
FORMAL GROUPS

N. P. STRICKLAND

Note: This document is not really finished. In particular, there are no references to the literature, although
almost nothing is original. I have nonetheless put it online, because some people asked me about results in
Section 20.

1. Introduction

Definition 1.1. A formal group law (FGL) over a ring R is a formal power series F (x, y) =
∑
i,j≥0 aijx

iyj ∈
R[[x, y]] that formally satisfies the axioms for a commutative group operation with 0 as the identity element.
More precisely, we must have

(a) F (x, 0) = x ∈ R[[x]]
(b) F (x, y) = F (y, x) ∈ R[[x, y]]
(c) F (x, F (y, z)) = F (F (x, y), z) ∈ R[[x, y, z]]
(d) There is a power series m(x) ∈ R[[x]] such that m(0) = 0 and F (x,m(x)) = 0.

We also write x +F y for F (x, y) and [−1](x) or [−1]F (x) for m(x). If k > 0 we define [k](x) = [k]F (x) =
x +F . . . +F x, with k terms. We do not need any brackets because of condition (c). We also define
[−k](x) = [−1]([k](x)) and [0](x) = 0. One checks that [j + k](x) = [j](x) +F [k](x) and [jk](x) = [j]([k](x))
for all j, k ∈ Z.

Remark 1.2. Here and elsewhere, rings are assumed to be commutative and to have a unit unless otherwise
stated.

Remark 1.3. In conditions (c) and (d) we need to substitute one formal power series into another. This
leads to nonsense if the power series involved have nonzero constant terms. For example, if we try to
substitute the constant series 1 for x and y we get

∑
ij aij which typically makes no sense because we have

no notion of convergence. However, if the constant terms are zero then there is no problem in expanding
everything out formally.

Remark 1.4. We will later define formal groups, and it will turn out that a formal group law is what you
get from a formal group with a specified coordinate. There are many advantages to the coordinate-free
approach, but it is a bit abstract so we postpone it.

Definition 1.5. We write FGL(R) for the set of all FGL’s over R.

Example 1.6. (1) The simplest example is F (x, y) = x + y; this is called the additive FGL. It can be
defined over any ring R.

(2) If u ∈ R then we can take F (x, y) = x+ y + uxy, so that

1 + u(x+F y) = (1 + ux)(1 + uy).

In the case u = 1, this is called the multiplicative FGL. It can again be defined over any ring R.
(3) If c is an invertible element of R then we can define F (x, y) = (x + y)/(1 + xy/c2). We call this

the Lorenz FGL; it is the formula for relativistic addition of parallel velocities, where c is the speed
of light. We are implicitly using the fact that (1 + xy/c2) is invertible in R[[x, y]], with inverse∑
k≥0(−xy/c2)k.
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(4) If ε and δ are elements of R and 2 is invertible in R we can define the Jacobi FGL over R by

F (x, y) =
x
√
Q(y) + y

√
Q(x)

1− εx2y2
,

where Q(x) = 1− 2δx2 + εx4. We need to assume that 2 is invertible so we can use the usual power

series expansion of
√

1 + t to define
√
Q(x); one can check that the denominators of the coefficients

in this series are all powers of 2. The real reason why F (x, y) is a formal group law involves the
theory of elliptic curves and elliptic integrals. For a more direct proof, one can check that√

Q(F (x, y)) =
2εxy(x2 + y2) + (x′y′ − 2δxy)(1 + εx2y2)

(1− εx2y2)2
,

where x′ =
√
Q(x) and y′ =

√
Q(y). It follows that

F (F (x, y), z) =(2s3(εp2 + δ(A+B + C − 4)− ε2s2
3)+

x′y′z(A+B − C) + y′z′x(B + C −A) + z′x′y(C +A−B))/

(A2 +B2 + C2 + 2εs2
3(4δ − εp2)− 2),

where

A = 1− εy2z2

B = 1− εz2x2

C = 1− εx2y2

p2 = x2 + y2 + z2

s3 = xyz.

This expression is symmetric in x, y and z, and it follows that F is associative. The other axioms
are easy.

(5) Let p be a prime, and let f(x) be a monic polynomial over Z such that f(x) = px (mod x2) and
f(x) = xp

n

(mod p), for some n > 0. The fundamental result of Lubin-Tate theory is that there is
a unique FGL over the ring Zp of p-adic integers such that f(F (x, y)) = F (f(x), f(y)), and that for
this FGL we have [p]F (x) = f(x). Equivalently, this gives a compatible system of FGL’s over Z/pk
for all k. These FGL’s are important in algebraic number theory (specifically, in local class field
theory). One can understand the splitting field of f and its Galois theory quite explicitly in terms
of the formal group structure.

(6) In algebraic topology, one can consider a number of complex-orientable generalised cohomology
theories. Such a theory assigns to each space X a graded ring E∗X, subject to various axioms. If
L is a complex line bundle over X, one can define an Euler class e(L) ∈ E∗X, which is a useful
invariant of L. There is a formal group law F over E∗(point) such that e(L⊗M) = F (e(L), e(M)).
In the case of ordinary cohomology, we get the additive FGL. In the case of complex K-theory,
we get the multiplicative FGL. In the case of complex cobordism, we get Lazard’s universal FGL
(Quillen’s theorem). This is the start of a very deep relationship between formal groups and the
algebraic aspects of stable homotopy theory.

Exercise 1.7. Prove that
√

1 + t lies in Z[ 1
2 ][[t]]. In other words, if f(t) =

∑
k≥0 akt

k ∈ Q[[t]] is the unique

power series such that f(t)2 = 1 + t and f(0) = 1, show that for each k we can write ak in the form b/2m

for some integers b and m. One approach is to use the Newton-Raphson method: define f0(t) = 1 and
fk+1(t) = (fk(t) + (1 + t)/fk(t))/2 (checking that this makes sense). One can then show that fk(t) converges
to f(t) in a suitable sense. Another approach is to show that ak = bk−1 + bk, where bk =

(
2k
k

)
/(−4)k.

Probably the best approach is to wait for Example 2.9, however.

2. Basic results

One way to think of FGL’s is as a recipe for defining honest groups. We now make this precise.
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Definition 2.1. Let R be a ring. We say that an element a ∈ R is nilpotent if aN = 0 for some integer

N > 0. We write Â1(R) or Nil(R) for the set of nilpotent elements of R.

Lemma 2.2. Nil(R) is an ideal in R.

Proof. Suppose that a, b ∈ Nil(R), say aN = 0 = bM . Then if aibj 6= 0 we must have i < N and j < M so
i+ j < N +M . It follows that (a+ b)N+M =

∑
N+M=i+j(i, j)a

ibj = 0, so a+ b ∈ Nil(R). Moreover, if c is

an arbitrary element of R then (ac)N = aNcN = 0, so ac ∈ Nil(R). This shows that Nil(R) is an ideal. �

Suppose that F (x, y) =
∑
i,j aijx

iyj is an FGL over a ring R, and that R′ is an algebra over R, so we

have a specified ring map u : R −→ R′ say. Let b and c be nilpotent elements of R′. Then bicj = 0 for all but
finitely many pairs (i, j), so we can define b +F c =

∑
i,j u(aij)b

icj as a finite sum without worrying about

any kind of convergence. This defines a group structure on Nil(R′), whose identity element is 0.

Definition 2.3. We write Γ(GF , R
′) or Γ(GF , R

′, u) for the group Nil(R′) equipped with the group law +F

described above.

