
SPECTRAL SEQUENCES

N. P. STRICKLAND

1. Introduction

Definition 1.1. A (multiplicative, first quadrant, cohomologically graded) spectral sequence consists of a
sequence of “pages” Er for r ≥ 2. Each page is a bigraded Abelian group Est

r , with Est
r = 0 if s < 0 or t < 0.

It come equipped with a differential
dr : Est

r −→ Es+r,t−r+1
r

satisfying d2
r = 0, and the next page Er+1 is the cohomology of Er with respect to dr:

Est
r+1 =

ker(dr : Est
r −→ Es+r,t−r+1

r )
image(dr : Es−r,t+r−1

r −→ Est
r )

.

w

u

4
4
4
4
4
4
4
4
4
446

d4









�

d2
r

r

r
s

t

Moreover, there are product maps Est
r ⊗Euv

r −→ Es+u,t+v
r making Er into a bigraded ring. It is commutative

up to sign, and dr is a derivation: if a ∈ Est
r and b ∈ Euv

r then

ab = (−1)(s+t)(u+v)ba

dr(ab) = dr(a)b + (−1)s+tadr(b).

Note that for fixed s and t, when r is sufficiently large the differential dr starting at Est
r ends below the

s axis, and thus is zero; and the differential dr ending at Est
r starts to the left of the t axis, and thus is also

zero. It follows that Est
r = Est

r+1 when r � 0. We write Est
∞ for this group.

We say that the spectral sequence converges to a graded ring A∗ if there is a given filtration

Au = F 0Au ≥ F 1Au ≥ . . . ≥ FuAu ≥ Fu+1Au = 0

such that F sAu.F tAv ⊆ F s+tAu+v, and given isomorphisms

F sAu/F s+1Au = Es,u−s
∞

that are compatible with the ring structures on E∞ and A.
If so, note that there are edge maps

Au � F 0Au/F 1Au = E0,u
∞ � E0,u

2

Eu,0
2 � Eu,0

∞ = FuAu � Au.
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2. The Serre spectral sequence

The main theorem is that for any fibration F −→ E −→ B, there are spectral sequences relating the
(co)homology of F , E and B. We first give a theorem in which we make some restrictive assumptions to
simplify the statement.

Theorem 2.1. Let F −→ E
q−→ B be a fibration, with B simply connected. Let K be a field, take all

cohomology with coefficients in K, and assume that HnB and HnF are finite-dimensional for all n. Then
there is a Serre spectral sequence with Est

2 = Hs(B)⊗K Ht(F ), which converges to the ring H∗E. (The last
sentence is often written: there is a Serre spectral sequence Hs(B)⊗K Ht(F ) =⇒ Hs+tE.)

We now give a more complicated statement which is more generally valid.

Theorem 2.2. Let q : E −→ B be a fibration, and R a commutative ring. Then there is a Serre spectral
sequence

Hs(B;Ht(F ;R)) =⇒ Hs+t(E;R),
where Ht(F ;R) means the local coefficient system b 7→ Ht(q−1{b};R). Similarly, if B′ is a subspace of B
and E′ = q−1B′ then there is a relative Serre spectral sequence

Hs(B,B′;Ht(F ;R)) =⇒ Hs+t(E,E′;R).

(This does not have a ring structure, but it does have a module structure over the previous spectral sequence.)

We will say nothing about the theory of local coefficient systems except to explain when they are un-
necessary. Recall that there is a natural action of the H-group ΩB on the fibre Pq ' F . Using this, each
element of π0ΩB = π1B gives a homotopy class of maps F −→ F , and thus a map H∗(F ;R) −→ H∗(F ;R).
This construction gives an action of the group π1B on H∗F .

Proposition 2.3. If F −→ E
q−→ B is a fibration, B is connected, and π1B acts trivially on H∗(F ;R), then

the E2 terms of the above spectral sequences are just Hs(B;Ht(F ;R)) and Hs(B,B′;Ht(F ;R)).

Proposition 2.4. If E and B are H-groups, and q : E −→ B is both a fibration and an H-map, then π1B
acts trivially on F .

We also have Serre spectral sequences in homology (as opposed to cohomology). We give another definition
to summarise their properties.

