SPECTRAL SEQUENCES

N. P. STRICKLAND

1. Introduction

Definition 1.1. A (multiplicative, first quadrant, cohomologically graded) spectral sequence consists of a sequence of "pages" E_{r} for $r \geq 2$. Each page is a bigraded Abelian group $E_{r}^{s t}$, with $E_{r}^{s t}=0$ if $s<0$ or $t<0$. It come equipped with a differential

$$
d_{r}: E_{r}^{s t} \rightarrow E_{r}^{s+r, t-r+1}
$$

satisfying $d_{r}^{2}=0$, and the next page E_{r+1} is the cohomology of E_{r} with respect to d_{r} :

$$
E_{r+1}^{s t}=\frac{\operatorname{ker}\left(d_{r}: E_{r}^{s t} \rightarrow E_{r}^{s+r, t-r+1}\right)}{\operatorname{image}\left(d_{r}: E_{r}^{s-r, t+r-1} \rightarrow E_{r}^{s t}\right)}
$$

Moreover, there are product maps $E_{r}^{s t} \otimes E_{r}^{u v} \rightarrow E_{r}^{s+u, t+v}$ making E_{r} into a bigraded ring. It is commutative up to sign, and d_{r} is a derivation: if $a \in E_{r}^{s t}$ and $b \in E_{r}^{u v}$ then

$$
\begin{gathered}
a b=(-1)^{(s+t)(u+v)} b a \\
d_{r}(a b)=d_{r}(a) b+(-1)^{s+t} a d_{r}(b)
\end{gathered}
$$

Note that for fixed s and t, when r is sufficiently large the differential d_{r} starting at $E_{r}^{s t}$ ends below the s axis, and thus is zero; and the differential d_{r} ending at $E_{r}^{s t}$ starts to the left of the t axis, and thus is also zero. It follows that $E_{r}^{s t}=E_{r+1}^{s t}$ when $r \gg 0$. We write $E_{\infty}^{s t}$ for this group.

We say that the spectral sequence converges to a graded ring A^{*} if there is a given filtration

$$
A^{u}=F^{0} A^{u} \geq F^{1} A^{u} \geq \ldots \geq F^{u} A^{u} \geq F^{u+1} A^{u}=0
$$

such that $F^{s} A^{u} . F^{t} A^{v} \subseteq F^{s+t} A^{u+v}$, and given isomorphisms

$$
F^{s} A^{u} / F^{s+1} A^{u}=E_{\infty}^{s, u-s}
$$

that are compatible with the ring structures on E_{∞} and A.
If so, note that there are edge maps

$$
\begin{gathered}
A^{u} \rightarrow F^{0} A^{u} / F^{1} A^{u}=E_{\infty}^{0, u} \mapsto E_{2}^{0, u} \\
E_{2}^{u, 0} \rightarrow E_{\infty}^{u, 0}=F^{u} A^{u} \mapsto A^{u} .
\end{gathered}
$$

2. The Serre spectral sequence

The main theorem is that for any fibration $F \rightarrow E \rightarrow B$, there are spectral sequences relating the (co)homology of F, E and B. We first give a theorem in which we make some restrictive assumptions to simplify the statement.

Theorem 2.1. Let $F \rightarrow E \xrightarrow{q} B$ be a fibration, with B simply connected. Let K be a field, take all cohomology with coefficients in K, and assume that $H^{n} B$ and $H^{n} F$ are finite-dimensional for all n. Then there is a Serre spectral sequence with $E_{2}^{s t}=H^{s}(B) \otimes_{K} H^{t}(F)$, which converges to the ring $H^{*} E$. (The last sentence is often written: there is a Serre spectral sequence $H^{s}(B) \otimes_{K} H^{t}(F) \Longrightarrow H^{s+t} E$.)

We now give a more complicated statement which is more generally valid.
Theorem 2.2. Let $q: E \rightarrow B$ be a fibration, and R a commutative ring. Then there is a Serre spectral sequence

$$
H^{s}\left(B ; \mathcal{H}^{t}(F ; R)\right) \Longrightarrow H^{s+t}(E ; R)
$$

where $\mathcal{H}^{t}(F ; R)$ means the local coefficient system $b \mapsto H^{t}\left(q^{-1}\{b\} ; R\right)$. Similarly, if B^{\prime} is a subspace of B and $E^{\prime}=q^{-1} B^{\prime}$ then there is a relative Serre spectral sequence

$$
H^{s}\left(B, B^{\prime} ; \mathcal{H}^{t}(F ; R)\right) \Longrightarrow H^{s+t}\left(E, E^{\prime} ; R\right)
$$

(This does not have a ring structure, but it does have a module structure over the previous spectral sequence.)
We will say nothing about the theory of local coefficient systems except to explain when they are unnecessary. Recall that there is a natural action of the H-group ΩB on the fibre $P q \simeq F$. Using this, each element of $\pi_{0} \Omega B=\pi_{1} B$ gives a homotopy class of maps $F \rightarrow F$, and thus a map $H^{*}(F ; R) \rightarrow H^{*}(F ; R)$. This construction gives an action of the group $\pi_{1} B$ on $H^{*} F$.
Proposition 2.3. If $F \rightarrow E \xrightarrow{q} B$ is a fibration, B is connected, and $\pi_{1} B$ acts trivially on $H^{*}(F ; R)$, then the E_{2} terms of the above spectral sequences are just $H^{s}\left(B ; H^{t}(F ; R)\right)$ and $H^{s}\left(B, B^{\prime} ; H^{t}(F ; R)\right)$.

Proposition 2.4. If E and B are H-groups, and $q: E \rightarrow B$ is both a fibration and an H-map, then $\pi_{1} B$ acts trivially on F.

We also have Serre spectral sequences in homology (as opposed to cohomology). We give another definition to summarise their properties.

