= 25

Example 10.10. Let V be the set of functions of the form p(x)e−x2/2, where p(x) is a polynomial. For example, the
function f(x) = (x3 − x)e−x2/2, shown in the graph below, is an element of V :

We can define an inner product on V by

〈f, g〉 =
∫ ∞

−∞
f(x)g(x) dx

Note that this only works because of the special form of the functions in V . For most functions f and g that you might
think of, the integral

∫∞
−∞ f(x)g(x) dx will give an infinite or undefined answer. However, the function e−x2

decays
very rapidly to zero as |x| tends to infinity, and one can check that this is enough to make the integral well-defined
and finite when f and g are in V . In fact, we have the formula

〈xne−x2/2, xme−x2/2〉 =
∫ ∞

−∞
xn+me−x2

dx

=

{ √
π

2n+m

(n+m)!
((n+m)/2)! if n+m is even

0 if n+m is odd
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11. The Cauchy-Schwartz inequality

If v and w are vectors in R2 or R3, you should be familiar with the fact that

〈v,w〉 = ‖v‖ ‖w‖ cos(θ),

where θ is the angle between v and w. In particular, as the cosine lies between−1 and 1, we see that |〈v,w〉| ≤ ‖v‖ ‖w‖.
We would like to extend all this to arbitrary inner-product spaces.

Theorem 11.1 (The Cauchy-Schwartz inequality). Let V be an inner product space over R, and let v and w be
elements of V . Then

|〈v, w〉| ≤ ‖v‖ ‖w‖,
with equality iff v and w are linearly dependent.

Proof. If w = 0 then |〈v, w〉| = 0 = ‖v‖ ‖w‖ and v and w are linearly dependent, so the theorem holds. For the rest
of the proof, we can thus restrict attention to the other case, where w 6= 0.

For any real numbers s and t, we have

0 ≤ ‖sv + tw‖2 = 〈sv + tw, sv + tw〉 = s2〈v, v〉+ st〈v, w〉+ st〈w, v〉+ t2〈w,w〉 = s2‖v‖2 + 2st〈v, w〉+ t2‖w‖2.
Now take s = 〈w,w〉 = ‖w‖2 and t = −〈v, w〉. The above inequality gives

0 ≤ ‖w‖4‖v‖2 − 2‖w‖2〈v, w〉2 + 〈v, w〉2‖w‖2

= ‖w‖2(‖w‖2‖v‖2 − 〈v, w〉2).

We have assumed that w 6= 0, so ‖w‖2 > 0. We can thus divide by ‖w‖2 and rearrange to see that 〈v, w〉2 ≤ ‖v‖2‖w‖2.
It follows that |〈v, w〉| ≤ ‖v‖‖w‖ as claimed.

If we have equality (i.e. |〈v, w〉| = ‖v‖‖w‖) then our calculation shows that ‖sv + tw‖2 = 0, so sv + tw = 0. Here
s = ‖w‖2 > 0, so we have a nontrivial linear relation between v and w, so they are linearly dependent.

Conversely, suppose we start by assuming that v and w are linearly dependent. As w 6= 0, this means that v = λw
for some λ ∈ R. It follows that 〈v, w〉 = λ‖w‖2, so |〈v, w〉‖ = |λ|‖w‖2. On the other hand, we have ‖v‖ = |λ|‖w‖, so
‖v‖ ‖w‖ = |λ|‖w‖2, which is the same. �

Example 11.2. We claim that for any vector x ∈ Rn, we have

|x1 + · · ·+ xn| ≤
√
n
√
x2

1 + · · ·+ x2
n.

To see this, use the standard inner product on Rn, and consider the vector e = [1, 1, . . . , 1]T . We have

‖x‖ =
√
x2

1 + · · ·+ x2
n

‖e‖ =
√
n

〈x, e〉 = x1 + · · ·+ xn.

The Cauchy-Schwartz inequality therefore tells us that

|x1 + · · ·+ xn| = |〈x, e〉|

≤ ‖x‖‖e‖ =
√
x2

1 + · · ·+ x2
n

√
n,

as claimed.

Example 11.3. We claim that for any continuous function f : [0, 1] → R we have∣∣∣∣∫ 1

0

(1− x2)f(x) dx
∣∣∣∣ ≤

√
8
15

√∫ 1

0
f(x)2 dx.

Indeed, we can define an inner product on C[0, 1] by 〈u, v〉 =
∫ 1

0
u(x)v(x) dx. We then have ‖f‖ =

√∫ 1

0
f(x)2 dx and

‖1− x2‖2 = 〈1− x2, 1− x2〉 =
∫ 1

0

1− 2x2 + x4 dx

=
[
x− 2

3x
3 + 1

5x
5
]1
0

= 1− 2
3 + 1

5 = 8/15

‖1− x2‖ =
√

8/15

The Cauchy-Schwartz inequality tells us that |〈u, f〉| ≤ ‖u‖ ‖f‖, so
∣∣∣∫ 1

0
(1− x2)f(x) dx

∣∣∣ ≤ √
8
15

√∫ 1

0
f(x)2 dx. as

claimed.

Example 11.4. Let A be a nonzero n× n matrix over R. We claim that



38 NEIL STRICKLAND

(a) trace(A)2 ≤ n trace(AAT ), with equality iff A is a multiple of the identity.
(b) trace(A2) ≤ trace(AAT ), with equality iff A is either symmetric or antisymmetric.

In both cases we use the inner product 〈A,B〉 = trace(ABT ) on MnR and the Cauchy-Schwartz inequality.
(a) Apply the inequality to A and I, giving |〈A, I〉| ≤ ‖A‖‖I‖, or equivalently

〈A, I〉2 ≤ ‖A‖2‖I‖2 = trace(AAT ) trace(IIT )

Here 〈A, I〉 = trace(A) and trace(IIT ) = trace(I) = n, so we get trace(A)2 ≤ n trace(AAT ) as claimed. This
is an equality iff A and I are linearly dependent, which means that A is a multiple of I.

(b) Now instead apply the inequality to A and AT , noting that ‖A‖ = ‖AT ‖ =
√

trace(AAT ) and 〈A,AT 〉 =
trace(AATT ) = trace(A2). The conclusion is that | trace(A2)| ≤

√
trace(AAT )

√
trace(AAT ), which gives

trace(A2) ≤ trace(AAT ). This is an equality iff AT is a multiple of A, say AT = λA for some λ. This means
that A = ATT = λAT = λ2A, and A 6= 0, so this means that λ2 = 1, or equivalently λ = ±1. If λ = 1 then
AT = A and A is symmetric; if λ = −1 then AT = −A and A is antisymmetric.