Definition 2.5. A first quadrant homologically graded spectral sequence consists of pages Er for r ≥ 2,
with Er

st = 0 if s < 0 or t < 0. There are differentials dr : Er
st −→ Er

s+r,t−r+1 (the opposite direction to the
cohomological case) with (dr)2 = 0 and Er+1 = ker(dr)/ image(dr). We say that such a spectral sequence
converges to a graded group A∗ if there is a filtration 0 = F−1Au ≤ F0Au ≤ . . . ≤ FuAu = Au and
isomorphisms FsAu/Fs−1Au ' E∞

s,u−s.

Theorem 2.6. If q : E −→ B is a fibration and R is a ring then there is a homologically graded Serre spectral
sequence

Hs(B;Ht(F ;R)) =⇒ Hs+t(E;R).
There is also a relative version.

3. Examples of the Serre spectral sequence

Example 3.1. Consider the fibration S1 −→ S2n+1 −→ CPn. There is a Serre spectral sequence H∗(CPn)⊗
H∗(S1) =⇒ H∗S2n+1. Recall that

H∗S1 = Z[u]/u2 |u| = 1

H∗S2n+1 = Z[v]/v2 |v| = 2n + 1

H∗CPn = Z[x]/xn+1 |x| = 2.

Thus E2 = Z[u, x]/(u2, xn+1) with u ∈ E01
2 and x ∈ E20

2 . It turns out that d2(u) = x and d2(x) = 0, and thus
that d2(xku) = xk+1 and d2(xk) = 0. It follows that E3 = Z{1, uxn}, and there are no more differentials,
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so E3 = E∞. The filtration on H2n+1S2n+1 is given by F 0 = . . . = F 2n = Zv, and F 2n+1 = 0, and the
isomorphism F 2n/F 2n+1 = E2n,1

∞ sends v to ±uxn. We illustrate the case n = 3:
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Example 3.2. The above fibration can also be shifted to give a fibration

S2n+1 → CPn → CP∞.

This gives a spectral sequence

Z[x]⊗ E[u] = H∗CP∞ ⊗H∗S2n+1 =⇒ H∗CPn = Z[x]/xn+1,

with x ∈ E2,0
2 and u ∈ E0,2n+1

2 . The differentials d2, . . . , d2n+1 are all zero (there is nothing for them to hit).
Then d2n+2(u) = xn+1 and d2n+2(x) = 0 so d2n+2(xiu) = xi+n+1. It follows that E2n+3 = Z[x]/xn+1 and
there is no room for any more differentials.

Example 3.3. Given integers k ≤ l, we can define the Milnor hypersurface

M = {([z], [w]) ∈ CP k × CP l |
k∑

i=0

ziwi = 0}.

Recall that

H∗CP l = Z[x]/xl+1

H∗CP k = Z[y]/yk+1

There are obvious maps p : M −→ CP k and q : M −→ CP l, defined by p([z], [w]) = [z] and q([z], [w]) = [w].
We write x for p∗x ∈ H2M and y for q∗y ∈ H2M . It turns out that

H∗M = Z[x, y]/(xk+1, yl − yl−1x + . . .± xl).

This has a basis H∗M = Z{xiyj | i ≤ k , j < l}. One can show that there is a fibration CP l−1 −→ M
p−→ CP k.

The natural filtration of H∗M arising from this filtration is given by

F 2sH∗M = F 2s−1H∗M = ideal generated by ys.

The associated graded ring G∗H∗M =
∏

s F s/F s+1 is given by

G∗H∗M = Z[x, y]/(xk+1, yl),

where x ∈ G2 is the image of x in F 2/F 3, and y ∈ G0 is the image of y in F 0/F 1. (Because yl =
yl−1x − . . . ∓ xl ∈ F 1, we have yl = 0 in the natural ring structure on G∗.) Thus, G∗ has rather simpler
structure than H∗M does.

There is a Serre spectral sequence H∗(CP k)⊗H∗(CP l) =⇒ H∗M . The E2 page is just Z[x, z]/(xk+1, zl).
Note that x and z both have even total degree (where the total degree of Est

r is s+t) and that all differentials
run from a slot of even total degree to one of odd total degree or vice versa, so all differentials are necessarily
zero. It follows that E∞ = E2, and we have an obvious identification of E∞ with G∗.

