SPECTRAL SEQUENCES

N. P. STRICKLAND

1. INTRODUCTION

Definition 1.1. A (multiplicative, first quadrant, cohomologically graded) spectral sequence consists of a
sequence of “pages” E, for r > 2. Each page is a bigraded Abelian group E5, with Ef' = 0if s < 0 or t < 0.
It come equipped with a differential

dr: Eﬁt _ Eﬁ+r,t7'r+1

satisfying d? = 0, and the next page E,.; is the cohomology of E, with respect to d,.:
ker(d,: Est — Estri=r+l)
image(d,.: 57" o sty

st _
E’r‘+1 -

dy

s
Moreover, there are product maps E5' @ EYY — EST“!t making F, into a bigraded ring. It is commutative
up to sign, and d,. is a derivation: if @ € E* and b € EY* then

ab = (—1)H)tv)p,

d,(ab) = d,(a)b+ (=1)*T'ad,.(b).
Note that for fixed s and ¢, when r is sufficiently large the differential d, starting at ES' ends below the
s axis, and thus is zero; and the differential d, ending at E5' starts to the left of the ¢ axis, and thus is also
zero. It follows that E* = E¥ | when r > 0. We write E3! for this group.
We say that the spectral sequence converges to a graded ring A* if there is a given filtration

A¥ = FOAY > FLAY > . > FUA% > Futlgv =

such that F5A*. FtAY C FsttA%T? and given isomorphisms
FsAu/Fs+1Au — Eg(,)u—s

that are compatible with the ring structures on F,, and A.
If so, note that there are edge maps

A% — FOA"/F'AY = EO — EO

E;,O s Eéﬁ;O = FYA% o AY.
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2. THE SERRE SPECTRAL SEQUENCE

The main theorem is that for any fibration FF — E — B, there are spectral sequences relating the
(co)homology of F, E and B. We first give a theorem in which we make some restrictive assumptions to
simplify the statement.

Theorem 2.1. Let F — E L B be a fibration, with B simply connected. Let K be a field, take all
cohomology with coefficients in K, and assume that H"B and H™F are finite-dimensional for all n. Then
there is a Serre spectral sequence with F3' = H*(B) @ x H'(F), which converges to the ring H*E. (The last
sentence is often written: there is a Serre spectral sequence H*(B) @ x H'(F) = H*''E.)

We now give a more complicated statement which is more generally valid.

Theorem 2.2. Let q: E — B be a fibration, and R a commutative ring. Then there is a Serre spectral
sequence

H*(ByH'(F; R)) = H*"'(E; R),
where H!(F; R) means the local coefficient system b — H'(q~'{b}; R). Similarly, if B’ is a subspace of B
and E' = q~' B’ then there is a relative Serre spectral sequence

H*(B,B';H'(F;R)) = H*''(E,E'; R).
(This does not have a ring structure, but it does have a module structure over the previous spectral sequence.)

We will say nothing about the theory of local coefficient systems except to explain when they are un-
necessary. Recall that there is a natural action of the H-group QB on the fibre Pq ~ F. Using this, each
element of moQ2B = m B gives a homotopy class of maps F — F, and thus a map H*(F; R) — H*(F;R).
This construction gives an action of the group m B on H*F.

Proposition 2.3. If F — FE L Bisa fibration, B is connected, and m B acts trivially on H*(F; R), then
the Eq terms of the above spectral sequences are just H*(B; H'(F; R)) and H*(B, B'; H'(F; R)).

Proposition 2.4. If E and B are H-groups, and q: E — B is both a fibration and an H-map, then m B
acts trivially on F.

We also have Serre spectral sequences in homology (as opposed to cohomology). We give another definition
to summarise their properties.

Definition 2.5. A first quadrant homologically graded spectral sequence consists of pages E” for r > 2,
with B, = 0if s <0 or t < 0. There are differentials d": £, — E{,,, ,.; (the opposite direction to the
cohomological case) with (d")? = 0 and E™! = ker(d")/image(d"). We say that such a spectral sequence
converges to a graded group A, if there is a filtration 0 = F_ 14, < FydA, < ... < F,A, = A, and
isomorphisms FA, /Fs_1A, ~ EX

s, u—s"*

Theorem 2.6. Ifq: E — B is a fibration and R is a ring then there is a homologically graded Serre spectral
sequence

HS(B7Ht(F,R)) - H5+t(E;R).

There is also a relative version.

