Algebraic Topology Problem Set 2 — Solutions

Q1:

- (a) This set is finite and thus compact.
- (b) This set is $\{n\pi \mid n \in \mathbb{Z}\}$, which is unbounded and thus not compact. The sequence $\pi, 2\pi, 3\pi, \ldots$ has no convergent subsequence.
- (c) This set is again unbounded and thus not compact. The sequence $i, 2i, 3i, \ldots$ has no convergent subsequence.
- (d) This set is bounded and closed and thus compact.
- (e) Put $X = \{z \mid |z^{10} + z| \le 1\}$. When $|z| \ge 2$ we have

$$|z^{10} + z| \ge |z|^{10} - |z| = |z|(|z|^9 - 1) \ge 2.(2^9 - 1) = 1022 > 1.$$

Thus, if $z \in X$ we must have |z| < 2, so X is bounded. If (z_n) is a sequence in X converging to some $z \in \mathbb{C}$, then clearly $1 \ge |z_n^{10} + z_n| \to |z^{10} + z|$ so $|z^{10} + z| \le 1$ so $z \in X$. This shows that X is also closed, so it is compact.

(f) Put $Y = \{z \in \mathbb{C} \mid z^n = 1 \text{ for some } n > 0\}$. Suppose that $z \in Y$, so $z^n = 1$ for some n > 0. Then $|z|^n = 1$ and |z| is a nonnegative real number so |z| = 1. Thus $z = e^{2\pi i t}$ for some $t \in \mathbb{R}$, and $e^{2\pi i n t} = 1$. This means that m := nt must be an integer, and thus t = m/n is rational. Conversely, suppose that s is rational and put $w = e^{2\pi i s}$. We can write s = p/q with $p, q \in \mathbb{Z}$ and q > 0, and we find that $w^q = e^{2\pi i p} = 1$, so $w \in Y$. Thus $Y = \{e^{2\pi i s} \mid s \in \mathbb{Q}\}$. Now choose an irrational number s and a sequence of rational numbers s_1, s_2, \ldots converging to s. Put $w = e^{2\pi i s}$ and $w_k = e^{2\pi i s_k}$. Then $w_k \in Y$ and $w_k \to w$ but $w \notin Y$. Thus Y is not closed, and thus not compact.

Q2:

The set $B^n \subset \mathbb{R}^n$ is bounded and closed, hence compact. We know that continuous images of compact sets are compact, so $Z := f(B^n)$ is a compact subset of Y. This implies that Z must be closed. Indeed, suppose we have a sequence z_k in Z, converging to some point $y \in Y$. Then by compactness, some subsequence z_{k_j} converges to some point $z \in Z$, but the whole sequence converges to y so the subsequence must converge to y as well, so y = z, so $y \in Z$. Thus Z is closed as claimed.

Q3:

- (a) [0,1] is compact and $0 \in [0,1]$ but $[0,1] \setminus \{0\}$ is not compact.
- (b) $\{0,1\}$ is compact and $0 \in \{0,1\}$ and $\{1\} = \{0,1\} \setminus \{0\}$ is also compact.
- (c) In general, if $X \subset \mathbb{R}^n$ is compact and $x \in X$ then $X \setminus \{x\}$ is compact iff x is an *isolated* point, in other words there exists $\epsilon > 0$ such that $d(x,y) > \epsilon$ for all $y \in X \setminus \{x\}$.

Q4:

(a) We have

$$f(A)_{ij} = (A^T A)_{ij} = \sum_{k=1}^n A_{ik}^T A_{kj} = \sum_{k=1}^n A_{ki} A_{kj}.$$

This is a polynomial function of the entries A_{pq} , so f is continuous.

(b) Recall that the trace of a matrix is the sum of the diagonal entries. In particular, if I is the $n \times n$ identity matrix, with n ones on the diagonal, we have $\operatorname{trace}(I) = n$. It follows that

$$d_2(A,0) = \sqrt{\operatorname{trace}(A^T A)} = \sqrt{\operatorname{trace}(I)} = \sqrt{n}.$$

(c) It is immediate from (b) that O(n) is bounded. Next, suppose we have a sequence (A_k) in O(n) and $A_k \to A$ for some $A \in M_n \mathbb{R}$. Then $f(A_k) = I$ for all k, and f is continuous so $f(A) = \lim_{k \to \infty} f(A_k) = I$, so $A \in O(n)$. This proves that O(n) is closed in \mathbb{R}^{n^2} as well as being bounded, so it is compact.

1

Q5:

- (a) Just take $X = (0, \infty)$ and f(x) = x. Clearly f(x) > 0 for all $x \in X$. However, if $\epsilon > 0$ then $\epsilon/2 \in X$ and $f(\epsilon/2) = \epsilon/2 < \epsilon$, so it is not true that $f(x) \ge \epsilon$ for all $x \in X$.
- (b) Now suppose that X is compact and $f\colon X\to\mathbb{R}$ is continuous and f(x)>0 for all $x\in X$. Consider the function g(x)=1/f(x), which is defined and continuous everywhere on X because f(x)>0 for all x. We know that a continuous function from a compact space to \mathbb{R} is bounded, so there is some constant C>0 such that $g(x)\leq C$ for all x. Now put $\epsilon=1/C$ and observe that $f(x)=1/g(x)\geq 1/C=\epsilon$ for all x.