Definition 2.5. A first quadrant homologically graded spectral sequence consists of pages E^{r} for $r \geq 2$, with $E_{s t}^{r}=0$ if $s<0$ or $t<0$. There are differentials $d^{r}: E_{s t}^{r} \rightarrow E_{s+r, t-r+1}^{r}$ (the opposite direction to the cohomological case) with $\left(d^{r}\right)^{2}=0$ and $E^{r+1}=\operatorname{ker}\left(d^{r}\right) /$ image $\left(d^{r}\right)$. We say that such a spectral sequence converges to a graded group A_{*} if there is a filtration $0=F_{-1} A_{u} \leq F_{0} A_{u} \leq \ldots \leq F_{u} A_{u}=A_{u}$ and isomorphisms $F_{s} A_{u} / F_{s-1} A_{u} \simeq E_{s, u-s}^{\infty}$.
Theorem 2.6. If $q: E \rightarrow B$ is a fibration and R is a ring then there is a homologically graded Serre spectral sequence

$$
H_{s}\left(B ; \mathcal{H}_{t}(F ; R)\right) \Longrightarrow H_{s+t}(E ; R)
$$

There is also a relative version.

3. Examples of the Serre spectral sequence

Example 3.1. Consider the fibration $S^{1} \rightarrow S^{2 n+1} \rightarrow \mathbb{C} P^{n}$. There is a Serre spectral sequence $H^{*}\left(\mathbb{C} P^{n}\right) \otimes$ $H^{*}\left(S^{1}\right) \Longrightarrow H^{*} S^{2 n+1}$. Recall that

$$
\begin{aligned}
H^{*} S^{1} & =\mathbb{Z}[u] / u^{2} & & |u|=1 \\
H^{*} S^{2 n+1} & =\mathbb{Z}[v] / v^{2} & & |v|=2 n+1 \\
H^{*} \mathbb{C} P^{n} & =\mathbb{Z}[x] / x^{n+1} & & |x|=2 .
\end{aligned}
$$

Thus $E_{2}=\mathbb{Z}[u, x] /\left(u^{2}, x^{n+1}\right)$ with $u \in E_{2}^{01}$ and $x \in E_{2}^{20}$. It turns out that $d_{2}(u)=x$ and $d_{2}(x)=0$, and thus that $d_{2}\left(x^{k} u\right)=x^{k+1}$ and $d_{2}\left(x^{k}\right)=0$. It follows that $E_{3}=\mathbb{Z}\left\{1, u x^{n}\right\}$, and there are no more differentials,
so $E_{3}=E_{\infty}$. The filtration on $H^{2 n+1} S^{2 n+1}$ is given by $F^{0}=\ldots=F^{2 n}=\mathbb{Z} v$, and $F^{2 n+1}=0$, and the isomorphism $F^{2 n} / F^{2 n+1}=E_{\infty}^{2 n, 1}$ sends v to $\pm u x^{n}$. We illustrate the case $n=3$:

Example 3.2. The above fibration can also be shifted to give a fibration

$$
S^{2 n+1} \rightarrow \mathbb{C} P^{n} \rightarrow \mathbb{C} P^{\infty}
$$

This gives a spectral sequence

$$
\mathbb{Z}[x] \otimes E[u]=H^{*} \mathbb{C} P^{\infty} \otimes H^{*} S^{2 n+1} \Longrightarrow H^{*} \mathbb{C} P^{n}=\mathbb{Z}[x] / x^{n+1}
$$

with $x \in E_{2}^{2,0}$ and $u \in E_{2}^{0,2 n+1}$. The differentials $d_{2}, \ldots, d_{2 n+1}$ are all zero (there is nothing for them to hit). Then $d_{2 n+2}(u)=x^{n+1}$ and $d_{2 n+2}(x)=0$ so $d_{2 n+2}\left(x^{i} u\right)=x^{i+n+1}$. It follows that $E_{2 n+3}=\mathbb{Z}[x] / x^{n+1}$ and there is no room for any more differentials.

Example 3.3. Given integers $k \leq l$, we can define the Milnor hypersurface

$$
M=\left\{([z],[w]) \in \mathbb{C} P^{k} \times \mathbb{C} P^{l} \mid \sum_{i=0}^{k} z_{i} w_{i}=0\right\}
$$

Recall that

$$
\begin{aligned}
H^{*} \mathbb{C} P^{l} & =\mathbb{Z}[x] / x^{l+1} \\
H^{*} \mathbb{C} P^{k} & =\mathbb{Z}[y] / y^{k+1}
\end{aligned}
$$

There are obvious maps $p: M \rightarrow \mathbb{C} P^{k}$ and $q: M \rightarrow \mathbb{C} P^{l}$, defined by $p([z],[w])=[z]$ and $q([z],[w])=[w]$. We write x for $p^{*} x \in H^{2} M$ and y for $q^{*} y \in H^{2} M$. It turns out that

$$
H^{*} M=\mathbb{Z}[x, y] /\left(x^{k+1}, y^{l}-y^{l-1} x+\ldots \pm x^{l}\right)
$$

This has a basis $H^{*} M=\mathbb{Z}\left\{x^{i} y^{j} \mid i \leq k, j<l\right\}$. One can show that there is a fibration $\mathbb{C} P^{l-1} \rightarrow M \xrightarrow{p} \mathbb{C} P^{k}$. The natural filtration of $H^{*} M$ arising from this filtration is given by

$$
F^{2 s} H^{*} M=F^{2 s-1} H^{*} M=\text { ideal generated by } y^{s}
$$

The associated graded ring $G^{*} H^{*} M=\prod_{s} F^{s} / F^{s+1}$ is given by

$$
G^{*} H^{*} M=\mathbb{Z}[\bar{x}, \bar{y}] /\left(\bar{x}^{k+1}, \bar{y}^{l}\right)
$$

where $\bar{x} \in G^{2}$ is the image of x in F^{2} / F^{3}, and $\bar{y} \in G^{0}$ is the image of y in F^{0} / F^{1}. (Because $y^{l}=$ $y^{l-1} x-\ldots \mp x^{l} \in F^{1}$, we have $\bar{y}^{l}=0$ in the natural ring structure on G^{*}.) Thus, G^{*} has rather simpler structure than $H^{*} M$ does.