Remark 2.4. In the coordinate-free picture, it will be more natural to consider something a little different.
Fix a ring R, and a FGL F over R. For any ring R′, we let X(R′) denote the set of ring homomorphisms
u : R −→ R′. We write GF (R′) = Nil(R) × X(R′). There is an evident projection map GF (R′) −→ X(R′),
sending (a, u) to u, and the preimage of a point u ∈ X(R′) is the group Γ(GF , R

′, u). Thus GF (R′) is a
bundle of groups over X(R′), and everything depends naturally on R′. This is an example of a formal group
over X (or over R).

Remark 2.5. We clearly have Nil(Z) = 0, so we cannot tell the difference between different FGL’s over Z by
just looking at Γ(GF ,Z). However, we can tell the difference if we look at groups like Γ(GF ,Z[s, t]/(sN , tM ))
instead.

We now prove some basic lemmas, as practise in the use of formal power series.

Lemma 2.6. If F is an FGL then F (x, y) = x+ y (mod xy).

Proof. We have F (x, y) =
∑
i,j≥0 aijx

iyj for some coefficients aij ∈ R. Condition (a) tells us that ai0 = 0

except for a10 = 1. Using (b) we see that a0j = 0 except for a01 = 1. Thus

F (x, y) = x+ y + xy
∑
i,j>0

aijx
i−1yj−1,

as required. �

Lemma 2.7. Condition (d) in Definition 1.1 actually follow from conditions (a) and (b).

Proof. Suppose that F satisfies (a) and (b). As in the previous lemma, we have F (x, y) = x+ y (mod xy).
Define b1 = −1 and m1(x) = −x, so F (x,m1(x)) = 0 (mod x2). Suppose that we have defined a polynomial
mk(x) of degree k such that F (x,mk(x)) = 0 (mod xk+1). There is then a unique element bk+1 ∈ R such
that F (x,mk(x)) = −bk+1x

k+1 (mod xk+2). Define mk+1(x) = mk(x) + bk+1x
k+1. It is easy to check that

when i > 0 or i = 0 and j > 1 we have

ximk+1(x)j = ximk(x)j (mod xk+2).

Using this and the fact that F (x, y) = x+ y (mod xy), and working everywhere modulo xk+2, we find that

F (x,mk+1(x)) = x+mk+1(x) +
∑
i,j>0

aijx
imk+1(x)j

= F (x,mk(x))− axk+1

= 0 (mod xk+2).

By an evident recursion, we have now defined bk and mk for all k. We put m(x) =
∑
k>0 bkx

k, so that

m(x) = mk(x) (mod xk+1) for all k, and thus F (x,m(x)) = 0 (mod xk+1) for all k, so F (x,m(x)) = 0
exactly. �
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We next want to define homomorphisms between formal group laws. It is convenient to give some remarks
about composition of formal power series first.

Lemma 2.8. Let f be a formal power series over a ring R such that f(0) = 0 and f ′(0) is a unit in R. Then
there is a unique series g(x) ∈ R[[x]] such that f(g(x)) = x = g(f(x)). Moreover, we have g′(0) = 1/f ′(0).
(This is just a formal version of the inverse function theorem.) We call this series the reverse of f .

Proof. The proof is similar to that of Lemma 2.7. We define a1 = f ′(0) and b1 = 1/a1 and g1(x) = b1x.
Then f(g1(x)) = x (mod x2). Given a polynomial gk(x) of degree k such that f(gk(x)) = x (mod xk+1),
there is a unique element c ∈ R such that f(gk(x)) = x+cxk+1 (mod xk+2), and we define bk+1 = −c/a1 and
gk+1(x) = gk(x)+bk+1x

k+1. One checks that f(gk+1(x)) = x (mod xk+2). This gives a sequence of elements
bk for k > 0, and we define g(x) =

∑
k>0 bkx

k. This satisfies f(g(x)) = x. By applying the same logic to g,
we get a series h with g(h(x)) = x. Thus f(g(h(x))) = f(x) but also f(g(y)) = y so f(g(h(x))) = h(x) so
f = h so g(f(x)) = x as required. One can also check that g is unique. �

Example 2.9. Take R = Z[ 1
n ] and f(x) = (1 + x)n − 1, so f−1(y) = (1 + y)1/n − 1. The conclusion is that

the coefficients of the usual Taylor expansion of (1 + y)1/n lie in R. In particular, the coefficients of
√

1 + y
lie in Z[ 1

2 ], giving another answer to Exercise 1.7.

Definition 2.10. We write RPS(R) for the set of reversible power series over R, in other words the set
of power series f(x) ∈ R[[x]] such that f(0) = 0 and f ′(0) is a unit in R. This is clearly a group under
composition. We write RPS1(R) for the subgroup of those f for which f ′(0) = 1.

Definition 2.11. Let F0 and F1 be FGL’s over a ring R. A homomorphism from F0 to F1 is a formal
power series f(x) ∈ R[[x]] such that f(0) = 0 and f(x+F0 y) = f(x) +F1 f(y) ∈ R[[x, y]]. We say that f is an
isomorphism if there is a homomorphism g from F1 to F0 such that f(g(x)) = x. We say that f is a strict
isomorphism if f ′(0) = 1.

Remark 2.12. In the notation of Remark 2.4, a homomorphism f as above gives rise to a map GF0(R′) −→
GF1(R′) of bundles of groups over X(R′).

Remark 2.13. It follows from Lemma 2.8 that a homomorphism f is an isomorphism if and only if f ′(0)
is a unit.

Example 2.14. In these examples we consider the following FGL’s:

F0(x, y) = x+ y

F1(x, y) = x+ y + xy

F2(x, y) = (x+ y)/(1 + xy).

All these can be defined over any ring R.

(1) If Q ⊆ R then the series f(x) = log(1 + x) = −
∑
k>0(−x)k/k gives an isomorphism from F1 to F0.

(2) If 2 is invertible in R then there is an isomorphism from F1 to F2 given by

f(x) =
(1 + x)− (1 + x)−1

(1 + x) + (1 + x)−1
.

(3) If 2 = 0 in R then f(x) = x/(1 + x2) gives an isomorphism from F2 to F0.

Exercise 2.15. Show that in the last example, we have f−1(y) =
∑
k>0 y

2k−1. Hint: (a + b)2 = a2 + b2

(mod 2).

3. FGL’s over Q-algebras

Proposition 3.1. If R is a Q-algebra, and F is an FGL over R, then there is a unique strict isomorphism
f : F −→ Fa, where Fa is the additive FGL, given by Fa(x, y) = x+ y.

Definition 3.2. This series f(x) is called the logarithm of F , and is written logF (x). Thus, we have
logF (x+F y) = logF (x) + logF (y). We also write expF (x) for the inverse of logF (x).
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Proof. Suppose that F (x, y) =
∑
i,j aijx

iyj . We write F2(x, y) for the partial derivative of F with respect to

the second variable, in other words F2(x, y) =
∑
i,j jaijx

iyj−1. Because F (x, y) = x+ y (mod xy) we have

F2(0, 0) = 1 so F2(t, 0) is invertible in R[[t]]. As R is a Q-algebra we can formally integrate and thus define

f(x) =

∫ x

t=0

dt

F2(t, 0)
.

More explicitly, if 1/F2(t, 0) =
∑
k ckt

k then we define f(x) =
∑
k ckx

k+1/(k + 1). (We need not try to
interpret this in terms of Riemann sums or anything like that.) It is clear that f(x) = x (mod x2).

We are given that

F (F (x, y), z) = F (x, F (y, z)).