It is now natural to ask whether we also have 〈v, w〉 = ‖v‖ ‖w‖ cos(θ) (where θ is the angle between v and w), just
as we did in R3. However, the question is meaningless as it stands, because we do not yet have a definition of angles
between elements of an arbitrary inner-product space. We will use the following definition, which makes the above
equation true by tautology.

Definition 11.5. Let V be an inner product space over R, and let v and w be nonzero elements of V , so ‖v‖ ‖w‖ > 0.
Put c = 〈v, w〉/(‖v‖ ‖w‖). The Cauchy-Schwartz inequality tells us that −1 ≤ c ≤ 1, so there is a unique angle
θ ∈ [0, π] such that cos(θ) = c. We call this the angle between v and w.

Example 11.6. Take V = C[0, 1] (with the usual inner product), and v(t) = 1, and w(t) = t. Then ‖v‖ = 1 and
‖w‖ = 1/

√
3 and 〈v, w〉 = 1/2, so 〈v, w〉/(‖v‖ ‖w‖) =

√
3/2 = cos(π/6), so the angle between v and w is π/6.

Example 11.7. Take V = M3R (with the usual inner product) and

A =
[

0 1 0
1 2 1
0 1 0

]
B =

[
1 0 0
1 1 1
0 0 0

]
We then have

‖A‖ =
√

02 + 12 + 02 + 12 + 22 + 12 + 02 + 12 + 02 =
√

8 = 2
√

2

‖B‖ =
√

12 + 02 + 02 + 12 + 12 + 12 + 02 + 02 + 02 =
√

4 = 2

〈A, B〉 = 0.1 + 1.0 + 0.0 + 1.1 + 2.1 + 1.1 + 0.0 + 1.0 + 0.0 = 4

so 〈A,B〉/(‖A‖‖B‖) = 4/(4
√

2) = 1/
√

2 = cos(π/4). The angle between A and B is thus π/4.

12. Projections and the Gram-Schmidt procedure

Definition 12.1. Let V be a vector space with inner product, and let W be a subspace. We then put

W⊥ = {v ∈ V | 〈v, w〉 = 0 for all w ∈W}.
This is called the orthogonal complement (or annihilator) of W . We say that W is complemented if W +W⊥ = V .

Lemma 12.2. We always have W ∩W⊥ = 0. (Thus, if W is complemented, we have V = W ⊕W⊥.)

Proof. Suppose that v ∈ W ∩W⊥. As v ∈ W⊥, we have 〈v, w〉 = 0 for all w ∈ W . As v ∈ W , we can take w = v,
which gives ‖v‖2 = 〈v, v〉 = 0. This implies that v = 0, as required. �

Definition 12.3. Let V be a vector space with inner product. We say that a sequence V = v1, . . . , vn of elements of
V is orthogonal if we have 〈vi, vj〉 = 0 for all i 6= j. We say that the sequence is strictly orthogonal if it is orthogonal,
and all the elements vi are nonzero. We say that the sequence is orthonormal if it is orthogonal, and also 〈vi, vi〉 = 1
for all i.

Remark 12.4. If V is a strictly orthogonal sequence then we can define an orthonormal sequence v̂1, . . . , v̂n by
v̂i = vi/‖vi‖.

Example 12.5. The standard basis e1, . . . , en for Rn is an orthonormal sequence.

Example 12.6. Let a, b and c be the vectors joining the centre of the earth to the North Pole, the mouth of the
river Amazon, and the city of Mogadishu. These are elements of the inner product space U discussed in Examples 2.6
and 10.6. Then a,b, c is an orthogonal sequence, and a/4000,b/4000, c/4000 is an orthonormal sequence. (Of course,
these statements are only approximations. You can take it as an internet exercise to work out the size of the errors
involved.)
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Lemma 12.7. Let v1, . . . , vn be an orthogonal sequence, and put v = v1 + · · ·+ vn. Then

‖v‖ =
√
‖v1‖2 + · · ·+ ‖vn‖2.

Proof. We have
‖v‖2 = 〈

∑
i

vi,
∑

j

vj〉 =
∑
i,j

〈vi, vj〉.

Because the sequence is orthogonal, all terms in the sum are zero except those for which i = j. We thus have

‖v‖2 =
∑

i

〈vi, vi〉 =
∑

i

‖vi‖2.

We can now take square roots to get the equation in the lemma. �

Lemma 12.8. Any strictly orthogonal sequence is linearly independent.

Proof. Let V = v1, . . . , vn be a strictly orthogonal sequence, and suppose we have a linear relation λ1v1+· · ·+λnvn = 0.
For each i it follows that

〈vi, λ1v1 + · · ·+ λnvn〉 = 〈vi, 0〉 = 0.
The left hand side here is just

λ1〈vi, v1〉+ λ2〈vi, v2〉+ · · ·+ λn〈vi, vn〉.
Moreover, the sequence V is orthogonal, so the inner products 〈vi, vj〉 are zero unless j = i, so the only nonzero term
on the left hand side is λi〈vi, vi〉, so we conclude that λi〈vi, vi〉 = 0. Moreover, the sequence is strictly orthogonal,
so vi 6= 0, so 〈vi, vi〉 > 0. It follows that we must have λi = 0, so our original linear relation was the trivial one. We
conclude that V is linearly independent, as claimed. �

Proposition 12.9. Let V be a vector space with inner product, and let W be a subspace. Suppose that we have a
strictly orthogonal sequence W = w1, . . . , wp that spans W , and we define

π(v) =
〈v, w1〉
〈w1, w1〉

w1 + · · ·+ 〈v, wp〉
〈wp, wp〉

wp

(for all v ∈ V ). Then π(v) ∈ W and v − π(v) ∈ W⊥, so v = π(v) + (v − π(v)) ∈ W +W⊥. In particular, we have
W +W⊥ = V , so W is complemented.

Remark 12.10. If the sequence W is orthonormal, then of course we have 〈wk, wk〉 = 1 and the formula reduces to

π(v) = 〈v, w1〉w1 + . . .+ 〈v, wp〉wp.