There is a Serre spectral sequence $H^{*}\left(\mathbb{C} P^{k}\right) \otimes H^{*}\left(\mathbb{C} P^{l}\right) \Longrightarrow H^{*} M$. The E_{2} page is just $\mathbb{Z}[x, z] /\left(x^{k+1}, z^{l}\right)$. Note that x and z both have even total degree (where the total degree of $E_{r}^{s t}$ is $s+t$) and that all differentials run from a slot of even total degree to one of odd total degree or vice versa, so all differentials are necessarily zero. It follows that $E_{\infty}=E_{2}$, and we have an obvious identification of E_{∞} with G^{*}.

If we were using this spectral sequence to calculate $H^{*} M$, then we might be misled into believing that $y^{l}=0$ in $H^{*} M$. This example shows that care is needed in deducing the multiplicative structure of the target ring $H^{*} E$ from the E_{∞} page of the spectral sequence.

We illustrate the case $k=l=3$. We have written in the elements $d_{r} y^{2}$ to show that they all lie in slots where either s or t is odd, so they must all be zero.

t							
y^{2}		$x y^{2}$		$x^{2} y^{2}$		$x^{3} y^{2}$	
y		$d_{2} y^{2}$					
		$x y$	$d_{3} y^{2}$	$x^{2} y$		$x^{3} y$	
1		x		x^{2}	$d_{5} y^{2}$	x^{3}	
				$d_{4} y^{2}$			

Example 3.4. Consider the fibration $U(n-1) \xrightarrow{j} U(n) \xrightarrow{q} S^{2 n-1}$, where $q(A)=A e_{n}$. We will use this to calculate the cohomology of $U(n)$. We claim that there are canonically defined elements $a_{2 k+1} \in H^{2 k+1} U(n)$ for $0 \leq k<n$ such that

$$
H^{*} U(n)=E\left[a_{1}, a_{3}, \ldots, a_{2 n-1}\right] .
$$

To see this, assume the corresponding thing for $U(n-1)$ and consider the Serre spectral sequence $H^{*} S^{2 n-1} \otimes$ $H^{*} U(n-1) \Longrightarrow H^{*} U(n)$. Let u be the generator of $H^{2 n-1} S^{2 n-1}$, so the E_{2} page is $E\left[a_{2 i+1} \mid 0 \leq i<n-1\right] \otimes$ $E[u]$, with $a_{2 i+1} \in E_{2}^{0,2 i+1}$ and $u \in E_{2}^{2 n-1,0}$. The whole page is thus concentrated in the 0 'th and ($2 n-1$)'st columns, and the only possible differential is $d_{2 n-1}$. For each $i<n-1$ we have $d_{2 n-1}\left(a_{2 i-1}\right) \in E_{2 n-1}^{2 n-1,2(i-n)}$, which lies below the axis $t=0$ and thus is zero. It is even easier to see that $d_{d n-1}(b)=0$. As $d_{2 n-1}$ is a derivation, we see that it vanishes on the whole algebra generated by the a_{i} 's and b, which is the whole $E_{2 n-1}$ page, so $E_{\infty}=E_{2}$. This means that in the natural filtration of $H^{*} U(n)$, the quotient $F^{0} / F^{1}=E_{\infty}^{0 *}$ maps isomorphically by j^{*} to $H^{*} U(n-1)$, that $F^{1}=F^{2}=\ldots=F^{2 n-1}$, that $F^{2 n}=0$, and that $F^{2 n-1}$ is a free module over F^{0} / F^{1} on one generator $q^{*} u$.

For each $i<n-1$, the group $E_{\infty}^{0,2 i+1}$ is the only nonzero term in total degree $2 i+1$. It follows easily that there is a unique element $b_{2 i+1} \in H^{2 i+1} U(n)$ with $j^{*} b_{2 i+1}=a_{2 i+1}$. We also define $b_{2 n-1}=q^{*} u$. All the b 's lie in odd degrees, so they anticommute. We thus get a map $E\left[b_{1}, \ldots, b_{2 n-1}\right] \rightarrow H^{*} U(n)$. The element $b_{2 n-1}$ lies in F^{1}, so we get a map $E\left[b_{1}, \ldots, b_{2 n-3}\right] \rightarrow F^{0} / F^{1}$. Given that j^{*} induces an isomorphism $F^{0} / F^{1} \rightarrow E\left[a_{1}, \ldots, a_{2 n-3}\right]$ and $j^{*} b_{2 i-1}=a_{2 i-1}$, we conclude that our map $E\left[b_{1}, \ldots, b_{2 n-3}\right] \rightarrow F^{0} / F^{1}$ is an isomorphism. As $F^{2 n-1}$ is a free module over F^{0} / F^{1} on one generator $b_{2 n-1}$, we conclude that our map $E\left[b_{1}, \ldots, b_{2 n-1}\right] \rightarrow H^{*} U(n)$ is also an isomorphism.