If we take partial derivatives with respect to z at z = 0 we obtain F2(F (x, y), 0) = F2(x, y)F2(y, 0),
or equivalently f ′(F (x, y))−1 = F2(x, y)f ′(y)−1, or equivalently f ′(F (x, y))F2(x, y) = f ′(y). If we put
h(x, y) = f(F (x, y))−f(x)−f(y) then we deduce that ∂h(x, y)/∂y = 0. Thus, if h(x, y) =

∑
i,j dijx

iyj then∑
i,j jdijx

iyj−1 = 0 in R[[x, y]], which implies that dij = 0 when j > 0. On the other hand, it is clear that

h(x, 0) = 0 so di0 = 0 so h = 0. This means that f(F (x, y)) = f(x) + f(y), so f is a homomorphism from F
to Fa. It is a strict isomorphism, because f(x) = x (mod x2).

Now let g be another strict isomorphism, and let g−1 denote its reverse. Then the series k(x) = f(g−1(x))
satisfies k(x+ y) = k(x) + k(y). We now expand this out and use the fact that all binomial coefficients are
invertible in Q and thus in R. It follows easily that k(x) = λx for some λ ∈ R, but f and g were strict
isomorphisms so λ = 1. This shows that f = g. �

Corollary 3.3. If R is a Q-algebra then there is a bijection φ : RPS1(R) −→ FGL(R) given by

φ(f)(x, y) = f−1(f(x) + f(y))

φ−1(F )(x) = logF (x) =

∫ x

0

dt

F2(t, 0)
.

Proof. Write ψ(F ) = logF , so ψ : FGL(R) −→ RPS1(R). The proposition shows that

ψ(F )(F (x, y)) = ψ(F )(x) + ψ(F )(y),

or in other words that F = φψ(F ), so φψ = 1. On the other hand, if F = φ(f) then f is certainly a
homomorphism F −→ Fa with f ′(0) = 1, and we have seen that logF is the unique such homomorphism, so
f = ψφ(f). �

Example 3.4. (1) If F (x, y) = x+ y is the additive FGL then logF (x) = x.
(2) If F (x, y) = x+ y + uxy is a multiplicative FGL then

logF (x) = log(1 + ux)/u =
∑
k>0

(−u)k−1xk/k.

(3) If F (x, y) = (x+ y)/(1 + xy/c2) is the Lorenz FGL then

logF (x) = tanh−1(x/c) =
c

2
log

(
c+ v

c− v

)
.

(4) WriteQ(x) = 1−2δx2+εx4, so we have a Jacobi formal group law F (x, y) = (x
√
Q(y)+y

√
Q(x))/(1−

εx2y2). The logarithm is then logF (x) =
∫ x
t=0

Q(t)−1/2dt. This expression is called an elliptic
integral ; such things arise in the theory of planetary motion, for example. The definition of the
logarithm gives the following transformation property of elliptic integrals:∫ x

0

dt√
Q(t)

+

∫ y

0

dt√
Q(t)

=

∫ F (x,y)

0

dt√
Q(t)

.

(5) Let F be an FGL over a p-adically complete ring R. In suitable circumstances make this precise
we have

logF (x) = lim
n−→∞ p

−n[pn](x).
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(6) Let E be a 2-periodic generalised cohomology theory with a complex orientation in degree zero. We
then have a fundamental class [M ] ∈ E0 for each stably almost complex manifold M . We also have
a canonical formal group law F over E0, and it turns out that logF (x) =

∑
k≥0[CP k]xk+1/(k + 1).

4. Affine schemes

Definition 4.1. A functor X from rings to sets is a rule which assigns to each ring R a set X(R), and to
each homomorphism α : R −→ R′ a map X(α) : X(R) −→ X(R′), such that:

(1) If α : R −→ R′ and α′ : R′ −→ R′′ then X(α′α) = X(α′)X(α) : X(R) −→ X(R′′).
(2) If 1 : R −→ R is the identity map, then X(1) : X(R) −→ X(R) is the identity map.

Example 4.2. (1) Define X(R) = {(a, b) ∈ R2 | b2 = a3 − a} and X(α)(a, b) = (α(a), α(b)). This
clearly gives a scheme. This is our version of the elliptic curve y2 = x3 − x.

(2) We have a functor FGL, which sends a ring R to the set FGL(R) of formal group laws over R. For
any ring map α : R −→ R′, we have an associated map FGL(α) : FGL(R) −→ FGL(R′): If F (x, y) =∑
i,j≥0 aijx

iyj ∈ FGL(R), then FGL(α)(F )(x, y) =
∑
i,j≥0 α(aij)x

iyj . We normally write αF rather

than FGL(α)(F ).
(3) Similarly, we have a functor RPS1, which sends a ring R to the set RPS1(R) of power series f ∈ R[[x]]

such that f(x) = x (mod x2). The maps RPS(α) are again given by applying α to the coefficients.
(4) We have a functor An defined by An(R) = Rn = R × . . . × R. This contains the subfunctor

Ân(R) = Nil(R)n. We also have a subfunctor Gm ⊂ A1 defined by Gm(R) = R×, the group of units
of R.

(5) We can define a functor T by T (R) = R/2R.
(6) If X and Y are functors, then we can define a functor X × Y by (X × Y )(R) = X(R)× Y (R) and

(X × Y )(α) = X(α)× Y (α).

Definition 4.3. A natural transformation (or just map) f : X −→ Y of functors is a rule which assigns to
each ring R a map fR : X(R) −→ Y (R). We require that for any map α : R −→ R′ of rings, the following
diagram must commute:

X(R)
X(α) //

fR

��

X(R′)

fR′

��
Y (R)

Y (α)
// Y (R′)

Example 4.4. (1) We can define a map f : A3 −→ A2 by f(a, b, c) = (a2 + bc, c3). It is easy to see that
this gives a natural transformation. More generally, given any n-tuple of polynomials f1, . . . , fn in
variables x1, . . . , xm over Z, we get a map f : Am −→ An by

f(a1, . . . , am) = (f1(a), . . . , fn(a)).

We will see later that these are all the maps from Am to An.
(2) We have a map comp: RPS1×RPS1 −→ RPS1 defined by comp(f, g)(x) = f(g(x)). Using the

naturality of this, one can check that the inversion map inv : RPS1 −→ RPS1 (sending f to f−1) is
also natural.

(3) We can define φR : RPS1(R) −→ FGL(R) by φR(f) = f−1(f(x) + f(y)), as in Corollary 3.3. This
gives a map φ : RPS1 −→ FGL.

Definition 4.5. For any ring A, we can define a functor spec(A) from rings to sets by

spec(A)(R) = Rings(A,R),

where Rings(A,R) denotes the set of ring homomorphisms from A to R. Given a homomorphism α : R −→ R′,
the associated map α∗ = spec(A)(α) : Rings(A,R) −→ Rings(A,R′) is just α∗(u) = α ◦ u. We say that a
functor X is an affine scheme if it is isomorphic to a functor of the form spec(A) for some A.
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Example 4.6. (1) Recall the functor Gm(R) = R×. Consider the ring A = Z[x, x−1] of Laurent series
over Z in one variable x. We claim that spec(A) ' Gm. Given an element u ∈ spec(A)(R) (in other
words, a map u : A −→ R) we define φ(u) = u(x). Given v ∈ Gm(R) = R×, we define ψ(v) : A −→ R by
ψ(v)(

∑
k akx

k) =
∑
k akv

k. It is easy to check that these constructions give the required bijection.
Thus, Gm is an affine scheme.