If we were using this spectral sequence to calculate H∗M , then we might be misled into believing that
yl = 0 in H∗M . This example shows that care is needed in deducing the multiplicative structure of the
target ring H∗E from the E∞ page of the spectral sequence.
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We illustrate the case k = l = 3. We have written in the elements dry
2 to show that they all lie in slots

where either s or t is odd, so they must all be zero.
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Example 3.4. Consider the fibration U(n − 1)
j−→ U(n)

q−→ S2n−1, where q(A) = Aen. We will use this to
calculate the cohomology of U(n). We claim that there are canonically defined elements a2k+1 ∈ H2k+1U(n)
for 0 ≤ k < n such that

H∗U(n) = E[a1, a3, . . . , a2n−1].
To see this, assume the corresponding thing for U(n−1) and consider the Serre spectral sequence H∗S2n−1⊗
H∗U(n−1) =⇒ H∗U(n). Let u be the generator of H2n−1S2n−1, so the E2 page is E[a2i+1 | 0 ≤ i < n−1]⊗
E[u], with a2i+1 ∈ E0,2i+1

2 and u ∈ E2n−1,0
2 . The whole page is thus concentrated in the 0’th and (2n− 1)’st

columns, and the only possible differential is d2n−1. For each i < n−1 we have d2n−1(a2i−1) ∈ E
2n−1,2(i−n)
2n−1 ,

which lies below the axis t = 0 and thus is zero. It is even easier to see that ddn−1(b) = 0. As d2n−1 is
a derivation, we see that it vanishes on the whole algebra generated by the ai’s and b, which is the whole
E2n−1 page, so E∞ = E2. This means that in the natural filtration of H∗U(n), the quotient F 0/F 1 = E0∗

∞
maps isomorphically by j∗ to H∗U(n− 1), that F 1 = F 2 = . . . = F 2n−1, that F 2n = 0, and that F 2n−1 is a
free module over F 0/F 1 on one generator q∗u.

For each i < n − 1, the group E0,2i+1
∞ is the only nonzero term in total degree 2i + 1. It follows easily

that there is a unique element b2i+1 ∈ H2i+1U(n) with j∗b2i+1 = a2i+1. We also define b2n−1 = q∗u. All
the b’s lie in odd degrees, so they anticommute. We thus get a map E[b1, . . . , b2n−1] −→ H∗U(n). The
element b2n−1 lies in F 1, so we get a map E[b1, . . . , b2n−3] −→ F 0/F 1. Given that j∗ induces an isomorphism
F 0/F 1 −→ E[a1, . . . , a2n−3] and j∗b2i−1 = a2i−1, we conclude that our map E[b1, . . . , b2n−3] −→ F 0/F 1 is an
isomorphism. As F 2n−1 is a free module over F 0/F 1 on one generator b2n−1, we conclude that our map
E[b1, . . . , b2n−1] −→ H∗U(n) is also an isomorphism.

We illustrate the case n = 3.
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Example 3.5. Consider the fibration ΩS2n+1 → PS2n+1 → S2n+1. The path space PS2n+1 is contractible,
so we have a Serre spectral sequence

E[u]⊗H∗ΩS2n+1 =⇒ Z,

with u ∈ E2n+1,0
2 . As the E2 page is concentrated in the columns s = 0 and s = 2n + 1, the only possible

differential is
d2n+1 : Ht(ΩS2n+1) → Ht−2n(ΩS2n+1)u.

As the spectral sequence converges to Z, we see that the E2n+2 page must just be Z, and so the above
differential must be an isomorphism for t > 0. For 0 < t < 2n we know that Ht−2n(ΩS2n+1) = 0 so
Ht(ΩS2n+1) = 0. Continuing inductively, we find that H2nk(ΩS2n+1) = Zxk for some xk with x0 = 1 and
d2n+1(xk) = xk−1u, whereas Ht(ΩS2n+1) = 0 for t 6= 0 (mod 2n).

We can now determine the multiplicative structure. We have d2n+1(xk) = xk−1u, but the Leibniz rule

gives d2n+1(xk
1) = kxk−1

1 u. It follows by induction that xk
1 = k!xk, and thus that xjxk =

(
j + k

j

)
xj+k.