We illustrate the case $n=3$.

t						
$a_{1} a_{3}$					$a_{1} a_{3} u$	
a_{3}					$a_{3} u$	
		$d_{2} a_{3}$				
a_{1}			$d_{3} a_{3}$		$a_{1} u$	
1				$d_{4} a_{3}$	1	1

Example 3.5. Consider the fibration $\Omega S^{2 n+1} \rightarrow P S^{2 n+1} \rightarrow S^{2 n+1}$. The path space $P S^{2 n+1}$ is contractible, so we have a Serre spectral sequence

$$
E[u] \otimes H^{*} \Omega S^{2 n+1} \Longrightarrow \mathbb{Z}
$$

with $u \in E_{2}^{2 n+1,0}$. As the E_{2} page is concentrated in the columns $s=0$ and $s=2 n+1$, the only possible differential is

$$
d_{2 n+1}: H^{t}\left(\Omega S^{2 n+1}\right) \rightarrow H^{t-2 n}\left(\Omega S^{2 n+1}\right) u
$$

As the spectral sequence converges to \mathbb{Z}, we see that the $E_{2 n+2}$ page must just be \mathbb{Z}, and so the above differential must be an isomorphism for $t>0$. For $0<t<2 n$ we know that $H^{t-2 n}\left(\Omega S^{2 n+1}\right)=0$ so $H^{t}\left(\Omega S^{2 n+1}\right)=0$. Continuing inductively, we find that $H^{2 n k}\left(\Omega S^{2 n+1}\right)=\mathbb{Z} x_{k}$ for some x_{k} with $x_{0}=1$ and $d_{2 n+1}\left(x_{k}\right)=x_{k-1} u$, whereas $H^{t}\left(\Omega S^{2 n+1}\right)=0$ for $t \neq 0(\bmod 2 n)$.

We can now determine the multiplicative structure. We have $d_{2 n+1}\left(x_{k}\right)=x_{k-1} u$, but the Leibniz rule gives $d_{2 n+1}\left(x_{1}^{k}\right)=k x_{1}^{k-1} u$. It follows by induction that $x_{1}^{k}=k!x_{k}$, and thus that $x_{j} x_{k}=\binom{j+k}{j} x_{j+k}$.
Example 3.6. Consider the fibration $U(n)=\Omega B U(n) \rightarrow P B U(n) \rightarrow B U(n)$. This gives a Serre spectral sequence

$$
E_{2}^{* *}=\mathbb{Z}\left[c_{1}, \ldots, c_{n}\right] \otimes E\left[a_{1}, a_{3}, \ldots, a_{2 n-1}\right] \Longrightarrow \mathbb{Z}
$$

with $c_{i} \in E_{2}^{2 i, 0}$ and $a_{2 j-1} \in E_{2}^{0,2 j-1}$. It is known that for $i<n$ we have

$$
E_{2 i+1}^{* *}=E_{2 i+2}^{* *}=\mathbb{Z}\left[c_{i+1}, \ldots, c_{n}\right] \otimes E\left[a_{2 i+1}, \ldots, a_{2 n-1}\right]
$$

with $d_{2 i+1}=0$ and $d_{2 i+2}\left(a_{2 i+1}\right)=c_{i+1}$. This leaves $E_{2 n}=E_{\infty}=\mathbb{Z}$.
Example 3.7. Let G be a finite group of order $2^{2 n+1}$ where the centre Z has order 2 and the quotient $V=G / Z$ is elementary abelian. (These are called extraspecial 2 -groups.) We have a fibration

$$
B Z \rightarrow B G \rightarrow B V
$$

As Z is central, the group $V=\pi_{1}(B V)$ acts trivially on $B Z$ and we have a Serre spectral sequence in mod 2 cohomology

$$
H^{*}(B V) \otimes H^{*}(B Z) \Longrightarrow H^{*}(B G)
$$

Here $B Z=\mathbb{R} P^{\infty}$ and so $H^{*}(B Z)=\mathbb{F}[z]$ (where \mathbb{F} means $\mathbb{Z} / 2$ and $|z|=1$). If we choose an isomorphism $V=C_{2}^{2 d}$ we also get $H^{*}(B V)=\mathbb{F}\left[x_{1}, \ldots, x_{2 d}\right]$. More invariantly, we can say that $H^{*}(B V)$ is the symmetric algebra $\mathbb{F}\left[V^{*}\right]$ generated by $H^{1}(B V)=V^{*}=\operatorname{Hom}(V, \mathbb{F})$. There is a quadratic form $q_{0}: V \rightarrow \mathbb{F}$ given by $g^{2}=z^{q_{0}(v)}$ for any $g \in G$ that maps to $v \in V$. This can be regarded as an element of $\left(V^{*} \otimes V_{*}\right)_{\Sigma_{2}}=H^{2}(B V)$, and it works out that $d_{2}(z)=q_{0}$, leaving

$$
E_{3}=\mathbb{F}\left[z^{2}\right] \otimes \mathbb{F}\left[V^{*}\right] / q_{0} .
$$

Now define $q_{i} \in H^{2^{i}+1}(B V)$ recursively by $q_{i+1}=S q^{2^{i}} q_{i}$, and $J_{i}=\left(q_{j} \mid j<i\right)$. It can be shown that for $i<d$ we have

$$
E_{2^{i-1}+2}=\cdots=E_{2^{i}+1}=\mathbb{F}\left[z^{2^{i}}\right] \otimes \mathbb{F}\left[V^{*}\right] / J_{i}
$$

with $d_{2^{i}+1}\left(z^{2^{i}}\right)=q_{i}$. For $i \geq d$ it turns out that $q_{i} \in J_{d}$ and there are no further differentials. We end up with $E_{\infty}=\mathbb{F}\left[z^{2^{d}}\right] \otimes \mathbb{F}\left[V^{*}\right] / J_{d}$.

For this to be compatible with the exactness properties of a spectral sequence, it must be true that q_{i} is not a zero divisor in $\mathbb{F}_{p}\left[V^{*}\right] / J_{i}$, for $i=0, \ldots, d-1$. This can be proved directly, and was part of Quillen's proof that the spectral sequence works as described.