Proof. First note that the coefficients λi = 〈v, wi〉/〈wi, wi〉 are just numbers, so the element π(v) = λ1w1 + . . .+λpwp

lies in the span of w1, . . . , wp, which is W . Next, we have

〈wi, π(v)〉 = λ1〈wi, w1〉+ . . .+ λi〈wi, wi〉+ . . .+ λp〈wi, wp〉.
As the sequence W is orthogonal, we have 〈wi, wj〉 = 0 for j 6= i, so only the i’th term in the above sum is nonzero.
This means that

〈wi, π(v)〉 = λi〈wi, wi〉 =
〈v, wi〉
〈wi, wi〉

〈wi, wi〉 = 〈v, wi〉 = 〈wi, v〉,

so 〈wi, v − π(v)〉 = 〈wi, v〉 − 〈wi, π(v)〉 = 0. As this holds for all i, and the elements wi span W , we see that
〈w, v − π(v)〉 = 0 for all w ∈W , or in other words, that v − π(v) ∈W⊥, as claimed. �

Corollary 12.11 (Parseval’s inequality). Let V be a vector space with inner product, and let W = w1, . . . , wp be an
orthonormal sequence in V . Then for any v ∈ V we have

‖v‖2 ≥
p∑

i=1

〈v, wi〉2.

Moreover, this inequality is actually an equality iff v ∈ span(W).

Proof. Put W = span(W), and put π(v) =
∑p

i=1〈v, wi〉wi as in Proposition 12.9. Put ε(v) = v − π(v), which lies in
W⊥. The sequence

〈v, w1〉w1, . . . , 〈v, wp〉wp, ε(v)
is orthogonal, and the sum of the sequence is π(v) + ε(v) = v. Lemma 12.7 therefore tells us that

‖v‖2 = ‖〈v, w1〉w1‖2 + · · ·+ ‖〈v, wp〉wp‖2 + ‖ε(v)‖2 = ‖ε(v)‖2 +
∑

i

〈v, wi〉2.

All terms here are nonnegative, so ‖v‖2 ≥
∑

i〈v, wi〉2, with equality iff ‖ε(v)‖2 = 0. Moreover, we have ‖ε(v)‖2 = 0 iff
ε(v) = 0 iff v = π(v) iff v ∈W . �
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Proposition 12.12. Let W and π be as in Proposition 12.9. Then π(v) is the point in W that is closest to v.

Proof. Put x = v − π(v), so x ∈ W⊥. The distance from v to π(v) is just ‖v − π(v)‖ = ‖x‖. Now consider another
point w ∈ W , with w 6= π(v). The distance from v to w is just ‖v − w‖; we must show that this is larger than ‖x‖.
Put y = π(v)−w, and note that v−w = π(v)+x−w = x+ y. Note also that y ∈W (because π(v) ∈W and w ∈W )
and x ∈W⊥, so 〈x, y〉 = 0 = 〈y, x〉. Finally, note that y 6= 0 and so ‖y‖ > 0. It follows that

‖v − w‖2 = ‖x+ y‖2 = 〈x+ y, x+ y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= ‖x‖2 + 0 + 0 + ‖y‖2 > ‖x‖2.

This shows that ‖v − w‖ > ‖x‖ = ‖v − π(v)‖, so w is further from v than π(v) is.

0

w

π(v)

v

y

v − w

x

�

Theorem 12.13. Let V be a vector space with inner product, and let U = u1, . . . , un be a linearly independent list of
elements of V . Then there is a strictly orthogonal sequence V = v1, . . . , vn such that span(v1, . . . , vi) = span(u1, . . . , ui)
for all i.

Proof. The sequence V is generated by the Gram-Schmidt procedure, which we now describe. Put Ui = span(u1, . . . , ui).
We will construct the elements vi by induction. For the initial step, we take v1 = u1, so (v1) is an orthogonal basis
for U1. Suppose we have constructed an orthogonal basis v1, . . . , vi−1 for Ui−1. Proposition 12.9 then tells us that
Ui−1 is complemented, so V = U⊥i−1 + Ui−1. In particular, we can write ui = vi + wi with vi ∈ U⊥i−1 and wi ∈ Ui−1.
Explicitly, the formulae are

wi =
i−1∑
j=1

〈ui, vj〉
〈vj , vj〉

vj

vi = ui − wi.

As vi ∈ U⊥i−1 and v1, . . . , vi−1 ∈ Ui−1, we have 〈vi, vj〉 = 0 for j < i, so (v1, . . . , vi) is an orthogonal sequence.
Next, note that Ui = Ui−1 + Rui. As ui = vi + wi with wi ∈ Ui−1, we see that this is the same as Ui−1 + Rvi. By

our induction hypothesis, we have Ui−1 = span(v1, . . . , vi−1), and it follows that Ui = Ui−1 + Rvi = span(v1, . . . , vi).
This means that v1, . . . , vi is a spanning set of the i-dimensional space Ui, so it must be a basis. �

Corollary 12.14. If V and U are as above, then there is an orthonormal sequence v̂1, . . . , v̂n with span(v̂1, . . . , v̂i) =
span(u1, . . . , ui) for all i.

Proof. Just find a strictly orthogonal sequence v1, . . . , vn as in the Proposition, and put v̂i = vi/‖vi‖ as in Remark 12.4.
�

Example 12.15. Consider the following elements of R5:

u1 =

[
1
1
0
0
0

]
u2 =

[
0
1
1
0
0

]
u3 =

[
0
0
1
1
0

]
u4 =

[
0
0
0
1
1

]
.

We apply the Gram-Schmidt procedure to get an orthogonal basis for the space U = span(u1, u2, u3, u4). We have
v1 = u1 = [ 1 1 0 0 0 ]T , so 〈v1, v1〉 = 2 and 〈u2, v1〉 = 1. Next, we have

v2 = u2 −
〈u2, v1〉
〈v1, v1〉

v1 =

[
0
1
1
0
0

]
− 1

2

[
1
1
0
0
0

]
=

−1/2
1/2
1
0
0

 .
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It follows that 〈v2, v2〉 = 3/2 and 〈u3, v2〉 = 1, whereas 〈u3, v1〉 = 0. It follows that

v3 = u3 −
〈u3, v1〉
〈v1, v1〉

v1 −
〈u3, v2〉
〈v2, v2〉

v2 =

[
0
0
1
1
0

]
− 1

3/2

−1/2
1/2
1
0
0

 =

 1/3
−1/3
1/3
1
0

 .
It now follows that 〈v3, v3〉 = 4/3 and 〈u4, v3〉 = 1, whereas 〈u4, v1〉 = 〈u4, v2〉 = 0. It follows that

v4 = u4 −
〈u4, v1〉
〈v1, v1〉

v1 −
〈u4, v2〉
〈v2, v2〉

v2 −
〈u4, v3〉
〈v3, v3〉

v3 =

[
0
0
0
1
1

]
− 1

4/3

 1/3
−1/3
1/3
1
0

 =

−1/4
1/4
−1/4
1/4
1

 .
In conclusion, we have

v1 =

[
1
1
0
0
0

]
v2 =

−1/2
1/2
1
0
0

 v3 =

 1/3
−1/3
1/3
1
0

 v4 =

−1/4
1/4
−1/4
1/4
1

 .
Example 12.16. Consider the space V = R[x]≤2 with the inner product 〈p, q〉 =

∫ 1

−1
p(x)q(x) dx. We will apply the

Gram-Schmidt procedure to the usual basis 1, x, x2 to get an orthonormal basis for V . We start with v1 = u1 = 1,
and note that 〈v1, v1〉 =