(2) Similar arguments show that An = spec(Z[x1, . . . , xn]), so this is a scheme.
(3) Inside A2, we have the affine elliptic curve C defined by C(R) = {(a, b) ∈ R2 | b2 = a3 − a}. It is

easy to check that C = spec(Z[x, y]/(y2 − x3 + x)).
(4) Let 1 denote any one-point set. We then have

spec(Q)(R) =

{
1 if every n > 0 is invertible in R

∅ otherwise.

Similarly, we have

spec(Fp)(R) =

{
1 if p = 0 in R

∅ otherwise.

(5) The functor T (R) = R/2R is not an affine scheme. Indeed, if X is an affine scheme then one sees
easily that the inclusion Z ⊂ Q gives an injective map X(Z) −→ X(Q), but clearly there is no injection
Z/2Z −→ Q/2Q = {0}.

Definition 4.7. For any functor X, we let OX be the class of natural transformations from X to A1. In the
cases of interest this will always be a set rather than a proper class. More explicitly, an element f ∈ OX gives
(for each ring R) a map f : X(R) −→ R, such that f(X(α)(x)) = α(f(x)) for all x ∈ X(R) and α : R −→ R′.
We can make OX into a ring by defining (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x) in the usual way.
It is called the ring of functions on X.

Proposition 4.8 (The Yoneda Lemma). For any functor X and any ring A, the set of natural transforma-
tions from spec(A) to X bijects with X(A).

Proof. The basic point is that a natural map f : spec(A) −→ X is freely and uniquely determined by its
“universal example”, which is the element fA(1A) ∈ X(A). We proceed to explain this more fully.

Write T for the set of natural transformations from spec(A) to X. If f ∈ T then we have a map

fR : Rings(A,R) = spec(A)(R) −→ X(R)

for each ring R. In particular, we have a map fA : Rings(A,A) −→ X(A), so we can define φ(f) = fA(1A) ∈
X(A). This gives us a map φ : T −→ X(A). Next, suppose we have an element x ∈ X(A). For any ring R
and any map u : A −→ R, we have a map X(u) : X(A) −→ X(R), because X is a functor. We can thus define
gR(u) = X(u)(x). This construction gives a function

gR : spec(A)(R) = Rings(A,R) −→ X(R).

We claim that these maps give a natural transformation g : spec(A) −→ R. If we have another map α : R −→ R′

of rings, we need to check that X(α)(gR(u)) = gR′(α∗(u)). This is clear because

X(α)(gR(u)) = X(α)(X(u)(x)) = X(αu)(x) = gR′(α∗(u)).

Because the definition of g depended on x, it makes sense to write ψ(x) = g. This gives a map ψ : X(A) −→ T .
We claim that this is inverse to φ. Indeed, we have

φ(ψ(x)) = gA(1A) = X(1A)(x) = x,

so φψ = 1. In the other direction, suppose that f ∈ T , and define x = φ(f) = fA(1A), so that the map
g defined above is ψ(φ(x)). We need to show that g = f . In other words, given a ring R and an element
u ∈ spec(A)(R) = Rings(A,R), we need to show that fR(u) = gR(u) = X(u)(x) = X(u)(fA(1A)). For this,
we notice that u = u∗(1A), where

u∗ = spec(A)(u) : spec(A)(A) −→ spec(A)(R).

Because f is natural, we have
fR(u) = fR(u∗(1A)) = X(u)(fA(1A))
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as required. �

Corollary 4.9. If A is any ring then Ospec(A) ' A.

Proof. By definition, Ospec(A) is the set of natural transformations from spec(A) to A1. By the Yoneda

lemma, this bijects with A1(A) = A. �

Corollary 4.10. If X is a scheme then X is isomorphic to spec(OX).

Proof. By the definition of a scheme, X is isomorphic to spec(A) for some A, but the previous corollary tells
us that A ' OX , so X ' spec(OX). �

Exercise 4.11. Exhibit a map X −→ spec(OX) which is defined naturally for all functors X, and is an
isomorphism when X is a scheme. (There are some set-theoretical problems here, but I suggest that you
just ignore them.)

Corollary 4.12. If A and B are rings then there is a canonical bijection between maps spec(A) −→ spec(B)
of schemes, and ring maps B −→ A.

Proof. This is the case of Proposition 4.8 in which X = spec(B). �

Example 4.13. (1) We have Am = spec(Z[x1, . . . , xm]), so the Yoneda lemma tells us that maps from
Am to An biject with elements of An(Z[x1, . . . , xm]), or in other words with n-tuples of polynomials
in m variables. This proves that all maps Am −→ An are of the form considered in Example 4.4.

(2) We have maps π±k : Gm −→ Gm defined by π±k (a) = ±ak. We claim that these are all the maps from
Gm to itself. To see this, note that OGm

= Z[u, u−1]. By the Yoneda lemma, we need only check
that the elements ±uk are all the units in this ring, which is elementary.

(3) The functor RPS1 is a scheme. Indeed, let A be the polynomial ring Z[b2, b3, . . .] in countably many
variables over Z. We have an element u(x) = x +

∑
k>1 bkx

k ∈ RPS1(A), and by the Yoneda
Lemma this corresponds to a map spec(A) −→ RPS1. It is easy to see that this is an isomorphism.
Explicitly, for any reversible power series v(x) = x +

∑
k>1 ckx

k over any ring R, there is a unique
homomorphism α : A −→ R sending bk to ck for all k, and thus sending u(x) to v(x).

(4) By a similar argument, we have RPS = spec(Z[b1, b2, . . .][b
−1
1 ]).

Exercise 4.14. Show that spec(A⊗ B) = spec(A)× spec(B), and thus that any finite product of schemes
is a scheme.

Exercise 4.15. Let E(R) be the set of 2× 2-matrices M over R such that M2 = M . Show that this defines
an affine scheme, and investigate the structure of OE . You may want to consider the maps e0, e2 : E −→ A1

given by e0(M) = det(1−M) and e2(M) = det(M).

Proposition 4.16. The functor FGL is an affine scheme.

Proof. Let L0 = Z[aij | i, j > 0] be a polynomial algebra over Z on countably many indeterminates ai,j , one
for each pair (i, j) of positive integers. Define F0(x, y) = x+ y+

∑
i,j aijx

iyj , and define elements bijk ∈ L0

by the equation

F0(F0(x, y), z)− F0(x, F0(y, z)) =
∑
i,j,k

bijkx
iyjzk.

Let I be the ideal in L0 generated by the elements aij − aji (for i, j > 0) and the elements bijk, and put
L = L0/I. Let F be the image of F0 in L[[x, y]]. It is clear that this is a formal group law over L. We
thus have a map spec(L)(R) = Rings(L,R) −→ FGL(R), sending α to αF . We claim that this is a natural
isomorphism. Indeed, let F ′ be an FGL over R, say F ′(x, y) = x + y +

∑
i,j>0 a

′
ijx

iyj . There is then a

unique homomorphism α0 : L0 −→ R such that α0(aij) = a′ij , so that α0F0 = F ′. It follows that α0(bijk)

is the coefficient of xiyjzk in F ′(F ′(x, y), z) − F ′(x, F ′(y, z)), but this series is just zero because F ′ is a
formal group law. Thus α0(bijk) = 0, and similarly α0(aij − aji) = 0, so there is a unique induced map
α : L = L0/I −→ R with αF = F ′. Thus, we have FGL = spec(L), as required. �

Definition 4.17. The ring L = OFGL is called the Lazard ring.
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Remark 4.18. In topology, it turns out that one can naturally identify FGL with spec(MU∗) and RPS1

with spec(H∗MU), in such a way that the Hurewicz map MU∗ −→ H∗MU induces the map φ : RPS1 =
spec(H∗MU) −→ spec(MU∗) = FGL.