4. The Eilenberg-Moore spectral sequence

Suppose we have a homotopy pullback square

This makes $H^{*} X$ and $H^{*} Y$ into algebras (and thus modules) over $H^{*} Z$, so we can define groups $\operatorname{Tor}_{p q}^{H^{*} Z}\left(H^{*} X, H^{*} Y\right)$. There is then a spectral sequence

$$
\operatorname{Tor}_{s t}^{H^{*} Z}\left(H^{*} X, H^{*} Y\right) \Longrightarrow H^{t-s} W
$$

Example 4.1. Consider the square

This gives an Eilenberg-Moore spectral sequence

$$
\operatorname{Tor}_{s t}^{\mathbb{Z}[x]}\left(\mathbb{Z}, \mathbb{Z}[x] / x^{n+1}\right) \Longrightarrow E[u],
$$

where $|x|=2$ and $|u|=2 n+1$. We have a projective resolution

$$
\left(P_{1} \rightarrow P_{0} \rightarrow \mathbb{Z}[x] / x^{n+1}\right)=\left(\mathbb{Z}[x] a \xrightarrow{d} \mathbb{Z}[x] \xrightarrow{\epsilon} \mathbb{Z}[x] / x^{n+1}\right)
$$

where $d(a)=x^{n+1}$. Here a has internal degree $2 n+2$ (so that d preserves degrees) and cohomological degree 1 (because it lies in P_{1}). The relevant Tor groups are the homology groups of the complex $\mathbb{Z} \otimes_{\mathbb{Z}[x]} P_{*}=$ $(\mathbb{Z} a \xrightarrow{0} \mathbb{Z})$, or in other words $\mathbb{Z}\{1, a\}$, with $1 \in \operatorname{Tor}_{00}$ and $a \in \operatorname{Tor}_{1,2 n+2}$. There is no room for differentials, and a represents an element in $H^{2 n+1} S^{2 n+1}$ as expected.

Example 4.2. Consider the square

We have $H^{*} B U(n)=\mathbb{Z}\left[c_{1}, \ldots, c_{n}\right]$ (with $\left|c_{i}\right|=2 i$) and $H^{*} U(n)=E\left[a_{1}, a_{3}, \ldots, a_{2 n-1}\right]$ (with $\left|a_{i}\right|=i$). This gives a spectral sequence

$$
\operatorname{Tor}_{* *}^{\mathbb{Z}\left[c_{1}, \ldots, c_{n}\right]}(\mathbb{Z}, \mathbb{Z}) \rightarrow E\left[a_{1}, \ldots, a_{2 n-1}\right] .
$$

To see how this works, consider the ring

$$
R_{* *}=\mathbb{Z}\left[c_{1}, \ldots, c_{n}\right] \otimes E\left[b_{1}, \ldots, b_{n}\right] .
$$

We give this the bigrading $\left|c_{i}\right|=(0,2 i)$ and $\left|b_{i}\right|=(1,2 i)$. We then define $d: R_{s t} \rightarrow R_{s-1, t}$ by $d\left(c_{i}\right)=0$ and $d\left(b_{i}\right)=c_{i}$ and the Leibniz rule $d(x y)=(d x) y+(-1)^{s} x d y$ for $x \in R_{s t}$. It is clear that R is free as a module over $H^{*} B U(n)$. We also claim that $H_{*}\left(R_{*} ; d\right)=\operatorname{ker}(d) / \operatorname{image}(d)=\mathbb{Z}$. This can be seen directly when $n=1$. The general case is essentially the tensor product of n copies of the $n=1$ case, so the claim follows by the Künneth theorem. This means that $R_{* *}$ gives a projective resolution of \mathbb{Z} over $H^{*} B U(n)$, which we can use to calculate Tor. We see that $\mathbb{Z} \otimes_{H^{*} B U(n)} R_{* *}=E\left[b_{1}, \ldots, b_{n}\right]$, with trivial differential, so $\operatorname{Tor}^{H^{*} B U(n)}(\mathbb{Z}, \mathbb{Z})=E\left[b_{1}, \ldots, b_{n}\right]$. Here b_{i} has bidegree ($1,2 i$) and so represents a class in $H^{2 i-1} U(n)$, as expected.

5. The Rothenberg-Steenrod spectral sequence

Let G be a topological group, and suppose that G acts continuously on a space X. We can then form the Borel construction $X_{h G}=E G \times_{G} X$ (which is the same as X / G if the action is free). Note that the group structure makes $H_{*} G$ a ring (possibly noncommutative), and $H_{*}(X)$ is a module over $H_{*}(G)$. There is then a Rothenberg-Steenrod spectral sequence

$$
\operatorname{Tor}_{s t}^{H_{*} G}\left(\mathbb{Z}, H_{*}(X)\right) \Longrightarrow H_{s+t}\left(X_{h G}\right) .
$$

In particular, by taking X to be a point (so $X_{h G}=B G$) we get a spectral sequence

$$
\operatorname{Tor}_{s t}^{H_{+} G}(\mathbb{Z}, \mathbb{Z}) \Longrightarrow H_{s+t}(B G)
$$

Although ΩY is not actually a topological group, analogues of the above still work. In particular, if Y is connected then $B \Omega Y=Y$ and we get a spectral sequence

$$
\operatorname{Tor}^{H_{*} \Omega Y}(\mathbb{Z}, \mathbb{Z}) \Longrightarrow H_{*} Y
$$