Example 3.6. Consider the fibration U(n) = ΩBU(n) → PBU(n) → BU(n). This gives a Serre spectral
sequence

E∗∗
2 = Z[c1, . . . , cn]⊗ E[a1, a3, . . . , a2n−1] =⇒ Z,

with ci ∈ E2i,0
2 and a2j−1 ∈ E0,2j−1

2 . It is known that for i < n we have

E∗∗
2i+1 = E∗∗

2i+2 = Z[ci+1, . . . , cn]⊗ E[a2i+1, . . . , a2n−1]

with d2i+1 = 0 and d2i+2(a2i+1) = ci+1. This leaves E2n = E∞ = Z.

Example 3.7. Let G be a finite group of order 22n+1 where the centre Z has order 2 and the quotient
V = G/Z is elementary abelian. (These are called extraspecial 2-groups.) We have a fibration

BZ → BG → BV.

As Z is central, the group V = π1(BV ) acts trivially on BZ and we have a Serre spectral sequence in mod
2 cohomology

H∗(BV )⊗H∗(BZ) =⇒ H∗(BG).

Here BZ = RP∞ and so H∗(BZ) = F[z] (where F means Z/2 and |z| = 1). If we choose an isomorphism
V = C2d

2 we also get H∗(BV ) = F[x1, . . . , x2d]. More invariantly, we can say that H∗(BV ) is the symmetric
algebra F[V ∗] generated by H1(BV ) = V ∗ = Hom(V, F). There is a quadratic form q0 : V → F given by
g2 = zq0(v) for any g ∈ G that maps to v ∈ V . This can be regarded as an element of (V ∗⊗V∗)Σ2 = H2(BV ),
and it works out that d2(z) = q0, leaving

E3 = F[z2]⊗ F[V ∗]/q0.

Now define qi ∈ H2i+1(BV ) recursively by qi+1 = Sq2i

qi, and Ji = (qj | j < i). It can be shown that for
i < d we have

E2i−1+2 = · · · = E2i+1 = F[z2i

]⊗ F[V ∗]/Ji

with d2i+1(z2i

) = qi. For i ≥ d it turns out that qi ∈ Jd and there are no further differentials. We end up
with E∞ = F[z2d

]⊗ F[V ∗]/Jd.
For this to be compatible with the exactness properties of a spectral sequence, it must be true that qi is

not a zero divisor in Fp[V ∗]/Ji, for i = 0, . . . , d − 1. This can be proved directly, and was part of Quillen’s
proof that the spectral sequence works as described.

4. The Eilenberg-Moore spectral sequence

Suppose we have a homotopy pullback square

W //

��

X

��
Y // Z
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This makes H∗X and H∗Y into algebras (and thus modules) over H∗Z, so we can define groups TorH∗Z
pq (H∗X, H∗Y ).

There is then a spectral sequence

TorH∗Z
st (H∗X, H∗Y ) =⇒ Ht−sW.

Example 4.1. Consider the square

S2n+1 //

��

1

��
CPn // CP∞.

This gives an Eilenberg-Moore spectral sequence

TorZ[x]
st (Z, Z[x]/xn+1) =⇒ E[u],

where |x| = 2 and |u| = 2n + 1. We have a projective resolution

(P1 → P0 → Z[x]/xn+1) = (Z[x]a d−→ Z[x] ε−→ Z[x]/xn+1)

where d(a) = xn+1. Here a has internal degree 2n+2 (so that d preserves degrees) and cohomological degree
1 (because it lies in P1). The relevant Tor groups are the homology groups of the complex Z ⊗Z[x] P∗ =

(Za
0−→ Z), or in other words Z{1, a}, with 1 ∈ Tor00 and a ∈ Tor1,2n+2. There is no room for differentials,

and a represents an element in H2n+1S2n+1 as expected.

Example 4.2. Consider the square

U(n) //

��

1

��
1 // BU(n).

We have H∗BU(n) = Z[c1, . . . , cn] (with |ci| = 2i) and H∗U(n) = E[a1, a3, . . . , a2n−1] (with |ai| = i). This
gives a spectral sequence

TorZ[c1,...,cn]
∗∗ (Z, Z) → E[a1, . . . , a2n−1].

To see how this works, consider the ring

R∗∗ = Z[c1, . . . , cn]⊗ E[b1, . . . , bn].