3. EXAMPLES OF THE SERRE SPECTRAL SEQUENCE

Example 3.1. Consider the fibration S* — S§?7*1 — CP". There is a Serre spectral sequence H*(CP") ®
H*(S') = H*S?"*1. Recall that

H*S' = Z[u] /u? lu =1
H*S* ! = Z[v] /v? lv| =2n+1
H*CP" = Z[z] /2" |z = 2.

Thus Ey = Z[u, x]/(u?, ") with u € EY' and 2 € E3°. It turns out that da(u) = z and da(z) = 0, and thus
that da(xFu) = 2%+ and do(z*) = 0. Tt follows that E3 = Z{1,uz"}, and there are no more differentials,
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so F3 = E.. The filtration on H?"T15%"+! is given by F* = ... = F?" = Zv, and F?"t! = 0, and the
isomorphism F27"/F?"+1 = E21 gends v to fux™. We illustrate the case n = 3:

t

Example 3.2. The above fibration can also be shifted to give a fibration
S5t CP" — CP*™.
This gives a spectral sequence
Z[z] ® E[u] = H*CP™ @ H*S*"*! — H*CP" = Z[z]/=""",

with z € E2° and u € ES*"'. The differentials dy, ..., da, 41 are all zero (there is nothing for them to hit).
Then dap42(u) = 2" and dapi2(z) = 0 s0 dopia(ziu) = 2L 1t follows that Eo,i3 = Z[z]/2" ™! and
there is no room for any more differentials.

Example 3.3. Given integers k < [, we can define the Milnor hypersurface

k
M = {([2],[w]) € CP* x CP' | > zw; = 0}.

1=0
Recall that
H*CP' = Z[z] /z'*!
H*CP* = Z[y)/y**!

There are obvious maps p: M — CP* and ¢q: M — CP', defined by p([z], [w]) = [z] and ¢([2], [w]) = [w)].
We write x for p*x € H2M and y for ¢*y € H?>M. It turns out that

H*M = Z[z,y] /("L gyt — ¢l + . £ 2h).

This has a basis H*M = Z{z'y/ | i <k, j < }. One can show that there is a fibration CP'~' — M 2 CP*.
The natural filtration of H*M arising from this filtration is given by

F2*H*M = F*~1H*M = ideal generated by y*.
The associated graded ring G*H*M =[], F*/F**! is given by
G H*M = 2[7, 31/ ),

where T € G2 is the image of z in F2/F?, and § € G° is the image of y in FO/F'. (Because y' =
y' =tz — ... F 2! € F', we have 7' = 0 in the natural ring structure on G*.) Thus, G* has rather simpler
structure than H*M does.

There is a Serre spectral sequence H*(CP*) @ H*(CP') = H*M. The E, page is just Z[z, z]/ (11, 21).
Note that z and z both have even total degree (where the total degree of E5' is s+t) and that all differentials
run from a slot of even total degree to one of odd total degree or vice versa, so all differentials are necessarily
zero. It follows that F., = E5, and we have an obvious identification of F., with G*.

If we were using this spectral sequence to calculate H* M, then we might be misled into believing that
y' = 0 in H*M. This example shows that care is needed in deducing the multiplicative structure of the
target ring H*FE from the E., page of the spectral sequence.
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We illustrate the case k = I = 3. We have written in the elements d,4? to show that they all lie in slots
where either s or t is odd, so they must all be zero.

t
y? zy? 22y? 23y?
day®
Y xy | dyy? | 23y 23y
d4y2
1 x 2 | dsy? | 2

S

Example 3.4. Consider the fibration U(n — 1) & U(n) % $2*~1 where ¢(A) = Ae,. We will use this to
calculate the cohomology of U(n). We claim that there are canonically defined elements a1 € H?*T1U(n)
for 0 < k < n such that
H*U(n) = E[al, as, ..., agn,ﬂ.

To see this, assume the corresponding thing for U(n —1) and consider the Serre spectral sequence H*S?*"~1®
H*U(n—1) = H*U(n). Let u be the generator of H?"~182"~1 5o the Ey page is Efagi+1 |0 <i<n—1]®
Elu], with agi+1 € Eg,2i+1 and u € E§n71,0. The whole page is thus concentrated in the 0’th and (2n —1)’st
columns, and the only possible differential is da,,_1. For each i < n—1 we have da,_1(a2;_1) € ESZ:%’%*”),
which lies below the axis ¢ = 0 and thus is zero. It is even easier to see that dg,—1(b) = 0. As dg,—1 is
a derivation, we see that it vanishes on the whole algebra generated by the a;’s and b, which is the whole
FEs,_1 page, so Es, = Ey. This means that in the natural filtration of H*U(n), the quotient F°/F! = E%
maps isomorphically by j* to H*U(n — 1), that F! = F? = ... = F?"~1 that F?" = 0, and that F?""lisa
free module over F°/F! on one generator ¢*u.