∫ 1

−1
1 dx = 2. We also have 〈x, v1〉 =

∫ 1

−1
x dx =

[
x2/2

]1
−1

= 0, so x is already orthogonal to
v1. It follows that

v2 = x− 〈x, v1〉
〈v1, v1〉

v1 = x,

and thus that 〈v2, v2〉 =
∫ 1

−1
x2 dx =

[
x3/3

]1
−1

= 2/3. We also have

〈x2, v1〉 =
∫ 1

−1

x2 dx = 2/3

〈x2, v2〉 =
∫ 1

−1

x3 dx = 0

so

v3 = x2 − 〈x2, v1〉
〈v1, v1〉

v1 −
〈x2, v2〉
〈v2, v2〉

v2 = x2 − 2/3
2

1 = x2 − 1/3.

We find that

〈v3, v3〉 =
∫ 1

−1

(x2 − 1/3)2 dx =
∫ 1

−1

x4 − 2
3x

2 + 1
9 dx =

[
1
5x

5 − 2
9x

3 + 1
9x
]1
−1

= 8/45.

The required orthonormal basis is thus given by

v̂1 = v1/‖v1‖ = 1/
√

2

v̂2 = v2/‖v2‖ =
√

3/2x

v̂3 = v3/‖v3‖ =
√

45/8(x2 − 1/3).

Example 12.17. Consider the matrix P =
[

1 1 1
0 0 0
0 0 0

]
, and let V be the space of 3× 3 symmetric matrices of trace zero.

We will find the matrix Q ∈ V that is closest to P .
The general form of a matrix in V is

A =
[

a b c
b d e
c e −a−d

]
.

Thus, if we put

A1 =
[

1 0 0
0 0 0
0 0 −1

]
A2 =

[
0 1 0
1 0 0
0 0 0

]
A3 =

[
0 0 1
0 0 0
1 0 0

]
A4 =

[
0 0 0
0 1 0
0 0 −1

]
A5 =

[
0 0 0
0 0 1
0 1 0

]
,

we see that an arbitrary element A ∈ V can be written uniquely as aA1 + bA2 + cA3 + dA4 + eA5, so A1, . . . , A5 is a
basis for V . It is not too far from being an orthonormal basis: we have 〈Ai, Ai〉 = 2 for all i, and when i 6= j we have
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〈Ai, Aj〉 = 0 except for the case 〈A1, A4〉 = 1. Thus, the Gram-Schmidt procedure works out as follows:

B1 = A1

B2 = A2 −
〈A2, B1〉
〈B1, B1〉

B1 = A2

B3 = A3 −
〈A3, B1〉
〈B1, B1〉

B1 −
〈A3, B2〉
〈B2, B2〉

B2 = A3

B4 = A4 −
〈A4, B1〉
〈B1, B1〉

B1 −
〈A4, B2〉
〈B2, B2〉

B2 −
〈A4, B3〉
〈B3, B3〉

B3 = A4 −
1
2
B1

=
[

0 0 0
0 1 0
0 0 −1

]
− 1

2

[
1 0 0
0 0 0
0 0 −1

]
=
[
−1/2 0 0

0 1 0
0 0 −1/2

]
B5 = A5 −

〈A5, B1〉
〈B1, B1〉

B1 −
〈A5, B2〉
〈B2, B2〉

B2 −
〈A5, B3〉
〈B3, B3〉

B3 −
〈A5, B4〉
〈B4, B4〉

B4 = A5.

We have ‖B4‖ =
√

3/2 and ‖Bi‖ =
√

2 for all other i. After noting that (1/2)/
√

3/2 = 1/
√

6, it follows that the
following matrices give an orthonormal basis for V :

B̂1 =
1√
2

[
1 0 0
0 0 0
0 0 −1

]
B̂2 =

1√
2

[
0 1 0
1 0 0
0 0 0

]
B̂3 =

1√
2

[
0 0 1
0 0 0
1 0 0

]
B̂4 =

1√
6

[−1 0 0
0 2 0
0 0 −1

]
B̂5 =

1√
2

[
0 0 0
0 0 1
0 1 0

]
.

According to Proposition 12.12, the matrix Q is given by Q =
∑5

i=1〈P,Bi〉〈Bi, Bi〉−1Bi. The relevant inner products
are 〈P,B1〉 = 〈P,B2〉 = 〈P,B3〉 = 1 and 〈P,B4〉 = −1/2 and 〈P,B5〉 = 0. We also have 〈B1, B1〉 = 〈B2, B2〉 =
〈B3, B3〉 = 2 and 〈B4, B4〉 = 3/2, so

Q =
1
2
(B1 +B2 +B3) +

−1
2

2
3
B4 =

[
2/3 1/2 1/2
1/2 −1/3 0
1/2 0 −1/3

]
13. Hermitian forms

We now briefly discuss the analogue of inner products for complex vector spaces. Given a complex number z = x+iy,
we write z for the complex conjugate, which is x− iy.

Definition 13.1. Let V be a vector space over C. A Hermitian form on V is a rule that gives a number 〈u, v〉 ∈ C
for each u, v ∈ V , with the following properties:

(a) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 for all u, v, w ∈ V .
(b) 〈tu, v〉 = t〈u, v〉 for all u, v ∈ V and t ∈ C.
(c) 〈u, v〉 = 〈v, u〉 for all u, v ∈ V . In particular, by taking v = u we see that 〈u, u〉 = 〈u, u〉, so 〈u, u〉 is real.
(d) For all u ∈ V we have 〈u, u〉 ≥ 0 (which is meaningful because 〈u, u〉 ∈ R), and 〈u, u〉 = 0 iff u = 0.