We give this the bigrading |ci| = (0, 2i) and |bi| = (1, 2i). We then define d : Rst → Rs−1,t by d(ci) = 0
and d(bi) = ci and the Leibniz rule d(xy) = (dx)y + (−1)sx dy for x ∈ Rst. It is clear that R is free as a
module over H∗BU(n). We also claim that H∗(R∗; d) = ker(d)/ image(d) = Z. This can be seen directly
when n = 1. The general case is essentially the tensor product of n copies of the n = 1 case, so the claim
follows by the Künneth theorem. This means that R∗∗ gives a projective resolution of Z over H∗BU(n),
which we can use to calculate Tor. We see that Z⊗H∗BU(n) R∗∗ = E[b1, . . . , bn], with trivial differential, so
TorH∗BU(n)(Z, Z) = E[b1, . . . , bn]. Here bi has bidegree (1, 2i) and so represents a class in H2i−1U(n), as
expected.

5. The Rothenberg-Steenrod spectral sequence

Let G be a topological group, and suppose that G acts continuously on a space X. We can then form the
Borel construction XhG = EG×G X (which is the same as X/G if the action is free). Note that the group
structure makes H∗G a ring (possibly noncommutative), and H∗(X) is a module over H∗(G). There is then
a Rothenberg-Steenrod spectral sequence

TorH∗G
st (Z,H∗(X)) =⇒ Hs+t(XhG).

In particular, by taking X to be a point (so XhG = BG) we get a spectral sequence

TorH∗G
st (Z, Z) =⇒ Hs+t(BG).
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Although ΩY is not actually a topological group, analogues of the above still work. In particular, if Y is
connected then BΩY = Y and we get a spectral sequence

TorH∗ΩY (Z, Z) =⇒ H∗Y.

Example 5.1. Consider the case Y = S2n+1. Then H∗ΩY is dual to H∗ΩY and thus has a Z in each
dimension 2nk and zeros elsewhere. It can be shown that H∗ΩY is actually a polynomial algebra Z[w] with
|w| = 2n. It follows that TorH∗ΩY (Z, Z) = Z{1, u} where u is in Tor1,2n and thus represents a class in
H2n+1S

2n+1, as expected. There is no room for any differentials.

Example 5.2. Now instead take Y = U(n). There is a map ρ : ΣCPn−1
+ → U(n), taking (z, L) to the map

g = z.1L+1L⊥ , with eigenvalue z on L and 1 on L⊥. The homology H∗U(n) is the exterior algebra generated
by ρ∗H̃∗ΣCPn−1

+ , so H∗U(n) = E[u0, . . . , un−1] with |ui| = 2i + 1. Adjointly, we have a map ρ# : CPn−1 →
ΩU(n), which gives a map from the symmetric algebra on H∗CPn to H∗ΩU(n). This symmetric algebra is
Z[b0, . . . , bn−1] (with |bi| = 2i), and it is known that in fact H∗ΩU(n) = Z[b0, . . . , bn−1][b−1

0 ]. The module
Z = H∗(point) is the quotient of H∗ΩU(n) by (b0−1, b1, . . . , bn−1). One can write down an explicit resolution
as for polynomial algebras and check that TorH∗ΩU(n)

∗∗ (Z, Z) is an exterior algebra on n generators. It follows
that there can be no differentials in the Rothenberg-Steenrod spectral sequence.

6. The homotopy fixed point spectral sequence

Let C = 〈c | c2 = 1〉 act on KU by complex conjugation. It is supposed to work out that KUhC = KO.
This gives a homotopy fixed point spectral sequence

Est
2 = Hs(C;KU t) =⇒ KOt+s dr : Est

r → Es+r,t−r+1
r

Here KU∗ = Z[ν±1] with ν ∈ KU−2 and c(ν) = −ν. Let x be the generator of E2,0
2 = H2(C; Z) = Z/2 and

let w be the generator of E1,−2
2 = H1(C; Zν) = Z/2. We then have

E∗∗
2 = Z[ν±2, x]/(2x)⊕ (Z/2)[ν±2, x]w.

I think it works out that w2 = ν2x, so we can rewrite this as

E∗∗
2 = Z[ν±2, w]/(2w).

I think that d2 = 0 and d3(ν2) = w3 but d3(w) = 0 (so d3(x) = ν−4w5 = x2w). This gives

E∗∗
3 = Z[ν±4]{1, 2ν2, w, w2}/(2w, 2w2).