5. Base schemes and base change

We will often have a scheme X and want to consider other schemes equipped with a map to X, which we
refer to as schemes over X. Consider two functors V,W equipped with maps p : V −→ X and q : W −→ Z. A
map from V to W of schemes over X means a map f : V −→W of schemes such that qf = p.

Lemma 5.1. Let X = spec(A) be a scheme. Then the following categories are equivalent:

(a) The category of schemes over X
(b) The opposite of the category of A-algebras
(c) The category of representable functors from A-algebras to sets.

Proof. We have a contravariant equivalence between rings and schemes given by A � spec(A), and this
clearly gives an equivalence between (a) and (b). Yoneda’s Lemma gives an equivalence between (b) and (c).
The resulting equivalence between (a) and (c) is as follows. An A-algebra is just a ring B equipped with
a ring map x∗ : A → B, or equivalently a point x ∈ X(B). Now suppose we have a scheme Y equipped
with a morphism p : Y → X, and an A-algebra (B, x). We then have pB : Y (B) → X(B) and x ∈ X(B) so
p−1
B {x} ⊆ Y (B). We define Y ′ : AlgA → Sets by

Y ′(B, x) = p−1
B {x}.

In the opposite direction, given a functor Y ′ : AlgA → Sets we define

Y (B) = {(x, y) | x ∈ X(B) and y ∈ Y ′(B, x)},

and we let p : Y (B) → X(B) be the evident projection. It is not hard to see that these constructions give
the required equivalence. �

Example 5.2. Let X = spec(A) be a scheme, and let M be an A-module. We can define a functor
A′(M) : AlgA → Sets by

A′(M)(B, x) = B ⊗A,x∗ M.

(In more detail, the right hand side is the tensor product of B and M over A, where we use the algebra
structure map x∗ : A→ B to regard B as an A-module.) The corresponding functor from rings to sets is

A(M)(B) = {(x,m) | x ∈ X(B),m ∈ A′(B, x)(M) = B ⊗A,x∗ M}.

If M is a free A-module of rank d <∞ with dual module M∗, then we can form the symmetric algebra

A[M∗] =
⊕
n≥0

(M∗)⊗nΣn
.

We then have

AlgA(A[M∗], B) = HomA(M∗, B) = B ⊗AM = A′(M)(B).

Using this, we see that A(M) = spec(A[M∗]). Also, a choice of basis for M gives an isomorphism A[M∗] '
A[x1, . . . , xd] of A-algebras, and thus an isomorphism A(M) = X × Ad.

Definition 5.3. Consider again two functors V,W equipped with maps p : V −→ X and q : W −→ Z. We
define the pullback of V and W by

(V ×X W )(R) = V (R)×X(R) W (R) = {(v, w) ∈ V (R)×W (R) | p(v) = q(w)}.

We also write p∗W for V ×XW , considered as a scheme over V using the projection map (v, w) 7→ v. Given
a ring A and two A-algebras B and C, one can check that

spec(B)×spec(A) spec(C) = spec(B ⊗A C).

It follows that when V , W and X are all affine schemes, the pullback is again an affine scheme, and we have

OV×XW = OV ⊗OX
OW .
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Definition 5.4. Let X be an affine scheme, and Y a functor equipped with a map p : Y −→ X. A system

of formal coordinates on Y is a collection of maps x1, . . . , xn : Y −→ Â1 such that the resulting map a 7→
(x1(a), . . . , xn(a), p(a)) gives an isomorphism Y −→ Ân ×X. An n-dimensional formal scheme over X is a
functor which admits such a system of coordinates.

Example 5.5. Let M be any free module of rank n over A, and define Â(M) : Rings→ Sets by

Â(M)(B) = {(x,m) | x ∈ X(B),m ∈ Nil(B)⊗A,x∗ M}.

Any choice of basis for M gives a system of formal coordinates, showing that Â(M) is an n-dimensional
formal scheme over X.

Let A be a ring, and f(x, y) a power series in A[[x, y]]. Write X = spec(A). Given a point u ∈ X(R) (in
other words, a homomorphism u : A −→ R) we define a power series uf over R in the obvious way, and then
define

Y (R) = {(u, x, y) ∈ X(R)× Â2(R) | (uf)(x, y) = 0}.
We would like to know when this is a formal scheme over X. For this, we need a formal version of the
implicit function theorem.

Proposition 5.6. Let f2(x, y) denote the partial derivative of f with respect to the second variable. If

f(0, 0) = 0 and f2(0, 0) is a unit in A then the map (u, x, y) 7→ (u, x) is an isomorphism Y ' X × Â1, and
thus Y is a one-dimensional formal scheme over X.

Proof. We will construct a power series g(x) ∈ A[[x]] such that g(0) = 0 and f(x, g(x)) = 0, by the usual
process of successive approximation. We start with g0(x) = 0. Suppose we have constructed a polynomial
gk of degree k such that gk(0) = 0 and f(x, gk(x)) = 0 (mod xk+1), say f(x, gk(x)) = axk+1 (mod xk+2).
We then have

f(x, gk(x) + bxk+1) = f(x, gk(x)) + bxk+1f2(x, gk(x)) (mod x2k+2),

but xk+1f2(x, gk(x)) = xk+1f2(0, gk(0)) = xk+1f2(0, 0) (mod xk+2) so f(x, gk(x)+bxk+1) = (a+bf2(0, 0))xk+1

(mod xk+2). Thus, we must take gk+1(x) = gk(x) − axk+1/f2(0, 0). If we let g be the formal power series
such that g(x) = gk(x) (mod xk+1) for all k, then we find that f(x, g(x)) = 0. We can thus define a map

φ : X × Â1 −→ Y by φ(u, x) = (u, x, (ug)(x)). If we write π for the map (u, x, y) 7→ (u, x) then clearly
πφ = 1. Now consider the series h(x, z) = f(x, g(x) + z) ∈ A[[x, z]]. We have h(x, 0) = f(x, g(x)) = 0, so
h(x, z) = z k(x, z) for some series k. Moreover, we have k(0, 0) = f2(0, 0), which is a unit in A, so k(x, z) is
a unit in A[[x, z]]. Now suppose that (u, x, y) ∈ Y (R) for some ring R. Writing z = y− (ug)(x), we find that
(uh)(x, z) = (uf)(x, y) = 0, so z (uk)(x, z) = 0 but k is invertible so (uk)(x, z) is invertible in R so z = 0.
This shows that y = (ug)(x), and thus that (u, x, y) = φπ(u, x, y), so φπ = 1. �

Exercise 5.7. Generalise this to cover more variables and more equations.

Example 5.8. Take X = A1, and let Z be the subfunctor of X × A2 whose fibre over a point ρ ∈ X(R) is
the set of pairs (a, b) such that (a2 + b2)ρ = b. This should be thought of as a circle of diameter 1/ρ which is
tangent to the x-axis at the origin. Where ρ = 0 this degenerates to a straight line. Let Y (R) be the subset
where a and b are nilpotent. This should be thought of as an infinitesimal neighbourhood of the origin in Z.
It seems intuitively clear that the vertical projection should give an isomorphism of Y with an infinitesimal
neighbourhood of the origin in the x-axis. The proposition gives us a rigorous formulation and proof of this
(take A = Z[ρ] and f(x, y) = (x2 + y2)ρ− y).