Note that (b) and (c) together imply that 〈u, tv〉 = t〈u, v〉.
Given an inner product, we will write ‖u‖ =

√
〈u, u〉, and call this the norm of u. We say that u is a unit vector if

‖u‖ = 1.

Example 13.2. We can define a Hermitian form on Cn by

〈u,v〉 = u1v1 + · · ·+ unvn.

This gives
‖u‖2 = 〈u,u〉 = |u1|2 + · · ·+ |un|2.

Definition 13.3. For any n×m matrix A over C, we let A† be the complex conjugate of the transpose of A, so for
example [

1+i 2+i 3+i
4+i 5+i 6+i

]†
=
[

1−i 4−i
2−i 5−i
3−i 6−i

]
.

The above Hermitian form on Cn can then be rewritten as

〈u,v〉 = v†u = u†v.

Example 13.4. We can define a Hermitian form on C[t] by

〈f, g〉 =
∫ 1

0

f(t)g(t) dt.

This gives

‖f‖2 = 〈f, f〉 =
∫ 1

0

|f(t)|2 dt.
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Example 13.5. We can define a Hermitian form on MnC by 〈A,B〉 = trace(B†A). If we identify MnC with Cn2
in

the usual way, then this is just the same as the Hermitian form in Example 13.2.

Our earlier results about inner products are mostly also true for Hermitian forms, but they need to be adjusted
slightly by putting complex conjugates or absolute value signs in appropriate places. We will not go through the
proofs, but we will at least record some of the statements.

Theorem 13.6 (The Cauchy-Schwartz inequality). Let V be a vector space over C with a Hermitian form, and let v
and w be elements of V . Then

|〈v, w〉| ≤ ‖v‖ ‖w‖,
with equality iff v and w are linearly dependent over C. �

Lemma 13.7. Let V be a vector space over C with a Hermitian form, let v1, . . . , vn be an orthogonal sequence in V ,
and put v = v1 + · · ·+ vn. Then

‖v‖ =
√
‖v1‖2 + · · ·+ ‖vn‖2. �

Proposition 13.8. Let V be a vector space over C with a Hermitian form, and let W = w1, . . . , wp be an orthonormal
sequence in V . Then for any v ∈ V we have

‖v‖2 ≥
p∑

i=1

|〈v, wi〉|2.

Moreover, this inequality is actually an equality iff v ∈ span(W). �

14. Adjoints of linear maps

Definition 14.1. Let V and W be real vector spaces with inner products (or complex vector spaces with Hermitian
forms). Let φ : V →W and ψ : W → V be linear maps (over R or C as appropriate). We say that φ is adjoint to ψ if
we have 〈φ(v), w〉 = 〈v, ψ(w)〉 for all v ∈ V and w ∈W .

This is essentially a basis-free formulation of the operation of transposing a matrix, as we see from the following
example.

Example 14.2. Let A be an n×m matrix over R, giving a linear map φA : Rm → Rn by φA(v) = Av. The transpose
of A is then an m× n matrix, giving a linear map φAT : Rn → Rm. We claim that φAT is adjoint to φA. This is easy
to see using the formula 〈x,y〉 = xT y as in Remark 10.4. Indeed, we have

〈φA(u),v〉 = 〈Au,v〉 = (Au)T v = uTAT v = 〈u, AT v〉 = 〈u, φAT (v)〉,
as required.

Example 14.3. Let A be an n ×m matrix over C, giving a linear map φA : Cm → Cn by φA(v) = Av. Let A† be
the complex conjugate of AT . Then φA† is adjoint to φA.

Example 14.4. Let V be the set of functions of the form p(x)e−x2/2, where p(x) is a polynomial. We use the inner
product

〈f, g〉 =
∫ ∞

−∞
f(x)g(x) dx,

as in Example 10.10. If we have a function f(x) = p(x)e−x2/2 in V , we note that

f ′(x) = p′(x)e−x2
+ p(x).(−2x).e−x2

= (p′(x)− 2x p(x))e−x2/2,

and p′(x) − 2x p(x) is again a polynomial, so f ′(x) ∈ V . We can thus define a linear map D : V → V by D(f) =
f ′. We claim that D is adjoint to −D. This is equivalent to the statement that for all f and g in V , we have
〈D(f), g〉+ 〈f,D(g)〉 = 0. This is true because

〈f ′, g〉+ 〈f, g′〉 =
∫ ∞

−∞
f ′(x)g(x) + f(x)g′(x) dx

=
∫ ∞

−∞

d

dx
(f(x)g(x)) dx

= [f(x)g(x)]∞−∞
= lim

x→+∞
f(x)g(x)− lim

x→−∞
f(x)g(x).

Both limits here are zero, because the very rapid decrease of e−x2
wipes out the much slower increase of the polynomial

terms.
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Example 14.5. Consider the vector spaces R[x]≤2 (with inner product 〈f, g〉 =
∫ 1

0
f(x)g(x) dx) and R2 (with the

usual inner product). Define maps φ : R[x]≤2 → R2 and ψ : R2 → R[x]≤2 by

φ(f) =
[

f(0)
f(1)

]
ψ [ p

q ] = (30p+ 30q)x2 − (36p+ 24q)x+ (9p+ 3q).

We claim that φ is adjoint to ψ. To check this, consider a quadratic polynomial f(x) = ax2 + bx + c ∈ R[x]≤2

and a vector v = [ p
q ] ∈ R2. Note that f(0) = c and f(1) = a + b + c, so φ(f) = [ c

a+b+c ]. We must show that
〈f, ψ(v)〉 = 〈φ(f),v〉, or in other words that∫ 1

0

(ax2 + bx+ c)((30p+ 30q)x2 − (36p+ 24q)x+ (9p+ 3q)) dx = p f(0) + q f(1) = pc+ q(a+ b+ c).

This is a straightforward calculation, which can be done by hand or using Maple: entering

expand(
int( (a*x^2+b*x+c)*

((30*p+30*q)*x^2 - (36*p+24*q)*x + (9*p+3*q)),
x=0..1

)
);

gives cp+ aq + bq + cq, as required.

Proposition 14.6. Let V and W be finite-dimensional real vector spaces with inner products (or complex vector
spaces with Hermitian forms). Let φ : V →W be a linear maps (over R or C as appropriate). Then there is a unique
map ψ : W → V that is adjoint to φ. (We write ψ = φ∗ in the real case, or ψ = φ† in the complex case.)