For each i < n — 1, the group E%?**! is the only nonzero term in total degree 2i + 1. It follows easily
that there is a unique element by; 1 € H*H1U(n) with j*bgi11 = ag;41. We also define bo, 1 = ¢*u. All
the b’s lie in odd degrees, so they anticommute. We thus get a map E[by,...,ba,—1] — H*U(n). The
element by,,_1 lies in F'!, so we get a map Elby,...,bap_3] — FO/Fl. Given that j* induces an isomorphism
F°/F!' — FElay,...,a2,-3] and j*by;_1 = ag;_1, we conclude that our map E[by,...,ba, 3] — F°/F! is an
isomorphism. As F?"~! is a free module over F?° /F ! on one generator by,_1, we conclude that our map
E[by,...,ban—1] — H*U(n) is also an isomorphism.

We illustrate the case n = 3.

t
aias ai1asu
as asu
daas
ai dsas a1y
1 d4a3 1




Example 3.5. Consider the fibration 2527"+1 — pPS§?n+l _, §2n+1 The path space PS2"*! is contractible,
so we have a Serre spectral sequence
Eu] @ H*QS*" ! — 7,
with u € E;"H’O. As the F5 page is concentrated in the columns s = 0 and s = 2n + 1, the only possible
differential is
dopy1: HY(QS?"TH) — HIZ2(QS* Ty,

As the spectral sequence converges to Z, we see that the Es, 2 page must just be Z, and so the above
differential must be an isomorphism for ¢ > 0. For 0 < t < 2n we know that H!=2"(QS5?"*1) = 0 so
H!(Q28%*1) = 0. Continuing inductively, we find that H?"*(Q8?"*+1) = Zz;, for some z; with g = 1 and
don+1(zk) = _1u, whereas H!(25*"H1) = 0 for t # 0 (mod 2n).

We can now determine the multiplicative structure. We have daj11(2g) = xx—1u, but the Leibniz rule

J

Example 3.6. Consider the fibration U(n) = QBU(n) — PBU(n) — BU(n). This gives a Serre spectral
sequence

gives dgy11(2%) = kx’f‘lu. It follows by induction that x} = klzy, and thus that Tjxp = ( J + K > itk

E;* = Z[Cl, A ,Cn] ® E[al, as, ... ,a2n_1] — Z7
with ¢; € Egi’o and ag;j_1 € Eg’zjfl. It is known that for ¢ < n we have
E;:—l—l = E;;_,'_Q = Z[Ci—i-h e ,Cn] (2] E[a2i+1, e ,agn_l]

with do;+1 = 0 and dajy2(agi+1) = ¢i+1. This leaves Fa,, = Eo, = Z.

Example 3.7. Let G be a finite group of order 22"*! where the centre Z has order 2 and the quotient
V = G/Z is elementary abelian. (These are called extraspecial 2-groups.) We have a fibration

BZ — BG — BYV.

As Z is central, the group V = 71 (BV) acts trivially on BZ and we have a Serre spectral sequence in mod
2 cohomology
H*(BV)® H*(BZ) = H*(BG).

Here BZ = RP® and so H*(BZ) = F[z] (where F means Z/2 and |z| = 1). If we choose an isomorphism
V = 024 we also get H*(BV) = F[z1,...,224]. More invariantly, we can say that H*(BV) is the symmetric
algebra F[V*] generated by H'(BV) = V* = Hom(V,F). There is a quadratic form go: V — F given by
g% = 290 for any g € G that maps to v € V. This can be regarded as an element of (V*®V,)x, = H?(BV),
and it works out that dy(2) = qo, leaving

B3 =F[2*] @ F[V*]/qo.

Now define ¢; € H2i+1(BV) recursively by ¢;11 = quiqi, and J; = (g; | j < i). It can be shown that for
1 < d we have ‘
Eyiiyg=---=Eyi =F[*]@F[V*]/J;

with d2i+1(z2%) = ¢;. For i > d it turns out that ¢; € J; and there are no further differentials. We end up
with B, = F[22'] @ F[V*]/J,.