Example 5.9. Let A be a ring, suppose that a1, a2, a3, a4, a6 ∈ A, and consider the standard homogeneous
Weierstrass cubic

g(x, y, z) = y2z + a1xyz + a3yz
2 − x3 − a2x

2z − a4xz
2 − a6z

3.

This defines an elliptic curve C in the projective plane (provided that a certain expression ∆(a1, a2, a3, a4, a6)
is invertible; otherwise we have a “generalised elliptic curve”). We write X = spec(A). The formal completion

of C is the functor Ĉ defined by

Ĉ(R) = {(u, x, z) ∈ X(R)× Â2(R) | (ug)(x, 1, z) = 0}.
If we define f(x, z) = g(x, 1, z) then one checks easily that f(0, 0) = 0 and f2(0, 0) = 1 so Proposition 5.6

shows that Ĉ is a one-dimensional formal scheme over X.
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We now show that all maps between formal schemes over a fixed base are given by formal power series.

Proposition 5.10. Let f : X × Ân −→ X × Âm be a map of formal schemes over X = spec(A). Then there
are unique formal power series f1, . . . , fm ∈ A[[x1, . . . , xn]] such that for all rings R and all (u, a1, . . . , an) ∈
X(R)× Ân(R) we have

f(u, a1, . . . , an) = (u, (uf1)(a1, . . . , an), . . . , (ufm)(a1, . . . , an)).

Moreover, the elements fi(0, . . . , 0) ∈ A are nilpotent. Conversely, given any m-tuple of series fi whose

constant terms are nilpotent, the above formula defines a map X × Ân −→ X × Âm of formal schemes over
X.

Proof. Write Bk = A[x1, . . . , xn]/(xk1 , . . . , x
k
n). Let uk be the obvious map A −→ Bk, considered as an element

of X(Bk). Let tk be the tuple (x1, . . . , xn), considered as an element of Ân(Bk). We thus have an element

f(uk, tk) ∈ X(Bk)×Âm(Bk). As f is supposed to be a map of formal schemes over X, the first component of

f(uk, tk) must be uk. The remaining components are elements of Â1(Bk), in other words nilpotent elements
of Bk. If b is an element of Bk with constant term b0 then it is clear that b− b0 lies in the ideal (x1, . . . , xn)
and each xi is nilpotent so b − b0 is nilpotent. Thus, b is nilpotent if and only if b0 is nilpotent. It follows
that there are polynomials fk,1, . . . , fk,m, of degree less than k in each of the variables x1, . . . , xn, whose
constant terms are nilpotent, such that f(uk, tk) = (uk, fk,1, . . . , fk,m). Now consider the evident quotient

map π : Bk+1 −→ Bk. Clearly, the induced map X(Bk+1)× Ân(Bk+1) −→ X(Bk)× Ân(Bk) sends (uk+1, tk+1)
to (uk, tk). As f is natural, we see that π must send f(uk+1, tk+1) to f(uk, tk), which means that fk+1,j =
fk,j mod (xk1 , . . . x

k
n) for all j. Thus, there are unique power series fj such that fj = fk,j mod (xk1 , . . . , x

k
n)

for all k.
Now consider an arbitrary ring R and a point (u, a) = (u, a1, . . . , an) ∈ X(R) × Ân(R). The elements

ai are nilpotent, so there is an integer k such that akj = 0 for all j. Let α : Bk −→ R be the unique ring
homomorphism such that α(a) = u(a) for a ∈ A ⊂ Bk and α(xj) = aj for all j. It is clear that α sends

(uk, tk) ∈ X(Bk)×Ân(Bk) to (u, a). As f is natural, we conclude that α sends f(uk, tk) = (uk, fk,1, . . . , fk,m)
to f(u, a). However, α sends fk,j to (ufk,j)(a1, . . . , an), which is the same as (ufj)(a1, . . . , an) because aki = 0
for all i. Thus, we have

f(u, a) = (u, (uf1)(a), . . . , (ufm)(a))

as claimed. �

Definition 5.11. A formal group over an affine scheme X is a one-dimensional formal scheme G over X
(with projection map π : G −→ X say), with a specified Abelian group structure on π−1{x} for each ring R
and point x ∈ X(R). These structures are required to depend naturally on R. More precisely, we require
that addition in G comes from a natural map σ : G×X G −→ G, and that the map ζ : X −→ G (sending x to
the zero element in π−1{x}) is also natural.

Example 5.12. Define

Ĝm(R) = {a ∈ R | a = 1 (mod Nil(R))}.

One checks that any a ∈ Ĝm(R) is invertible. Indeed, if (1 − a)k = 0 then a−1 =
∑k−1
j=0 (1 − a)j . It follows

that Ĝm(R) is a group under multiplication. Moreover, the function x(a) = 1 − a gives an isomorphism

Ĝm ' Â1, which shows that Ĝm is a formal group over spec(Z).

Example 5.13. We can also define Ĝa(R) = Nil(R), with the usual addition. This is clearly a formal group
over spec(Z).

Example 5.14. If F is a formal group law over A then we have a formal group GF over X = spec(A) defined

by GF = X × Â1. If x ∈ X(R) then x gives a map A −→ R, which we use to regard R as an A-algebra, so

we can define a +F b for a, b ∈ Â1(R) = π−1{x}. This makes π−1{x} into an Abelian group, and thus GF
into a formal group, as required. The identity element is just 0. In the case F (x, y) = x + y − xy we have

an isomorphism GF ' Ĝm of formal groups, given by a 7→ 1 + a.
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Example 5.15. The formal scheme Ĉ of Example 5.9 has a natural group structure. More precisely, we

have a map ν : Ĉ −→ Ĉ given by

ν(u, x, z) = (u,−x/(1 + u(a1)x+ u(a3)z),−z/(1 + u(a1)x+ u(a3)z)).

We will often allow ourselves to abbreviate things like this as

ν(x, z) = (−x/(1 + a1x+ a3z),−z/(1 + a1x+ a3z)).

The group structure is characterised by the following properties:

(a) The identity element is (0, 0) (or in other words, ζ(u) = (u, 0, 0)).
(b) The negation map is −(x, z) = ν(x, z).
(c) If (x0, z0) + (x1, z1) + (x2, z2) = (0, 0) then the following determinant vanishes:∣∣∣∣∣∣

x0 1 z0

x1 1 z1

x2 1 z2

∣∣∣∣∣∣ = 0.

Informally, this means that the points (x0, z0), (x1, z1) and (x2, z2) are collinear.

Example 5.16. Let E be a 2-periodic complex orientable generalised cohomology theory. Write X =
spec(E0), and let G(R) be the set of ring homomorphisms E0CP∞ −→ R that factor through E0CP k for
some finite k. One can choose an element x such that E0CP∞ = E0[[x]] and E0CP k = E0[[x]]/xk+1, and
using this we see that G is a formal group over X.

Definition 5.17. Let G be a formal group over a scheme X, with projection π : G −→ X and zero-section
ζ : X −→ G. A normalised coordinate on G is a coordinate x such that x(0) = 0.

Proposition 5.18. Let G be a formal group over a scheme X. Then G admits a normalised coordinate x.
Moreover, for any such coordinate, there is a unique formal group law F (x, y) =

∑
i,j aijx

iyj ∈ FGL(OX)

with the following property. For any ring R, any t ∈ X(R), and any u, v ∈ G(R) with π(u) = π(v) = a, we
have

x(u+ v) =
∑
ij

aij(t)x(u)ix(v)j .