Proof. We will prove the complex case; the real case is similar but slightly easier.
We first show that there is at most one adjoint. Suppose that ψ and ψ′ are both adjoint to φ, so

〈v, ψ(w)〉 = 〈φ(v), w〉 = 〈v, ψ′(w)〉

for all v ∈ V and w ∈ W . This means that 〈v, ψ(w) − ψ′(w)〉 = 0 for all v and w. In particular, we can take
v = ψ(w)− ψ′(w), and we find that

‖ψ(w)− ψ′(w)‖2 = 〈ψ(w)− ψ′(w), ψ(w)− ψ′(w)〉 = 0,

so ψ(w) = ψ′(w) for all w, so ψ = ψ′.
To show that there exists an adjoint, choose an orthonormal basis V = v1, . . . , vn for V , and define a linear map

ψ : W → V by

ψ(w) =
n∑

j=1

〈w, φ(vj)〉vj .

Recall that 〈x, λy〉 = λ〈x, y〉, and that 〈x, y〉 = 〈y, x〉. Using these rules we find that

〈vi, ψ(w)〉 =
∑

j

〈vi, 〈w, φ(vj)〉vj〉

=
∑

j

〈w, φ(vj)〉〈vi, vj〉

=
∑

j

〈φ(vj), w〉〈vi, vj〉

= 〈φ(vi), w〉.

(For the last equality, recall that V is orthonormal, so 〈vi, vj〉 = 0 except when j = i, so only the i’th term in the sum
is nonzero. The i’th term simplifies to 〈φ(vi), w〉, because 〈vi, vi〉 = ‖vi‖2 = 1.)
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More generally, any element v ∈ V can be written as
∑

i xivi for some x1, . . . , xn ∈ C, and then we have

〈v, ψ(w)〉 =
∑

i

xi〈vi, ψ(w)〉

=
∑

i

xi〈φ(vi), w〉

= 〈φ

(∑
i

xivi

)
, w〉

= 〈φ(v), w〉.
This shows that ψ is adjoint to φ, as required. �

15. Fourier theory

You will already have studied Fourier series in the Advanced Calculus course. Here we revisit these ideas from a
more abstract point of view, in terms of angles and distances in a Hermitian space of periodic functions.

Definition 15.1. We say that a function f : R −→ C is periodic if f(t+ 2π) = f(t) for all t ∈ R. We let P be the set
of all continuous periodic functions from R to C, which is a vector space over C. We define an inner product on P by

〈f, g〉 =
1
2π

∫ 2π

0

f(t)g(t) dt.

Some important elements of P are the functions en, sn and cn defined as follows:

en(t) = exp(int) (for n ∈ Z)

sn(t) = sin(nt) (for n > 0)

cn(t) = cos(nt) (for n ≥ 0) .

De Moivre’s theorem tells us that

en = cn + i sn

sn = (en − e−n)/(2i)

cn = (en + e−n)/2.

Definition 15.2. We put
Tn = span({ek | − n ≤ k ≤ n}) ≤ P,

and note that Tn ≤ Tn+1 for all n. We also let T denote the span of all the ek’s, or equivalently, the union of all the
sets Tn. The elements of T are the functions f : R −→ C that can be written in the form

f(t) =
n∑

k=−n

akek(t) =
n∑

k=−n

ak exp(ikt)

for some n > 0 and some coefficients a−n, . . . , an ∈ C. Functions of this form are called trigonometric polynomials or
finite Fourier series.

Proposition 15.3. The sequence e−n, e−n+1, . . . , en−1, en is an orthonormal basis for Tn (so dim(Tn) = 2n+ 1).

Proof. For m 6= k we have

〈ek, em〉 = (2π)−1

∫ 2π

0

ek(t)em(t) dt = (2π)−1

∫ 2π

0

exp(ikt) exp(−imt) dt

= (2π)−1

∫ 2π

0

exp(i(k −m)t) dt = (2π)−1

[
exp(i(k −m)t)

i(k −m)

]2π

0

=
1

2(k −m)πi

(
e2(k−m)πi − 1

)
.

As k−m is an integer, we have e2(k−m)πi = 1 and so 〈ek, em〉 = 0. This shows that the sequence of ek’s is orthogonal.
We also have

〈ek, ek〉 = (2π)−1

∫ 2π

0

ek(t)ek(t) dt = (2π)−1

∫ 2π

0

exp(2kπit) exp(−2kπit) dt

= (2π)−1

∫ 2π

0

1 dt = 1.
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Our sequence is therefore orthonormal, and so linearly independent. It also spans Tn (by the definition of Tn), so it
is a basis. �

Definition 15.4. For any f ∈ P , let πn(f) be the orthogonal projection of f in Tn, so

πn(f) =
n∑

m=−n

〈f, em〉em.

We also put εn(f) = f − πn(f), so f = πn(f) + εn(f), with πn(f) ∈ Tn and εn(f) ∈ T⊥n (by Proposition 12.9).

Proposition 15.5. The sequence Cn = c0, c1, . . . , cn, s1, . . . , sn is another orthogonal basis for Tn. It is not orthonor-
mal, but instead satisfies ‖sk‖2 = 1/2 = ‖ck‖2 for k > 0, and ‖c0‖2 = 1.

Proof. We use the identities

sm = (em − e−m)/(2i)

cm = (em + e−m)/2.

If k 6= m (with k,m ≥ 0) we see that ek and e−k are orthogonal to em and e−m. It follows that

〈sm, sk〉 = 〈sm, ck〉 = 〈cm, sk〉 = 〈cm, ck〉 = 0.

Now suppose that m > 0, so cm and sm are both in the claimed basis. We have 〈em, e−m〉 = 0, and so

〈sm, cm〉 = 1
4i 〈em − e−m, em + e−m〉 = 1

4i (〈em, em〉+ 〈em, e−m〉+−〈e−m, em〉 − 〈e−m, e−m〉) = 1
4i (1 + 0− 0− 1) = 0.

This shows that Cn is an orthogonal sequence. For k > 0 we have

〈sk, sk〉 = 1
2i

1
2i
〈ek − e−k, ek − e−k〉

= 1
4 (1− 0− 0 + 1) = 1/2.

Similarly, we have 〈ck, ck〉 = 1/2. In the special case k = 0 we instead have c0(t) = 1 for all t, so 〈c0, c0〉 =
(2π)−1

∫ 2π

0
1 dt = 1. �

Corollary 15.6. Using Proposition 12.9, we deduce that

πn(f) = 〈f, c0〉c0 + 2
n∑

k=1

〈f, ck〉ck + 2
n∑

k=1

〈f, sk〉sk.

Theorem 15.7. For any f ∈ P we have ‖εn(f)‖ → 0 as n→∞.