Example 5.1. Consider the case $Y=S^{2 n+1}$. Then $H_{*} \Omega Y$ is dual to $H^{*} \Omega Y$ and thus has a \mathbb{Z} in each dimension $2 n k$ and zeros elsewhere. It can be shown that $H_{*} \Omega Y$ is actually a polynomial algebra $\mathbb{Z}[w]$ with $|w|=2 n$. It follows that $\operatorname{Tor}^{H_{*} \Omega Y}(\mathbb{Z}, \mathbb{Z})=\mathbb{Z}\{1, u\}$ where u is in $\operatorname{Tor}_{1,2 n}$ and thus represents a class in $H_{2 n+1} S^{2 n+1}$, as expected. There is no room for any differentials.
Example 5.2. Now instead take $Y=U(n)$. There is a map $\rho: \Sigma \mathbb{C} P_{+}^{n-1} \rightarrow U(n)$, taking (z, L) to the map $g=z \cdot 1_{L}+1_{L^{\perp}}$, with eigenvalue z on L and 1 on L^{\perp}. The homology $H_{*} U(n)$ is the exterior algebra generated by $\rho_{*} \widetilde{H}_{*} \Sigma \mathbb{C} P_{+}^{n-1}$, so $H_{*} U(n)=E\left[u_{0}, \ldots, u_{n-1}\right]$ with $\left|u_{i}\right|=2 i+1$. Adjointly, we have a map $\rho^{\#}: \mathbb{C} P^{n-1} \rightarrow$ $\Omega U(n)$, which gives a map from the symmetric algebra on $H_{*} \mathbb{C} P^{n}$ to $H_{*} \Omega U(n)$. This symmetric algebra is $\mathbb{Z}\left[b_{0}, \ldots, b_{n-1}\right]$ (with $\left|b_{i}\right|=2 i$), and it is known that in fact $H_{*} \Omega U(n)=\mathbb{Z}\left[b_{0}, \ldots, b_{n-1}\right]\left[b_{0}^{-1}\right]$. The module $\mathbb{Z}=H_{*}$ (point) is the quotient of $H_{*} \Omega U(n)$ by $\left(b_{0}-1, b_{1}, \ldots, b_{n-1}\right)$. One can write down an explicit resolution as for polynomial algebras and check that $\operatorname{Tor}_{* *}^{H_{*} \Omega U(n)}(\mathbb{Z}, \mathbb{Z})$ is an exterior algebra on n generators. It follows that there can be no differentials in the Rothenberg-Steenrod spectral sequence.

6. The homotopy fixed point spectral Sequence

Let $C=\left\langle c \mid c^{2}=1\right\rangle$ act on $K U$ by complex conjugation. It is supposed to work out that $K U^{h C}=K O$. This gives a homotopy fixed point spectral sequence

$$
E_{2}^{s t}=H^{s}\left(C ; K U^{t}\right) \Longrightarrow K O^{t+s} \quad d_{r}: E_{r}^{s t} \rightarrow E_{r}^{s+r, t-r+1}
$$

Here $K U^{*}=\mathbb{Z}\left[\nu^{ \pm 1}\right]$ with $\nu \in K U^{-2}$ and $c(\nu)=-\nu$. Let x be the generator of $E_{2}^{2,0}=H^{2}(C ; \mathbb{Z})=\mathbb{Z} / 2$ and let w be the generator of $E_{2}^{1,-2}=H^{1}(C ; \mathbb{Z} \nu)=\mathbb{Z} / 2$. We then have

$$
E_{2}^{* *}=\mathbb{Z}\left[\nu^{ \pm 2}, x\right] /(2 x) \oplus(\mathbb{Z} / 2)\left[\nu^{ \pm 2}, x\right] w
$$

I think it works out that $w^{2}=\nu^{2} x$, so we can rewrite this as

$$
E_{2}^{* *}=\mathbb{Z}\left[\nu^{ \pm 2}, w\right] /(2 w)
$$

I think that $d_{2}=0$ and $d_{3}\left(\nu^{2}\right)=w^{3}$ but $d_{3}(w)=0\left(\right.$ so $\left.d_{3}(x)=\nu^{-4} w^{5}=x^{2} w\right)$. This gives

$$
E_{3}^{* *}=\mathbb{Z}\left[\nu^{ \pm 4}\right]\left\{1,2 \nu^{2}, w, w^{2}\right\} /\left(2 w, 2 w^{2}\right)
$$

This leaves no room for further differentials (as $E_{3}^{s *}=0$ for $*<0$ or $*>2$) so $E_{3}=E_{\infty}$, and this agrees with $K O^{*}$. The element w represents the Hopf map $\eta \in \pi_{1} K O$.

We can analyse $k U^{h C}$ in the same way. Here we have

$$
E_{2}^{* *}=\mathbb{Z}\left[\nu^{2}, x\right] /(2 x) \oplus(\mathbb{Z} / 2)\left[\nu^{2}, x\right] w
$$

This is no longer generated by ν and w. We again have $d_{3}\left(\nu^{2}\right)=w^{3}$ and $d_{3}(x)=x^{2} w$. The E_{3} page is truncated to $t \leq 0$, and the d_{3}-cycles $x^{2 i+2}$, which used to be hit by $\nu^{-2} x^{2 i} w$, are no longer hit. We end up with

$$
\pi_{*}\left(k U^{h C}\right)=\pi_{*}(k O) \oplus \mathbb{F}_{2}\left\{x^{2 i+2} \mid i \geq 0\right\}
$$

Here $x^{2 i+2}$ represents a class in $\pi_{-2 i-2}\left(k U^{h C}\right)$.

7. The Atiyah-Hirzebruch spectral sequence

For any space X and any generalised cohomology theory R^{*} there is an Atiyah-Hirzebruch spectral sequence

$$
E_{2}^{s t}=H^{s}\left(X ; R^{t}\right) \Longrightarrow R^{s+t} X
$$

In the description of the E_{2} term, R^{t} means R^{t} (point), which is π_{-t} of the representing spectrum. The differentials respect the R^{*}-module structure.

