
Algebraic Topology Problem Set 4 — Solutions

Q1: The graph of x3 − x is as follows:

Note that when x < −1 or 0 < x < 1 we have x3 − x < 0 so there is no solution to the equation
y2 = x3 − x. When x = 0 or x = ±1 then x3 − x = 0 and the unique solution is y = 0. When
−1 < x < 0 or x > 1 then x3 − x > 0 and there are two solutions, given by y = ±

√
x3 − x. We

end up with the following picture:

If (x, y) ∈ X then x3 − x = y2 ≥ 0 but (1/2)3 − (1/2) < 0 so x 6= 1/2 so 2x − 1 6= 0. Thus, the
function f is nonzero everywhere on X. The points a = (0, 0) and b = (1, 0) lie in X and f(a) < 0
and f(b) > 0 so a 6∼ b so X is not path-connected. (Of course, this is visually obvious from the
picture, but the method can be generalised to spaces that are less easy to visualise.)

Q2:

(a),(b) Consider the continuous function f : C −→ C given by f(x) = exp(ix). We have f(x)f(−x) =
exp(0) = 1 so f(x) 6= 0, so we can regard f as a map C −→ C \ {0}. If z ∈ C \ {0} then we
can write z = reiθ for some r > 0 and θ ∈ R. As r is strictly positive, log(r) is defined and
we have z = exp(log(r) + iθ) = f(θ− ir). This shows that f is a continuous surjection from
C to C \ {0}. It is easy to see that |f(x+ iy)| = |eix−y| = e−y|eix| = e−y and to deduce that
f also gives a continuous surjection from R to S1.

(c) As R is connected and R \ {0} is not, there can be no continuous surjection from R to
R \ {0}. Alternatively, we can argue as follows. Let f : R −→ R \ {0} be continuous and
surjective. Then (by surjectivity) we can find a, b ∈ R with f(a) = −1 and f(b) = 1. The
intermediate value theorem tells us that there exists c between a and b such that f(c) = 0.
This contradicts the fact that f is a map from R to R \ {0}.

(d) S2 is bounded and closed in R3, so it is compact. I claim that S2\{N} is not closed in R3, and
so is not compact. Given this, there can be no continuous surjection from S2 to S2\{N}. To
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see that S2 \{N} is not closed, recall that N = (0, 0, 1) and put ak = (0, sin(π/k), cos(π/k)).
Then ak ∈ S2 \{N} and ak −→ N and N 6∈ S2 \{N}; this means that S2 \{N} is not closed.

(e) The map f(x, y, z) = z gives a continuous surjection from S2 to the interval [−1, 1]. The
map g(t) = (cos(πt), sin(πt)) gives a continuous surjection from [−1, 1] to S1. Thus, the
composition gf : S2 −→ S1 is again a continuous surjection.

Q3:

(a) The invariants are as follows:

A B C D E F

a(R) 3 2 2 1 3 3

b(R) 1 2 1 2 1 1

(b) A, E and F have the same invariants. No other pair of different letters has the same
invariants. It is possible to remove a single point from E to get a space with three components
(and similarly for F ) but this is not possible for A, so A is not homeomorphic to E or F .
However, it is not hard to see that E is homeomorphic to F . To be horribly explicit, we
could use the following formal definitions:

E = ({0} × [0, 2]) ∪ ([0, 1]× {0, 1, 2}) ⊂ R2

F = ({0} × [0, 2]) ∪ ([0, 1]× {1, 2}) ⊂ R2.

E F X

Let X be the union of the top two horizontal lines and the top half of the vertical line in E,
so X = ({0} × [1, 2]) ∪ ([0, 1]× {1, 2}). Define f : E −→ F by

f(x, y) =


(x, y) if (x, y) ∈ X
(0, (y + 1/2)) if (x, y) ∈ {0} × [0, 1]
((1− x)/2, 0) if (x, y) ∈ [0, 1]× {0}.

(c) The conclusion is that E is homeomorphic to F , and no other pair of different letters are
homeomorphic to each other.
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Q4: The solution is illustrated by the following diagram:
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In the left hand column we have a picture of X0, and then a subset of R2 that is homeomorphic
to X0. On this diagram we have marked five cuts; after making these cuts, the remaining space is
homeomorphic to the one illustrated at the bottom of the left hand column. From this it is clear
that no more cuts can be made without disconnecting the space.

This does not absolutely prove that a(X0) = 5; perhaps if we made a different choice for the
first five cuts, there might be room to make a sixth one. In fact this does not happen; to prove
this, one can either work through the various possibilities, or analyse how the Euler characteristic
changes under cutting. We will not give the details here.

Similar arguments illustrated in the second and third columns show that a(X1) = 4 and a(X2) =
7. Thus a(X0), a(X1) and a(X2) are distinct, so no two of the spaces are homeomorphic to each
other.

All that is left is to justify our picture of X2. Note that xyz = 0 iff at least one of x, y and
z is zero, iff (x, y, z) lies in the xy-plane, the xz-plane or the yz-plane. The intersection of each
of these planes with S2 is a circle, so X2 is the union of three intersecting circles. The points of
intersection are where two of the coordinates are zero, and so the third one is ±1. From this it is
easy to see that the picture is as shown.
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Q5:
(a) In the case α = 0 we need to show that β is the only eigenvalue of βI, which is trivial; so

suppose that α 6= 0.
As λi is an eigenvalue of A, we know that A− λiI is not invertible, so α(A− λiI) is not

invertible either. We have

(αA+ βI)− (αλi + β)I = α(A− λiI),

and this is non-invertible, so (αλi + β) is an eigenvalue of αA + βI. Conversely, suppose
that κ is an eigenvalue of αA + βI, which means that αA + (β − κ)I is not invertible, so
α−1(αA + (β − κ)I) is not invertible either. However, this matrix is just A− (κ− β)α−1I,
so we see that (κ − β)α−1 is an eigenvalue of A, say (κ − β)α−1 = λi for some i. This can
be rearranged to give κ = αλi + β, as required.

(b) This is geometrically clear: if 0 lies on the line segment between λi and µ, then µ must be a
negative real multiple of λi. Algebraically, if 0 = (1− t)λi+ tµ fro some t ∈ [0, 1] then in fact
t ∈ (0, 1) (because λi, µ 6= 0) and so (t−1−1) ∈ (0,∞) and µ = −(t−1−1)λi ∈ Li. Conversely,
if µ ∈ Li then µ = −sλi for some s > 0. If we put t = (1 + s)−1 then (1− t)λi + tµ = 0 as
required.

(c) Let C be the linear path from A to µI in MnC, so that C(t) = (1− t)A+ tI. By part (a),
the eigenvalues of C(t) are the numbers (1 − t)λi + tµ; in other words, as t increases from
0 to 1 the i’th eigenvalue of C(t) moves along the linear path from λi to µ. The path is
contained in GLn(C) iff C(t) is invertible for all t ∈ I, iff none of these eigenvalues is zero
for any t ∈ I. By part (b), this holds iff µ 6∈ Li for all i.

(d) Just choose a point µ ∈ C not lying in any of the lines L1, . . . , Lr; the linear path joins A
to µI in GLn(C).

(e) Suppose we have some µ ∈ C with µ 6= 0, say µ = reiθ. Define D(t) = (r − tr + t)ei(1−t)θI;
this gives a path from µI to I in GLn(C).

(f) For any A ∈ GLn(C), part (d) shows that A ∼ µI for some µ, and part (e) gives µI ∼ I, so
A ∼ I. If B is another element of GLn(C) then B ∼ I by the same argument, so A ∼ B.