Proof. See Appendix A in the online version of the notes. (The proof is not examinable and will not be covered in
lectures.) �

Remark 15.8. Recall that πn(f) is the closes point to f lying in Tn, so the number ‖εn(f)‖ = ‖f − πn(f)‖ can
be regarded as the distance from f to Tn. The theorem says that by taking n to be sufficiently large, we can make
this distance as small as we like. In other words, f can be very well approximated by a trigonometric polynomial of
sufficiently high degree.

Corollary 15.9. For any f ∈ P we have

‖f‖2 =
∞∑

k=−∞

|〈f, ek〉|2 = |〈f, c0〉|2 + 2
∞∑

k=1

|〈f, ck〉|2 + 2
∞∑

k=1

|〈f, sk〉|2

Proof. As e−n, . . . , en is an orthonormal basis for Tn, we have

‖f‖2 − ‖εn(f)‖2 = ‖πn(f)‖2 = ‖
n∑

k=−n

〈f, ek〉ek‖2 =
n∑

k=−n

|〈f, ek〉|2

By taking limits as n tends to infinity, we see that ‖f‖2 =
∑∞

k=−∞ |〈f, ek〉|2. Similarly, using Corollary 15.6 and
Proposition 15.5, we see that

‖πn(f)‖2 = |〈f, c0〉|2‖c0‖2 +
n∑

k=1

4|〈f, ck〉|2‖ck‖2 +
n∑

k=1

4|〈f, sk〉|2‖sk‖2

= |〈f, c0〉|2 + 2
n∑

k=1

|〈f, ck〉|2 + 2
n∑

k=1

|〈f, sk〉|2
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We can again let n tend to infinity to see that

‖f‖2 = |〈f, c0〉|2 + 2
∞∑

k=1

|〈f, ck〉|2 + 2
∞∑

k=1

|〈f, sk〉|2.

�

16. Diagonalisation of self-adjoint operators

Definition 16.1. Let V be a finite-dimensional vector space over C. A self-adjoint operator on V is a linear map
α : V → V such that α† = α.

Theorem 16.2. If α : V → V is a self-adjoint operator, then every eigenvalue of α is real.

Proof. First suppose that λ is an eigenvalue of α, so there exists a nonzero vector v ∈ V with α(v) = λv. We then
have

λ〈v, v〉 = 〈λv, v〉 = 〈α(v), v〉 = 〈v, α†(v)〉 = 〈v, α(v)〉 = 〈v, λv〉 = λ〈v, v〉.
As v 6= 0 we have 〈v, v〉 > 0, so we can divide by this to see that λ = λ, which means that λ is real. �

Theorem 16.3. If α : V → V is a self-adjoint operator, then one can choose an orthonormal basis V = v1, . . . , vn for
V such that each vi is an eigenvector of α.

The following lemma will be useful in the proof.

Lemma 16.4. Let α : V → V be a self-adjoint operator, and let W ≤ V be a subspace such that α(W ) ≤ W (ie
α(w) ∈W for all w ∈W ). Then α(W⊥) ≤W⊥.

Proof. Suppose that v ∈ W⊥; we must show that α(v) is also in W⊥. To see this, consider w ∈ W , and note that
〈α(v), w〉 = 〈v, α†(w)〉 = 〈v, α(w)〉 (by the definition of adjoints and the fact that α† = α). As α(W ) ≤ W we see
that α(w) ∈W , so 〈v, α(w)〉 = 0 (because v ∈W⊥). We conclude that 〈α(v), w〉 = 0 for all w ∈W , so α(v) ∈W⊥ as
claimed. �

Proof of Theorem 16.3. Put n = dim(V ); the proof is by induction on n. If n = 1 then we choose any unit vector
v1 ∈ V and note that V = Cv1. This means that α(v1) = λ1v1 for some λ1 ∈ C, so v1 is an eigenvector, and this
proves the theorem in the case n = 1.

Now suppose that n > 1. The characteristic polynomial of α is then a polynomial of degree n over C, so it
must have at least one root (by the fundamental theorem of algebra), say λ1. We know that the roots of the
characteristic polynomial are precisely the eigenvalues, so λ1 is an eigenvalue, so we can find a nonzero vector u1 ∈ V
with α(u1) = λ1u1. We then put v1 = u1/‖u1‖, so ‖v1‖ = 1 and v1 is still an eigenvector of eigenvalue λ1, which
implies that α(Cv1) ≤ Cv1. Now put V ′ = (Cv1)⊥. The lemma tells us that α(V ′) ≤ V ′, so we can regard α as a
self-adjoint operator on V ′. Moreover, dim(V ′) = n − 1, so our induction hypothesis applies. This means that there
is an orthonormal basis for V ′ (say v2, v3, . . . , vn) consisting of eigenvectors for α. It follows that v1, v2, . . . , vn is an
orthonormal basis for V consisting of eigenvectors for α. �

Appendix A. Féjer’s Theorem

In this appendix, we will outline a proof of Theorem 15.7: for any f ∈ P , we have ‖εn(f)‖ → 0 as n→∞.
For f ∈ P and n > 0, we put

θn(f) = (π0(f) + · · ·+ πn−1(f))/n.

δn(f) = f − θn(f).

Theorem A.1 (Féjer’s Theorem). For any f ∈ P , we have

max{|δn(f)(x)| | x ∈ R} → 0

as n→∞.

We will sketch the proof of this shortly. First, however, we explain why Theorem A.1 implies Theorem 15.7.
Suppose we have g ∈ P , and put m = max{|g(x)| | x ∈ R}, so for all x we have 0 ≤ |g(x)|2 ≤ m2. Then

‖g‖2 =
1
2π

∫ 2π

0

|g(x)|2 dx ≤ 1
2π

∫ 2π

0

m2 dx = m2,

so ‖g‖ ≤ m. Taking g = δn(f), we see that

0 ≤ ‖δn(f)‖ ≤ max{|δn(f)(x)| | x ∈ R}.
Using Féjer’s Theorem and the Sandwich Lemma, we deduce that ‖δn(f)‖ → 0 as n→∞.
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We now need to relate δn to εn. Note that for k ≤ n we have πk(f) ∈ Tk ≤ Tn. It follows that θn(f) ∈ Tn. We
also know (from Proposition 12.12) that πn(f) is the closest point to f in Tn. In other words, for any g ∈ Tn, we have
‖f − πn(f)‖ ≤ ‖f − g‖. In particular, we can take g = θn(f) to see that ‖f − πn(f)‖ ≤ ‖f − θn(f)‖, or in other words
‖εn(f)‖ ≤ ‖δn(f)‖. As ‖δn(f)‖ → 0, the Sandwich Lemma again tells us that ‖εn(f)‖ → 0, proving Theorem 15.7.