This leaves no room for further differentials (as Es∗
3 = 0 for ∗ < 0 or ∗ > 2) so E3 = E∞, and this agrees

with KO∗. The element w represents the Hopf map η ∈ π1KO.
We can analyse kUhC in the same way. Here we have

E∗∗
2 = Z[ν2, x]/(2x)⊕ (Z/2)[ν2, x]w.

This is no longer generated by ν and w. We again have d3(ν2) = w3 and d3(x) = x2w. The E3 page is
truncated to t ≤ 0, and the d3-cycles x2i+2, which used to be hit by ν−2x2iw, are no longer hit. We end up
with

π∗(kUhC) = π∗(kO)⊕ F2{x2i+2 | i ≥ 0}.
Here x2i+2 represents a class in π−2i−2(kUhC).

7. The Atiyah-Hirzebruch spectral sequence

For any space X and any generalised cohomology theory R∗ there is an Atiyah-Hirzebruch spectral
sequence

Est
2 = Hs(X;Rt) =⇒ Rs+tX.

In the description of the E2 term, Rt means Rt(point), which is π−t of the representing spectrum. The
differentials respect the R∗-module structure.

In particular, for any prime p (taken to be odd, for simplicity) and any n > 0 we have a theory K(n)
(called Morava K-theory) with K(n)∗ = Fp[v±1

n ], where vn ∈ K(n)2−2pn

. This gives an Atiyah-Hirzebruch
spectral sequence

H∗(X; Fp)⊗K(n)∗ = H∗(X;K(n)∗) =⇒ K(n)∗X.
7



It is known that dr = 0 for r < 2pn − 2 whereas d2pn−2(x) = vnQn(x) for x ∈ H∗(X; Fp). Here Qn

is the n’th Milnor Bockstein operation in the mod p Steenrod algebra, given inductively by Q0 = β and
Qi+1 = P pi

Qi −QiP
pi

.

Example 7.1. Let X be such that H∗(X; Fp) is concentrated in even degrees. Then each page of the
spectral sequence for K(n)∗X is concentrated in (even,even) bidegree and thus in even total degree. The
differentials dr all shift total degree by one, so they are zero. It follows that E2 = E∞ and that the associated
graded for the natural filtration of K(n)∗X is isomorphic to H∗(X; Fp)⊗K(n)∗. This applies to X = CP∞,
for example.

Example 7.2. It is known that the differentials in the AHSS are always torsion-valued. Thus, if the E2-
page is torsion-free, then the spectral sequence must collapse. This applies to the AHSS for MU∗U(n), for
example.

Example 7.3. Consider X = BCp, where H∗(BCp; Fp) = Fp[x] ⊗ E[a]. We have β(a) = x and β(xj) = 0

and P i(xj) =
(

j + (p− 1)i
j

)
xj+(p−1)i, and it follows that Qi(axj) = xj+pi

and Qi(xj) = 0. Thus, in the

spectral sequence for K(n)∗BCp we have

E2 = Fp[x, v±1
n ]⊗ E[a],

with x ∈ E20
2 and a ∈ E10

2 and vn ∈ E0,2−2pn

2 . The first differential is given by d2pn−2(a) = vnxpn

and
d2pn−2(x) = 0, which leaves

E2pn−1 = Fp[x, v±1
n ]/xpn

.

This is concentrated in the vertical band 0 ≤ s ≤ 2pn − 2, and all remaining differentials are so long that
they must either start or end outside this band. It follows that E∞ = E2pn−1. It can be shown that there
are no filtration issues and so K(n)∗BCp is isomorphic to E∞.

Example 7.4. Consider instead the AHSS for KU∗BC2. It is standard that H∗BC2 = H∗RP∞ = Z[x]/2x,
with |x| = 2. Our E2 term is just H∗(BC2;K∗) = Z[ν±1, x]/2x, with ν ∈ E0,−2

2 and x ∈ E2,0
2 . This is

concentrated in even total degree, so there are no differentials. However, there are strong filtration effects.
To explain this, put y = νx ∈ K0BC2. It turns out that KU0BC2 = Z⊕ Z2y, where Z2 denotes the 2-adic
integers and y2 = 2y. The natural filtration of K0BC2 is given by F 2i−1 = F 2i = (yi), which is the same
as (2i−1y) for i > 0. The associated graded is thus F 0/F 1 = Z and F 2i/F 2i+1 = (Z/2).yi, which gives the
terms E2i,−2i

∞ in the spectral sequence. Multiplication by powers of ν gives everything else.