In particular, for any prime p (taken to be odd, for simplicity) and any $n>0$ we have a theory $K(n)$ (called Morava K-theory) with $K(n)^{*}=\mathbb{F}_{p}\left[v_{n}^{ \pm 1}\right]$, where $v_{n} \in K(n)^{2-2 p^{n}}$. This gives an Atiyah-Hirzebruch spectral sequence

$$
H^{*}\left(X ; \mathbb{F}_{p}\right) \otimes K(n)^{*}=H^{*}\left(X ; K(n)^{*}\right) \Longrightarrow K(n)^{*} X
$$

It is known that $d_{r}=0$ for $r<2 p^{n}-2$ whereas $d_{2 p^{n}-2}(x)=v_{n} Q_{n}(x)$ for $x \in H^{*}\left(X ; \mathbb{F}_{p}\right)$. Here Q_{n} is the n 'th Milnor Bockstein operation in the $\bmod p$ Steenrod algebra, given inductively by $Q_{0}=\beta$ and $Q_{i+1}=P^{p^{i}} Q_{i}-Q_{i} P^{p^{i}}$.

Example 7.1. Let X be such that $H^{*}\left(X ; \mathbb{F}_{p}\right)$ is concentrated in even degrees. Then each page of the spectral sequence for $K(n)^{*} X$ is concentrated in (even,even) bidegree and thus in even total degree. The differentials d_{r} all shift total degree by one, so they are zero. It follows that $E_{2}=E_{\infty}$ and that the associated graded for the natural filtration of $K(n)^{*} X$ is isomorphic to $H^{*}\left(X ; \mathbb{F}_{p}\right) \otimes K(n)^{*}$. This applies to $X=\mathbb{C} P^{\infty}$, for example.

Example 7.2. It is known that the differentials in the AHSS are always torsion-valued. Thus, if the $E_{2^{-}}$ page is torsion-free, then the spectral sequence must collapse. This applies to the AHSS for $M U^{*} U(n)$, for example.

Example 7.3. Consider $X=B C_{p}$, where $H^{*}\left(B C_{p} ; \mathbb{F}_{p}\right)=\mathbb{F}_{p}[x] \otimes E[a]$. We have $\beta(a)=x$ and $\beta\left(x^{j}\right)=0$ and $P^{i}\left(x^{j}\right)=\binom{j+(p-1) i}{j} x^{j+(p-1) i}$, and it follows that $Q_{i}\left(a x^{j}\right)=x^{j+p^{i}}$ and $Q_{i}\left(x^{j}\right)=0$. Thus, in the spectral sequence for $K(n)^{*} B C_{p}$ we have

$$
E_{2}=\mathbb{F}_{p}\left[x, v_{n}^{ \pm 1}\right] \otimes E[a]
$$

with $x \in E_{2}^{20}$ and $a \in E_{2}^{10}$ and $v_{n} \in E_{2}^{0,2-2 p^{n}}$. The first differential is given by $d_{2 p^{n}-2}(a)=v_{n} x^{p^{n}}$ and $d_{2 p^{n}-2}(x)=0$, which leaves

$$
E_{2 p^{n}-1}=\mathbb{F}_{p}\left[x, v_{n}^{ \pm 1}\right] / x^{p^{n}}
$$

This is concentrated in the vertical band $0 \leq s \leq 2 p^{n}-2$, and all remaining differentials are so long that they must either start or end outside this band. It follows that $E_{\infty}=E_{2 p^{n}-1}$. It can be shown that there are no filtration issues and so $K(n)^{*} B C_{p}$ is isomorphic to E_{∞}.

Example 7.4. Consider instead the AHSS for $K U^{*} B C_{2}$. It is standard that $H^{*} B C_{2}=H^{*} \mathbb{R} P^{\infty}=\mathbb{Z}[x] / 2 x$, with $|x|=2$. Our E_{2} term is just $H^{*}\left(B C_{2} ; K^{*}\right)=\mathbb{Z}\left[\nu^{ \pm 1}, x\right] / 2 x$, with $\nu \in E_{2}^{0,-2}$ and $x \in E_{2}^{2,0}$. This is concentrated in even total degree, so there are no differentials. However, there are strong filtration effects. To explain this, put $y=\nu x \in K^{0} B C_{2}$. It turns out that $K U^{0} B C_{2}=\mathbb{Z} \oplus \mathbb{Z}_{2} y$, where \mathbb{Z}_{2} denotes the 2-adic integers and $y^{2}=2 y$. The natural filtration of $K^{0} B C_{2}$ is given by $F^{2 i-1}=F^{2 i}=\left(y^{i}\right)$, which is the same as $\left(2^{i-1} y\right)$ for $i>0$. The associated graded is thus $F^{0} / F^{1}=\mathbb{Z}$ and $F^{2 i} / F^{2 i+1}=(\mathbb{Z} / 2) . y^{i}$, which gives the terms $E_{\infty}^{2 i,-2 i}$ in the spectral sequence. Multiplication by powers of ν gives everything else.

8. The Adams spectral sequence

Let \mathcal{A} denote the mod 2 Steenrod algebra. If we let H denote $\bmod 2$ cohomology then $H^{*}(X)$ is naturally an \mathcal{A}-module for any spectrum X, and there is a classical Adams spectral sequence

$$
\operatorname{Ext}_{\mathcal{A}}^{s t}\left(H^{*}(X), \mathbb{F}\right) \Longrightarrow \pi_{t-s}(X)_{2}^{\wedge}
$$

In particular, we get a spectral sequence

$$
\operatorname{Ext}_{\mathcal{A}}^{s t}(\mathbb{F}, \mathbb{F}) \Longrightarrow \pi_{t-s}\left(S^{0}\right)_{2}^{\wedge}
$$

Here the groups $\pi_{k}(S)$ are finite for $k>0$, so the 2-adic completion simply replaces $\pi_{0}\left(S^{0}\right)=\mathbb{Z}$ by \mathbb{Z}_{2} and $\pi_{k}\left(S^{0}\right)$ by the 2 -torsion part of $\pi_{k}\left(S^{0}\right)$ for $k>0$.