The proof of Féjer’s Theorem depends on the properties of certain functions dn(t) and kn(t) (called the Dirichlet
kernel and the Féjer kernel) which are defined as follows:

dn(t) =
n∑

j=−n

ej(t)

kn(t) = (
n−1∑
m=0

dm(t))/n.

Proposition A.2. If g = πn(f) and h = θn(f), then

g(t) = (2π)−1

∫ π

s=−π

f(t+ s)dn(−s) ds

h(t) = (2π)−1

∫ π

s=−π

f(t+ s)kn(−s) ds.

Lemma A.3. If u is a periodic function and a ∈ R, then
∫ a+2π

a
u(t) dt =

∫ 2π

0
u(t) dt.

Proof. Let 2mπ be the largest multiple of 2π that is less than or equal to a. Assuming that u is real and positive, we
have a picture like this:

0

a−2mπ

2π 2mπ

a

2(m+1)π

a+2π

A B A′B′

We have
∫ 2π

0
u(t) dt = area(A) + area(B) and

∫ a+2π

a
u(t) dt = area(B′) + area(A′), but clearly area(A) = area(A′) and

area(B) = area(B′), and the claim follows. Much the same argument works even if u is not real and positive, but one
needs equations rather than pictures. �

Proof of Proposition A.2. Consider the integral I = (2π)−1
∫ π

−π
f(t+ s)dn(−s) ds. We put x = t+ s, so s = x− t and

ds = dx and the endpoints s = ±π become x = t ± π, so I = (2π)−1
∫ t+π

t−π
f(x)dn(t − x) dx. Next, we can use the

lemma to convert this to I = (2π)−1
∫ 2π

0
f(x)dn(t− x) dx. We then note that

ek(t− x) = exp(2πik(t− x)) = exp(2πikt)exp(2πikx) = ek(t)ek(x),

so

dn(t− x) =
n∑

k=−n

ek(t− x) =
n∑

k=−n

ek(t)ek(x),

so

I =
n∑

k=−n

(2π)−1

∫ 2π

0

f(x)ek(x)ek(t) dx

=
n∑

k=−n

〈f, ek〉ek(t)

= πn(f)(t) = g(t),
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as claimed. Next, we recall that kn(t) = (
∑n−1

m=0 dm(t))/n, so

(2π)−1

∫ π

−π

f(t+ s)kn(−s) ds =
1
n

n−1∑
j=0

1
2π

∫ π

−π

f(t+ s)dj(−s) ds

=
1
n

n−1∑
j=0

πj(f)(t) = θn(f)(t) = h(t),

as required. �

Corollary A.4.
∫ π

−π
kn(s) ds = 2π.

Proof. We take f = e0 in Proposition A.2. We have πk(e0) = e0 for all k, and so h = θn(e0) = (e0 + · · ·+ e0)/n = e0.
Thus, the proposition tells us that

e0(t) = (2π)−1

∫ π

s=−π

e0(t+ s)kn(−s) ds.

However, e0(x) = 1 for all x, so this simplifies to

1 = (2π)−1

∫ π

−π

kn(−s) ds.

Moreover, we have ej(−s) = e−j(s), and it follows from this that dj(−s) = dj(s) and kn(−s) = kn(s). It therefore
follows that ∫ π

−π

kn(s) ds = 2π,

as claimed. �

Proposition A.5.

kn(t) =
1
n

(
sin(nt/2)
sin(t/2)

)2

.

Proof. We will focus on the case n = 6; the general case is the same, but needs more complicated notation.
Put z = eiπt, so ej(t) = z2j . Put

pn = (1 + z + z2 + · · ·+ zn−1)(1 + z−1 + z−2 + · · ·+ z1−n)

We can expand this out and write the terms in an n× n square array, which looks like this in the case n = 6:

1 z z2 z3 z4 z5

z−1 1 z z2 z3 z4

z−2 z−1 1 z z2 z3

z−3 z−2 z−1 1 z z2

z−4 z−3 z−2 z−1 1 z

z−5 z−4 z−3 z−2 z−1 1

We have divided the square into L-shaped blocks. The sum of the terms in the third block (for example) is

z−2 + z−1 + 1 + z + z2 = e−2(t) + e−1(t) + e0(t) + e1(t) + e2(t) = d3(t).

More generally, the sums of the terms in the six different L-shaped blocks are d0(t), d1(t), . . . , d5(t). Adding these
together, we see that

pn(t) = d0(t) + d1(t) + · · ·+ dn−1(t) = nkn(t).
Now put w = eπit, so z = w2 and sin(t/2) = (w − w−1)/(2i) and sin(nt/2) = (wn − w−n)/(2i). On the other hand,
we have the geometric progression formula

1 + z + · · ·+ zn−1 =
zn − 1
z − 1

=
w2n − 1
w2 − 1

=
wn

w

(wn − w−n)/(2i)
(w − w−1)/(2i)

= wn−1 sin(nt/2)
sin(t/2)
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Similarly, we have

1 + z−1 + · · ·+ z1−n = w1−n sin(nt/2)
sin(t/2)

.

If we multiply these two equations together, we get

pn(t) =
(

sin(nt/2)
sin(t/2)

)2

.

Dividing by n gives

kn(t) =
1
n

(
sin(nt/2)
sin(t/2)

)2

,

as claimed. �

It is now easy to plot kn(s). For n = 10, the picture is as follows:

−π π

There is a narrow spike (of width approximately 4π/n) near s = 0, and kn(s) is small on the remainder of the interval
[−π, π]. Now think what happens when we evaluate the integral

h(t) = (2π)−1

∫ π

−π

f(t+ s)kn(−s) ds.

When s is very small, f(t+ s) is close to f(t). If s is not very small, then kn(−s) is tiny and we do not get much of a
contribution to the integral anyway. Thus, it will not make much difference if we replace f(t+ s) by f(t). This gives

h(t) ≈ (2π)−1

∫ π

−π

f(t)kn(−s) ds = f(t).(2π)−1

∫ π

−π

kn(−s) ds = f(t)

(where we have used Corollary A.4). All this can be made more precise to give an explicit upper bound for the quantity

max{δn(f)(t) | t ∈ R} = max{|f(t)− h(t)| | t ∈ R},
which can be used to prove Theorem A.1.
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