For this to be compatible with the exactness properties of a spectral sequence, it must be true that g¢; is
not a zero divisor in F,[V*]/J;, for i = 0,...,d — 1. This can be proved directly, and was part of Quillen’s
proof that the spectral sequence works as described.

4. THE EILENBERG-MOORE SPECTRAL SEQUENCE

)

Suppose we have a homotopy pullback square

lf

R

R
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This makes H*X and H*Y into algebras (and thus modules) over H*Z, so we can define groups Torﬁ; Z(H*X, H*Y).
There is then a spectral sequence

Torg*Z(H*X7 H*Y) — Ht—sW

Example 4.1. Consider the square

S2n+1 —=1

L

CpP" ——CP™.
This gives an Eilenberg-Moore spectral sequence
Tor™(Z, Zfa] /a"+!) = Elul,
where |z| = 2 and |u| = 2n + 1. We have a projective resolution
(Pr = Py — Zfa] /") = (Zzla © Zla] 5 Zla] /")
n+1

where d(a) = ™. Here a has internal degree 2n+ 2 (so that d preserves degrees) and cohomological degree
1 (because it lies in P;). The relevant Tor groups are the homology groups of the complex Z ®z,) P. =

(Za LR Z), or in other words Z{1,a}, with 1 € Toryy and a € Tory 2,+2. There is no room for differentials,
and a represents an element in H2"T152"+! ag expected.

Example 4.2. Consider the square

U(n) I

i BU(n).

We have H*BU (n) = Z[ecy, . .., ¢n] (with |¢;| = 2i) and H*U(n) = Elay,as, ..., a,—1] (with |a;| = 4). This
gives a spectral sequence

TorZlevel(7,7) — Elas, ..., agn_1].
To see how this works, consider the ring
R** = Z[Cl, PN ,Cn] ® E[bh ey bn]

We give this the bigrading |c;| = (0,2¢) and |b;| = (1,2i). We then define d: Rsy — Rs_1+ by d(c;) =0
and d(b;) = ¢; and the Leibniz rule d(zy) = (dz)y + (—1)°x2 dy for © € Rs. It is clear that R is free as a
module over H*BU(n). We also claim that H,(R.;d) = ker(d)/image(d) = Z. This can be seen directly
when n = 1. The general case is essentially the tensor product of n copies of the n = 1 case, so the claim
follows by the Kiinneth theorem. This means that R.. gives a projective resolution of Z over H*BU(n),
which we can use to calculate Tor. We see that Z ® g+ gy (n) Rex = Elb1, ..., by], with trivial differential, so
Torf! " BU () (Z,Z) = Elby,...,b,]. Here b; has bidegree (1,2i) and so represents a class in H?~1U(n), as
expected.

5. THE ROTHENBERG-STEENROD SPECTRAL SEQUENCE

Let G be a topological group, and suppose that G acts continuously on a space X. We can then form the
Borel construction Xp¢ = EG x¢ X (which is the same as X/G if the action is free). Note that the group
structure makes H,G a ring (possibly noncommutative), and H,(X) is a module over H,(G). There is then
a Rothenberg-Steenrod spectral sequence

Torl}*“(Z, Ho(X)) = Hor+(Xna)-
In particular, by taking X to be a point (so Xc = BG) we get a spectral sequence

Tor-%(Z2,7) = H,,,(BG).
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Although QY is not actually a topological group, analogues of the above still work. In particular, if Y is
connected then BQY =Y and we get a spectral sequence

Tor?-Y(2,7) = H..Y.

Example 5.1. Consider the case Y = S2"*1. Then H,QY is dual to H*QY and thus has a Z in each
dimension 2nk and zeros elsewhere. It can be shown that H,QY is actually a polynomial algebra Z[w] with
lw| = 2n. Tt follows that Tor™*Y(Z,Z) = Z{1,u} where u is in Tor; 5, and thus represents a class in
Ho,15%"+1 | as expected. There is no room for any differentials.

