Algebraic Topology Problem Set 4

No questions to be handed in this week.

Q1: Put $X = \{(x,y) \in \mathbb{R}^2 \mid y^2 = x^3 - x\}$. (This is an example of an *elliptic curve*; such curves are important in number theory and certain other areas of mathematics.)

Sketch the graph of the function $x^3 - x$, then draw a picture of X. By considering the function $f: X \to \mathbb{R}$ given by f(x,y) = 2x - 1, show that X is not path-connected.

Q2: For each of the following pairs of spaces, either give a continuous surjective map $f: X \to Y$, or prove that no such map exists.

- (a) $X = \mathbb{R}$ and $Y = S^1$
- (b) $X = \mathbb{C}$ and $Y = \mathbb{C} \setminus \{0\}$
- (c) $X = \mathbb{R}$ and $Y = \mathbb{R} \setminus \{0\}$ (d) $X = S^2$ and $Y = S^2 \setminus \{\text{north pole}\}$
- (e) $X = S^2$ and $Y = S^1$.

Q3: View each of the capital letters A,B,C,D,E,F as closed subsets of the plane. Consider the following numbers associated to a metric space X:

- (i) a(X) is the greatest number of points that can be removed without disconnecting X and
- (ii) b(X) is the least number of points that need to be removed to disconnect the space X.

(For example a(the letter A) = 3, since we can remove the two end points at the feet, and one point around the top circuit, but every 4 points disconnect A; it is clear that b(A) = 1, since any point (except an endpoint) in either of the legs disconnects the letter.)

- (a) Find the values of the invariants on the specified letters.
- (b) Group the letters according to the values of the invariants. For every pair of letters with the same values of a and b, either indicate that they are homeomorphic or define further invariants to show that they are not.
- (c) Summarise your work in (b) in the form of a classification of the letters up to homeomorphism.

Q4: Consider the following spaces:

 X_0 = the union of all the edges of a cube

$$X_1 = \{(x, y) \in [-1, 1] \times [-1, 1] \mid x \in \mathbb{Z} \text{ or } y \in \mathbb{Z} \}$$

$$X_2 = \{(x, y, z) \in S^2 \mid xyz = 0\}$$

Draw pictures of these spaces (or of subsets of \mathbb{R}^2 that are homeomorphic to them). Evaluate $a(X_i)$ for i=0,1,2, and deduce that none of the spaces are homeomorphic to each other.

Q5: In this problem, we'll show that the space $GL_n(\mathbb{C})$ (of invertible $n \times n$ matrices over the complex numbers) is path-connected.

Let A be an $n \times n$ invertible complex matrix, with eigenvalues $\lambda_1, \ldots, \lambda_r$ say. Because A is invertible, we know that $\lambda_i \neq 0$ for all i. Define

$$L_i = \{-t\lambda_i \mid 0 \le t < \infty\} \subset \mathbb{C},$$

so L_i is the half-line starting at 0 and passing through $-\lambda_i$.

- 1. Show that the eigenvalues of $\alpha A + \beta I$ are $\alpha \lambda_1 + \beta, \ldots, \alpha \lambda_r + \beta$.
- 2. Let μ be a nonzero complex number. Show that the linear path from λ_i to μ passes through 0 iff $\mu \in L_i$ (think geometrically).
- 3. Show that the linear path from A to μI in $M_n\mathbb{C}$ actually lies in $GL_n(\mathbb{C})$ iff $\mu \notin L_i$ for all i.
- 4. Deduce that A can be connected in $GL_n(\mathbb{C})$ to some matrix of the form μI with $\mu \neq 0$.
- 5. Show that all matrices of the form μI can be connected to I in $GL_n(\mathbb{C})$.
- 6. Deduce that $GL_n(\mathbb{C})$ is connected.