(We will allow ourselves to write this as x(u+ v) = F (x(u), x(v)).)

Proof. First let x0 be an arbitrary coordinate, and put x = x0−(x0◦ζ ◦π), or less formally x = x0−x0(0). It
is easy to check that x is a normalised coordinate. Consider the function f(u, v) = x(u+ v), so f ∈ OG×XG.
We see from Proposition 5.10 that OG×XG = OX [[x′, x′′]], where x′(a, b) = x(a) and x′′(a, b) = x(b). It
follows that there is a unique formal power series F such that x(u + v) = F (x(u), x(v)). As x(0) = 0, we
find that F (0, x(v)) = x(v). As the group structure of G is commutative and associative, we see that F is
formally commutative and associative, so it is a formal group law as claimed. �

Definition 5.19. An additive coordinate on G is a coordinate x with the property that x(u+v) = x(u)+x(v)
for all (u, v) ∈ G ×X G. Equivalently, if p : G → X is the given projection, then the map u 7→ (p(u), x(u))

must give an isomorphism G→ X × Ĝa of formal groups over X.

Proposition 5.20. If OX is a Q-algebra, then G has an additive coordinate. Moreover, if x and y are two
additive coordinates, then there is an invertible element m ∈ O×X such that y = mx.

Proof. Let t be any normalised coordinate, and let F be the formal group law such that t(u + v) =
F (t(u), t(v)). Proposition 3.1 gives us a reversible power series f(t) ∈ OX [[t]] such that f(F (s, t)) =
f(s) + f(t). This means that the element x = f(t) is an additive coordinate. Now let y be another
additive coordinate. As x is a coordinate, we must have y =

∑
i>0mix

i for some sequence of coefficients
mi ∈ OX . As y is also a coordinate, we see that m1 must be invertible. As both x and y are additive, we
must have∑

i

mi(x(u) + x(v))i =
∑
i

mi(x(u+ v))i = y(u+ v) = y(u) + y(v) =
∑
i

mi(x(u)i + x(v)i).

We now expand out the left hand side and note that all the resulting binomial coefficients are invertible in
Q and thus in OX . We conclude that mi = 0 for i > 1, so y = m1x as required. �
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6. The symmetric cocycle lemma

We now start working towards Lazard’s classification of formal group laws.

Definition 6.1. Let L = OFGL be the Lazard ring, and let aij ∈ L be the coefficient of xiyj in the universal
formal group law over L. Let ε : L −→ Z correspond to the additive formal group law x + y under the
isomorphism Hom(L,Z) = FGL(Z), so that ε(aij) = 0 when i+ j > 1. Write I = ker(ε) ≤ L.

The main work is to determine the structure of the Abelian group I/I2. For this, we need the notion of
a symmetric 2-cocycle.

Definition 6.2. Let A be an Abelian group, and let A[[x, y]] denote the group of formal power series of the
form

∑
i,j≥0 aijx

iyj with aij ∈ A. This is not naturally a ring unless A is a ring, but this will not matter
for our purposes here.

A symmetric 2-cocycle with coefficients in A is a power series f(x, y) ∈ A[[x, y]] such that f(x, y) = f(y, x)
and f(x, 0) = 0 and

f(y, z)− f(x+ y, z) + f(x, y + z)− f(x, y) = 0.

We write Z(A) for the set of such f ’s. We also write Zd(A) for the subset consisting of homogeneous
polynomials of degree d, so that Z(A) =

∏
d>1 Zd(A). (It is easy to check that Z0(A) = Z1(A) = 0.)

Proposition 6.3. There is a natural isomorphism Z(A) = Hom(I/I2, A), for all Abelian groups A.

Proof. Write R = Z ⊕ A, and make this into a ring by defining (n, a).(m, b) = (nm, nb + ma). Then the
projection map π : R −→ Z is a ring homomorphism, the kernel is A (which is thus an ideal in R), and
A2 = 0. Let Y (A) be the set of formal group laws F over R such that (πF )(x, y) = x+ y. This means that
F (x, y) = x + y + f(x, y) for some f(x, y) ∈ A[[x, y]]. The conditions F (x, 0) = x and F (x, y) = F (y, x) are
equivalent to f(x, 0) = 0 and f(x, y) = f(y, x). Next, we have

F (F (x, y), z) = x+ y + z + f(x, y) + f(x+ y + f(x, y), z).

Because f has coefficients in A and A2 = 0, we see that the last term is the same as f(x+ y, z). Given this,
the associativity condition F (x, F (y, z)) = F (F (x, y), z) is just f(x, y) + f(x+ y, z) = f(y, z) + f(x, y + z),
which is equivalent to the cocycle condition. Thus, the map F 7→ f gives a bijection Y (A) = Z(A).

On the other hand, formal group laws F over R biject with ring maps α : L −→ R. We clearly have
(πF )(x, y) = x + y if and only if πα(I) = 0, or equivalently α(I) ≤ A. If so, then α(I2) ≤ A2 = 0, so α
induces a homomorphism I/I2 −→ A. One checks easily that this gives a bijection Y (A) = Hom(I/I2, A), as
required. �

Lemma 6.4. We have (x+ y)p = xp + yp (mod p).

Proof. Suppose that 0 < k < p. Then k! is a product of integers that are strictly less than p, so k! is not
divisible by p. Similarly, (p − k)! is not divisible by p. However, k!(p − k)! ( pk ) = p! is divisible by p, so

the binomial coefficient ( pk ) must be divisible by p. Thus (x+ y)p = xp + yp +
∑p−1
k=1 ( pk )xkyp−k = xp + yp

(mod p). �

Lemma 6.5. We have (x+ y)d = xd + yd (mod p) if and only if d is a power of p.

Proof. If d = pk then we see from Lemma 6.4 and induction on k that (x + y)d = xd + yd (mod p). If d is
not a power of p then we can write d = pke for some k and e, where e > 1 and p does not divide e. We thus
have

(X + Y )e = Xe + eXe−1Y + . . .+ Y e 6= Xe + Y e (mod p).

It follows that
(x+ y)d = (xp

k

+ yp
k

)e 6= xd + yd (mod p),

as claimed. �

Definition 6.6. Let d be an integer greater than 1. If d is a power of a prime number p, then we define
ν(d) = p; otherwise, we define ν(d) = 1. We also define

bd(x, y) = (x+ y)d − xd − yd =

d−1∑
i=1

( di )xiyd−i,
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and cd(x, y) = bd(x, y)/ν(d). It follows from Lemma 6.5 that cd(x, y) ∈ Z[x, y]. One can check directly that
cd(x, y) is a symmetric cocycle, so cd ∈ Zd(Z). For any A, we define φA : A −→ Zd(A) by φA(a) = acd(x, y).

Exercise 6.7. Show that if Φd(x) is the d’th cyclotomic polynomial (so that xn − 1 =
∏
d|n Φd(x) for all

n > 0) then ν(d) = Φd(1). It would be nice to give an alternate approach to the results of this section based
on this fact, but I have not managed to find one.

Proposition 6.8. The map φA : A −→ Zd(A) is always an isomorphism.

This will be proved at the end of the section.

Lemma 6.9. If a = b (mod pj) (with j > 0) then ap
k

= bp
k

(mod pj+k) for all k ≥ 0.

Proof. We can reduce by induction to the case k = 1. We have a = b+ pjc for some c, so

ap − bp =

p−1∑
i=1

( pi ) pijbicj + ppjcp.