Example 5.2. Now instead take Y = U(n). There is a map p: XCP~' — U(n), taking (z, L) to the map
g = z1p+1,1, with eigenvalue z on L and 1 on L*. The homology H,U(n) is the exterior algebra generated
by p*}NI*Z(CPi_l7 so HU(n) = Elug, . .., up_1] with |u;| = 2i + 1. Adjointly, we have a map p#: CP" ' —
QU (n), which gives a map from the symmetric algebra on H,CP" to H,QU(n). This symmetric algebra is
Z[bo, . .. ,bn_1] (with |b;| = 24), and it is known that in fact H,QU(n) = Zbo,...,bn_1][by']. The module
Z = H,(point) is the quotient of H, QU (n) by (bo—1,b1,...,b,—1). One can write down an explicit resolution
as for polynomial algebras and check that Tori*QU(”)(Z, Z) is an exterior algebra on n generators. It follows
that there can be no differentials in the Rothenberg-Steenrod spectral sequence.

6. THE HOMOTOPY FIXED POINT SPECTRAL SEQUENCE

Let C = (c| ¢® = 1) act on KU by complex conjugation. It is supposed to work out that KU = KO.
This gives a homotopy fixed point spectral sequence

Es' = H*(C;KU') = KO"** dp: BYf — Eytriori

Here KU* = Z[v*'] with v € KU 2 and ¢(v) = —v. Let z be the generator of E3° = H2(C;Z) = Z/2 and
let w be the generator of Ey~* = H'(C;Zv) = Z/2. We then have

B = Zv*, 0]/ (20) & (Z/2)*%, alu,
I think it works out that w? = 12z, so we can rewrite this as

E3* = 72 w]/(2w).

I think that do = 0 and d3(v?) = w? but d3(w) = 0 (so d3(x) = v~*w® = 22w). This gives

E3 = 21, 202, w, w?}/ (2w, 2w?).
This leaves no room for further differentials (as E5* = 0 for * < 0 or * > 2) so E5 = Fo, and this agrees
with KO*. The element w represents the Hopf map n € 7 KO.

We can analyse kU"C in the same way. Here we have
B3 =7V, x]/(2x) @ (Z/2)[V?, z]w.

This is no longer generated by v and w. We again have d3(v?) = w? and dz(z) = 2?w. The E3 page is
truncated to t < 0, and the dz-cycles 22+2, which used to be hit by v~2x%"w, are no longer hit. We end up
with

T (kU"Y) = 7, (kO) @ Fo{x®*2 | i > 0}.

2142 yepresents a class in m_o;_o(kUM).

Here

7. THE ATIYAH-HIRZEBRUCH SPECTRAL SEQUENCE

For any space X and any generalised cohomology theory R* there is an Atiyah-Hirzebruch spectral

sequence

Es' = H°(X;R") = R°*T'X.
In the description of the Eo term, R' means Rf(point), which is m_; of the representing spectrum. The
differentials respect the R*-module structure.

In particular, for any prime p (taken to be odd, for simplicity) and any n > 0 we have a theory K(n)
(called Morava K-theory) with K (n)* = F,[vF!], where v,, € K(n)?~2P". This gives an Atiyah-Hirzebruch
spectral sequence

H*(X;F,)® K(n)" = H*(X; K(n)") = K(n)"X.
7



It is known that d, = 0 for r < 2p"™ — 2 whereas dopn_2(z) = v,Qn(x) for x € H*(X;F,). Here Q,
is the n’th Milnor Bockstein operation in the mod p Steenrod algebra, given inductively by Q¢ = § and

Qip1=P" Qi — Q:P"".

Example 7.1. Let X be such that H*(X;F,) is concentrated in even degrees. Then each page of the
spectral sequence for K(n)*X is concentrated in (even,even) bidegree and thus in even total degree. The
differentials d,- all shift total degree by one, so they are zero. It follows that E5 = E, and that the associated
graded for the natural filtration of K (n)*X is isomorphic to H*(X;F,)® K(n)*. This applies to X = CP°,
for example.

Example 7.2. It is known that the differentials in the AHSS are always torsion-valued. Thus, if the Ea-
page is torsion-free, then the spectral sequence must collapse. This applies to the AHSS for MU*U(n), for
example.

Example 7.3. Consider X = BC), where H*(BC,;F,) = F,[z] ® E[a]. We have $(a) = z and B3(z7) =0

and Pi(27) = ( s (13_ L)i > 23+ P=Di and it follows that Q;(az?) = x7+?" and Q;(27) = 0. Thus, in the
spectral sequence for K (n)*BC, we have

E, =Tz, vfl] ® Elal,

with z € E2° and a € EI° and v, € ES’Q_an. The first differential is given by dapn_2(a) = v,2?" and
dopn—2(x) = 0, which leaves

Eopn 1 = Fyla, vl /zP".
This is concentrated in the vertical band 0 < s < 2p™ — 2, and all remaining differentials are so long that

they must either start or end outside this band. It follows that E, = Eopn_1. It can be shown that there
are no filtration issues and so K (n)*BC), is isomorphic to Es.

