Vector Spaces and Fourier Theory — Problem Sheet 11

This week there is nothing to hand in, and no online test.

Exercise 1. Define $\alpha \colon \mathbb{C}^3 \to \mathbb{C}^3$ by $\alpha \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+2y+z \\ 2x+9y+2z \\ x+2y+z \end{bmatrix}$.

- (a) What is the matrix of α with respect to the standard basis of \mathbb{C}^3 ?
- (b) Show that α is self-adjoint.
- (c) Find an orthonormal basis of \mathbb{C}^3 consisting of eigenvectors of α .

Exercise 2. Define $\alpha \colon \mathbb{C}^5 \to \mathbb{C}^5$ by

$$\alpha([z_0, z_1, z_2, z_3, z_4]^T) = [z_1, z_2, z_3, z_4, z_0]^T.$$

- (a) Find α^{\dagger} , and show that $\alpha^{\dagger} = \alpha^{-1}$. (Of course this is a special property of this particular map. For most linear maps, the adjoint is unrelated to the inverse.)
- (b) Find the eigenvalues of α . (Hint: it is easier to think directly about when $\alpha(z) = \lambda z$, rather than trying to calculate the characteristic polynomial. You will need to consider separately the cases where $\lambda^5 = 1$ and where $\lambda^5 \neq 1$.)

Exercise 3. Define a map $\alpha \colon \mathbb{R}[x]_{\leq 2} \to \mathbb{R}[x]_{\leq 2}$ by $\alpha(f) = (3x^2 - 1)f''$. You may assume that if we use the inner product $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) \, dx$ on $\mathbb{R}[x]_{\leq 2}$, then α is self-adjoint.

- (a) Show that $\alpha(\alpha(f)) = 6\alpha(f)$ for all f.
- (b) Deduce that if f is a nonzero eigenvector of α with eigenvalue λ , then $\alpha(\alpha(f)) = \lambda^2 f$ and $\lambda^2 = 6\lambda$.
- (c) Find an orthogonal basis for $\mathbb{R}[x]_{\leq 2}$ consisting of eigenvectors for α .

Exercise 4. Let V be the space of functions $f: \mathbb{R} \to \mathbb{C}$ of the form $f(x) = p(x)e^{-x^2/2}$ for some $p \in \mathbb{C}[x]$. Give this the Hermitian form $\langle f, g \rangle = \int_{-\infty}^{\infty} f(x)\overline{g(x)} \, dx$. Define $\phi: V \to V$ by $\phi(f)(x) = x f(x)$.

- (a) Show that ϕ is self-adjoint.
- (b) Show that if $\phi(f) = \lambda f$ for some $\lambda \in \mathbb{C}$, then f = 0. (Thus, ϕ has no eigenvalues. This is only possible because V is infinite-dimensional.)

Exercise 5. Let T be the matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, and define $\gamma \colon M_2 \mathbb{R} \to M_2 \mathbb{R}$ by $\gamma(A) = TA - AT$.

- (a) Give a basis for $M_2\mathbb{R}$, and find the matrix of γ with respect to that basis.
- (b) Find bases for the kernel and the image of γ . Show that the image is the orthogonal complement of the kernel with respect to the usual inner product $\langle X, Y \rangle = \text{trace}(XY^T)$ on $M_2\mathbb{R}$.
- (c) Show that $\gamma^4 = 4\gamma^2$.
- (d) Find a basis of $M_2\mathbb{R}$ consisting of eigenvectors for γ . (Note here that an eigenvector for γ is a matrix A such that $\gamma(A) = TA AT = \lambda A$ for some λ .)