8. The Adams spectral sequence

Let A denote the mod 2 Steenrod algebra. If we let H denote mod 2 cohomology then H∗(X) is naturally
an A-module for any spectrum X, and there is a classical Adams spectral sequence

Extst
A(H∗(X), F) =⇒ πt−s(X)∧2 .

In particular, we get a spectral sequence

Extst
A(F, F) =⇒ πt−s(S0)∧2 .

Here the groups πk(S) are finite for k > 0, so the 2-adic completion simply replaces π0(S0) = Z by Z2 and
πk(S0) by the 2-torsion part of πk(S0) for k > 0.

9. Other good examples

• SSS, RSSS and EMSS for ΩU(n) → 1 → U(n).
• ASS for MO∗ and MU∗. Small parts of ASS for π∗(S0).
• Weierstrass SS for π∗(TMF ).
• EHPSS
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10. Constructions

Let A be an abelian group with a self-map d : A → A satisfying d2 = 0. Suppose we have a filtration

A ≥ Fk−1 ≥ Fk ≥ Fk+1 ≥ · · ·
with dFk ≤ Fk, and suppose for simplicity that Fk = A for k � 0 and Fk = 0 for k � 0. Put

W r
k = {a ∈ Fk | da ∈ Fk+r−1}

Zr
k = W r

k + Fk+1

Br
k = (d(Fk−r+2) ∩ Fk) + Fk+1 = d(W r−1

k−r+2) + Fk+1

Er
k = Zr

k/Br
k = (W r

k + Br
k)/Br

k.

Note that

Z1
k = Fk

B1
k = Fk+1

E1
k = Fk/Fk+1

and
Fk+1 ≤ Br

k ≤ Br+1
k ≤ (dA ∩ Fk) + Fk+1 ≤ Zr+1

k ≤ Zr
k ≤ F k.

Lemma 10.1. There is a well-defined map dr : Er
k → Er

k+r−1 given by

dr(a + Br
k) = da + Br

k+r−1

for a ∈ W r
k .

Proof. First, if a ∈ W r
k then da ∈ Fk+r−1 and d2(a) = 0 so da ∈ W r

k+r−1 so da + Br
k+r−1 ∈ Er

k+r−1.
Next, if we have another representation a + Br

k = a′ + Br
k with a′ ∈ W r

k , then we must have a′ = a + b
for some b ∈ W r

k ∩ Br
k. As b ∈ Br

k we have b = du + v, where u ∈ Fk−r+2 and du ∈ Fk and v ∈ Fk+1.
It follows that da′ − da = db = dv, and db ∈ Fk+r−1 and dv ∈ d(Fk+1). From the definitions we have
Br

k+r−1 = d(Fk+1) + Fk+r−1, so da′ − da ∈ Br
k+r−1 as required. �

Lemma 10.2. ker(dr : Er
k → Er

k+r−1) = Zr+1
k /Br

k = {a + Br
k | a ∈ W r+1

k }.

Proof. Given an element u = a + Br
k with a ∈ W r+1

k ≤ W r
k , we have dru = da + Br

k+r−1, but da ∈ Fk+r ≤
Br

k+r−1 so dru = 0. Conversely, suppose we have an element u ∈ Er
k with dru = 0. We can represent u as

u = a + Br
k for some a ∈ W r

k , and then we must have

da ∈ Br
k+r−1 = (d(Fk+1) ∩ Fk+r−1) + Fk+r.

We can thus choose b ∈ Fk+1 and c ∈ Fk+r with da = db + c and db ∈ Fk−r+1. It follows that b ∈ W r
k ∩Br

k,
so the element a′ = a − b again lies in W r

k and u = a′ + Br
k. We have da′ = c ∈ Fk+r, so a′ ∈ W r+1

k , so
u ∈ Zr+1

k /Br
k as claimed. �

Lemma 10.3. img(dr : Er
k−r+1 → Er

k) = Br+1
k /Br

k.

Proof. The relevant image is by definition (d(W r
k−r+1) + Br

k)/Br
k. On the other hand, we have Br+1

k =
d(W r

k−r+1) + Fk+1. The claim follows easily. �

Corollary 10.4. (dr)2 = 0, and Er+1
∗ = H(Er

∗ , d
r).
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