9. OTHER GOOD EXAMPLES

- SSS, RSSS and EMSS for $\Omega U(n) \rightarrow 1 \rightarrow U(n)$.
- ASS for $M O_{*}$ and $M U_{*}$. Small parts of ASS for $\pi_{*}\left(S^{0}\right)$.
- Weierstrass SS for $\pi_{*}(T M F)$.
- EHPSS

10. Constructions

Let A be an abelian group with a self-map $d: A \rightarrow A$ satisfying $d^{2}=0$. Suppose we have a filtration

$$
A \geq F_{k-1} \geq F_{k} \geq F_{k+1} \geq \cdots
$$

with $d F_{k} \leq F_{k}$, and suppose for simplicity that $F_{k}=A$ for $k \ll 0$ and $F_{k}=0$ for $k \gg 0$. Put

$$
\begin{aligned}
W_{k}^{r} & =\left\{a \in F_{k} \mid d a \in F_{k+r-1}\right\} \\
Z_{k}^{r} & =W_{k}^{r}+F_{k+1} \\
B_{k}^{r} & =\left(d\left(F_{k-r+2}\right) \cap F_{k}\right)+F_{k+1}=d\left(W_{k-r+2}^{r-1}\right)+F_{k+1} \\
E_{k}^{r} & =Z_{k}^{r} / B_{k}^{r}=\left(W_{k}^{r}+B_{k}^{r}\right) / B_{k}^{r} .
\end{aligned}
$$

Note that

$$
\begin{aligned}
& Z_{k}^{1}=F_{k} \\
& B_{k}^{1}=F_{k+1} \\
& E_{k}^{1}=F_{k} / F_{k+1}
\end{aligned}
$$

and

$$
F_{k+1} \leq B_{k}^{r} \leq B_{k}^{r+1} \leq\left(d A \cap F_{k}\right)+F_{k+1} \leq Z_{k}^{r+1} \leq Z_{k}^{r} \leq F^{k} .
$$

Lemma 10.1. There is a well-defined map $d^{r}: E_{k}^{r} \rightarrow E_{k+r-1}^{r}$ given by

$$
d^{r}\left(a+B_{k}^{r}\right)=d a+B_{k+r-1}^{r}
$$

for $a \in W_{k}^{r}$.
Proof. First, if $a \in W_{k}^{r}$ then $d a \in F_{k+r-1}$ and $d^{2}(a)=0$ so $d a \in W_{k+r-1}^{r}$ so $d a+B_{k+r-1}^{r} \in E_{k+r-1}^{r}$. Next, if we have another representation $a+B_{k}^{r}=a^{\prime}+B_{k}^{r}$ with $a^{\prime} \in W_{k}^{r}$, then we must have $a^{\prime}=a+b$ for some $b \in W_{k}^{r} \cap B_{k}^{r}$. As $b \in B_{k}^{r}$ we have $b=d u+v$, where $u \in F_{k-r+2}$ and $d u \in F_{k}$ and $v \in F_{k+1}$. It follows that $d a^{\prime}-d a=d b=d v$, and $d b \in F_{k+r-1}$ and $d v \in d\left(F_{k+1}\right)$. From the definitions we have $B_{k+r-1}^{r}=d\left(F_{k+1}\right)+F_{k+r-1}$, so $d a^{\prime}-d a \in B_{k+r-1}^{r}$ as required.
Lemma 10.2. $\operatorname{ker}\left(d^{r}: E_{k}^{r} \rightarrow E_{k+r-1}^{r}\right)=Z_{k}^{r+1} / B_{k}^{r}=\left\{a+B_{k}^{r} \mid a \in W_{k}^{r+1}\right\}$.
Proof. Given an element $u=a+B_{k}^{r}$ with $a \in W_{k}^{r+1} \leq W_{k}^{r}$, we have $d^{r} u=d a+B_{k+r-1}^{r}$, but $d a \in F_{k+r} \leq$ B_{k+r-1}^{r} so $d^{r} u=0$. Conversely, suppose we have an element $u \in E_{k}^{r}$ with $d^{r} u=0$. We can represent u as $u=a+B_{k}^{r}$ for some $a \in W_{k}^{r}$, and then we must have

$$
d a \in B_{k+r-1}^{r}=\left(d\left(F_{k+1}\right) \cap F_{k+r-1}\right)+F_{k+r} .
$$

We can thus choose $b \in F_{k+1}$ and $c \in F_{k+r}$ with $d a=d b+c$ and $d b \in F_{k-r+1}$. It follows that $b \in W_{k}^{r} \cap B_{k}^{r}$, so the element $a^{\prime}=a-b$ again lies in W_{k}^{r} and $u=a^{\prime}+B_{k}^{r}$. We have $d a^{\prime}=c \in F_{k+r}$, so $a^{\prime} \in W_{k}^{r+1}$, so $u \in Z_{k}^{r+1} / B_{k}^{r}$ as claimed.
Lemma 10.3. $\operatorname{img}\left(d^{r}: E_{k-r+1}^{r} \rightarrow E_{k}^{r}\right)=B_{k}^{r+1} / B_{k}^{r}$.
Proof. The relevant image is by definition $\left(d\left(W_{k-r+1}^{r}\right)+B_{k}^{r}\right) / B_{k}^{r}$. On the other hand, we have $B_{k}^{r+1}=$ $d\left(W_{k-r+1}^{r}\right)+F_{k+1}$. The claim follows easily.
Corollary 10.4. $\left(d^{r}\right)^{2}=0$, and $E_{*}^{r+1}=H\left(E_{*}^{r}, d^{r}\right)$.

References