Example 7.4. Consider instead the AHSS for KU*BCj. It is standard that H*BCy = H*RP>® = Z[x]/2x,
with |z] = 2. Our E, term is just H*(BCy; K*) = Z[y*!, z]/2z, with v € EY™% and € E2°. This is
concentrated in even total degree, so there are no differentials. However, there are strong filtration effects.
To explain this, put y = va € KYBC,. It turns out that KU°BCy = Z & Z,y, where Z; denotes the 2-adic
integers and y? = 2y. The natural filtration of K°BCj is given by F?~! = F?! = (y), which is the same
as (2i71y) for i > 0. The associated graded is thus FO/F! = Z and F?/F*%! = (Z/2).y*, which gives the
terms E2:=2¢ in the spectral sequence. Multiplication by powers of v gives everything else.

8. THE ADAMS SPECTRAL SEQUENCE

Let A denote the mod 2 Steenrod algebra. If we let H denote mod 2 cohomology then H*(X) is naturally
an A-module for any spectrum X, and there is a classical Adams spectral sequence

Ext (H*(X),F) = m_o(X)}.
In particular, we get a spectral sequence
Ext (F,F) = m_4(5")5.

Here the groups 74 (S) are finite for & > 0, so the 2-adic completion simply replaces my(S°) = Z by Zy and
71,(S°) by the 2-torsion part of 7 (S°) for k > 0.

9. OTHER GOOD EXAMPLES

SSS, RSSS and EMSS for QU (n) — 1 — U(n).

ASS for MO, and MU,. Small parts of ASS for 7.(SY).
Weierstrass SS for 7. (TMF).

EHPSS



10. CONSTRUCTIONS
Let A be an abelian group with a self-map d: A — A satisfying d> = 0. Suppose we have a filtration
A>F 12 F, > Fpq 2> -
with dF} < F}, and suppose for simplicity that F, = A for k < 0 and F, = 0 for k > 0. Put
Wi ={a€F;|da€ Fryr_1}
2y, = Wi + Fra
Bj = (d(Fr—rs2) N Fi) + Frr = d(W] 2} 5) + Frpa
By = 7y /By, = (Wi + By)/ By

Note that

Z} = Fy,

Bl = Fi

E} = Fy/Fria
and

Fiy1 < Bp < By < (dANF) + Fypn < 237 < Zf < FR
Lemma 10.1. There is a well-defined map d": E}, — Ep,,. | given by
d"(a+ By)=da+ B,

fora e W[.
Proof. First, if a € W] then da € Fyyr_1 and d*(a) = 0 so da € W}, soda+ Bj,,_, € B, _,.
Next, if we have another representation a + B}, = o/ + B}, with ' € W], then we must have ' = a+ b

for some b € W/ N Bj,. As b € B} we have b = du + v, where v € Fj,_, 3 and du € F}, and v € Fj4;.
It follows that da’ — da = db = dv, and db € Fyi,—1 and dv € d(Fj4+1). From the definitions we have
By, =d(Fry1) + Fryr_1, 80 da’ —da € B}, as required. |

Lemma 10.2. ker(d": B — E}, . _) = Z,:JFI/BT ={a+Bj|a€ Wl:Jrl}-

Proof. Given an element u = a + B} with a € W T' < W}, we have d"u = da + By, ,_1, but da € Fiy, <
Bi 1 s0 d"u = 0. Conversely, suppose we have an element v € Ej; with d"u = 0. We can represent u as
u = a + By, for some a € W/, and then we must have

da € By 1 = (d(Frt1) O Frgr—1) + Frr

We can thus choose b € F, 1 and ¢ € Fj,4, with da = db+ c and db € Fj,_,;. It follows that b € W N B,
so the element a’ = a — b again lies in W} and u = o/ + Bj. We have da’ = ¢ € Fj1,, so a’ € W[ 1!, so
u € Z,; /By as claimed. O

Lemma 10.3. img(d": E}_,_,, — E}) = B; ™" /Bj.

Proof. The relevant image is by definition (d(Wj_,. ;) + B;)/Bj. On the other hand, we have Bt =
d(W{_,4+1) + Frr1. The claim follows easily. O

Corollary 10.4. (d")?> =0, and ET™* = H(E?,d").
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