All the binomial coefficients are divisible by p (by the proof of Lemma 6.4) and pj ≥ j + 1 so the right hand
side is zero mod pj+1, as required. �

Lemma 6.10. If p is prime and k ≥ 0 then

cpk+1(x, y) = cp(x
pk , yp

k

) 6= 0 (mod p).

Proof. We have seen that (x + y)p
k

= xp
k

+ yp
k

(mod p), so Lemma 6.9 tells us that (x + y)p
k+1

= (xp
k

+

yp
k

)p (mod p2). The left hand side is xp
k+1

+ yp
k+1

+ pcpk+1(x, y), and the right hand side is xp
k+1

+

yp
k+1

+pcp(x
pk , yp

k

), so we conclude that pcpk+1(x, y) = pcp(x
pk , yp

k

) (mod p2), so cpk+1(x, y) = cp(x
pk , yp

k

)

(mod p). We have cp(X,Y ) =
∑p−1
k=1

(p−1)!
k!(p−k)!X

kY p−k, and the coefficients here are built from numbers strictly

less than p so they are nonzero mod p. It follows that cp(x
pk , yp

k

) 6= 0 (mod p) as claimed. �

Exercise 6.11. Show that cp(x, y) = −
∑p−1
k=1(−x)kyp−k/k (mod p).

Corollary 6.12. For each d > 1, the greatest common divisor of the coefficients of cd(x, y) is 1.

Proof. It is equivalent to say that there is no prime p such that cd = 0 (mod p). Suppose that such a prime p
exists. Then clearly bd = 0 (mod p), so (x+y)d = xd+yd (mod p). Thus, Lemma 6.5 tells us that d = pk+1

for some k ≥ 0, but then Lemma 6.10 tells us that cd(x, y) 6= 0 (mod p), a contradiction. �

Definition 6.13. The corollary implies that we can choose integers λdi for all 0 < i < d such that

d−1∑
i=1

λdi ( di ) /ν(d) = 1

for all d > 1. We fix such a system of λ’s once and for all. We also define a map πA : Zd(A) −→ A by

πA(

d−1∑
i=1

aix
iyd−i) =

∑
i

λdiai.

Lemma 6.14. We have πAφA = 1: A −→ A for all A and all d > 1. Thus, φA is always a split monomor-
phism.

Proof. This is clear from the definitions and the choice of the λ’s. �

Lemma 6.15. Zd(A) is the set of polynomials f(x, y) =
∑d−1
i=1 aix

iyd−i with ai ∈ A such that ai = ad−i and

(i, j)ai+j = (j, d− i− j)ai
whenever i > 0 and j ≥ 0 and i+ j < d. (Here (i, j) = (i+ j)!/i!j!.)

Proof. Just expand everything out. �
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Lemma 6.16. If A is a vector space over Q then the map φA : A −→ Zd(A) is an isomorphism for all d > 1,
with inverse πA.

Proof. Define ψ : Zd(A) −→ A by ψ(f) = ν(d)a1/d (where f(x, y) =
∑
i aix

iyd−i). It is easy to check that
ψ(cd) = 1, so that ψφA = 1. We next claim that ψ is injective. Indeed, suppose that ψ(f) = 0, so that
a1 = 0. The case j = 1 in Lemma 6.15 gives ai+1 = (d − i)ai/(i + 1), so we see inductively that ai = 0 for
all i so f = 0 as required. We have seen that ψφ = 1 so ψφψ = ψ but ψ is injective so φψ = 1. Thus φ is
an isomorphism as claimed. We know that πAφA = 1, so we must have πA = ψ = φ−1

A . �

Corollary 6.17. If A is a torsion-free Abelian group then the map φA : A −→ Zd(A) is an isomorphism for
all d > 1.

Proof. Write A′ = Q ⊗ A; because A is torsion-free we have A ≤ A′. It is easy to see that Zd(A) =
A[x, y] ∩ Zd(A′), and we know that φA′ is an isomorphism by the lemma. It thus suffices to check that if
a ∈ A′ and φA′(a) ∈ A[x, y] then a ∈ A. This is clear because a = πA′φA′(a) and πA′ sends Zd(A) to A by
construction. �

Lemma 6.18. Let A be a vector space over Z/p and suppose that f ∈ Zd(A). Write f2(x, y) for the partial
derivative of f with respect to the second variable and suppose that f2(x, 0) = 0. Then f(x, y) = g(xp, yp)
for some g ∈ Zd/p(A), which means that f = 0 if d is not divisible by p.

Proof. We have the cocycle identity

f(y, z)− f(x+ y, z) + f(x, y + z)− f(x, y) = 0.

If we differentiate with respect to z at z = 0 we obtain f2(y, 0)− f2(x+ y, 0) + f2(x, y) = 0. As f2(x, 0) = 0,
we conclude that f2(y, 0) = f2(x + y, 0) = 0 and thus f2(x, y) = 0. If f(x, y) =

∑
i+j=d aijx

iyj then

f2(x, y) =
∑
i+j=d jaijx

iyj−1 so we conclude that aij = 0 unless p divides j. As aij = aji we see that aij = 0
unless p divides both i and j. If p does not divide d, we see that aij = 0 for all i, j and thus that f = 0. If p
does divide d we see that f(x, y) = g(xp, yp) for some homogeneous symmetric polynomial g of degree d/p.
As (x+ y)p = xp + yp (mod p) we see that g(yp, zp)− g(xp + yp, zp) + g(xp, yp + zp)− g(xp, yp) = 0, and it
follows that g(Y,Z)− g(X + Y,Z) + g(X,Y + Z)− g(X,Y ) = 0 ∈ A[X,Y, Z], so g ∈ Zd/p(A). �

Lemma 6.19. Let A be a vector space over Z/p. Suppose that p divides d but that d is not a power of p.
Then if f ∈ Zd(A) we have f(x, y) = g(xp, yp) for some g ∈ Zd/p(A).

Proof. Because f is homogeneous of degree d and dA = 0 we have xf1(x, y)+yf2(x, y) = df(x, y) = 0. Write
h(x) = xf2(x, 0). As f(x, y) = f(y, x) we also have h(x) = xf1(0, x). If we differentiate the cocycle identity
with respect to z at z = 0 we obtain

f2(y, 0)− f2(x+ y, 0) + f2(x, y) = 0.

If we exchange x and y and then use the symmetry of f we obtain

f1(0, x)− f2(x+ y, 0) + f1(x, y) = 0.

We now multiply these two equations by y and x respectively, and add them together using the relation
xf1 + yf2 = 0. This gives h(x + y) = h(x) + h(y). Moreover, it is clear that g is homogeneous of degree d,
say h(x) = axd for some a ∈ A. It follows that ( di ) a = 0 for 0 < i < d, and d is not a power of p so we must
have a = 0. Thus f2(x, 0) = 0, and the conclusion follows from Lemma 6.18. �

Lemma 6.20. Let A be a vector space over Z/p. If d = pk > p and f ∈ Zd(A) then we have f(x, y) =
g(xp, yp) for some g ∈ Zd/p(x, y).

Proof. Write f(x, y) =
∑d−1
i=1 aix

iyd−i. If we apply Lemma 6.15 with i = 1 and j = p − 1 we find that(
pk−1
p−1

)
a1 = pap = 0. On the other hand, we have

(
pk−1
p−1

)
=

p−1∏
t=1

pk − t
t

,

which is easily seen to be nonzero mod p. It follows that a1 = 0, so f2(x, 0) = a1x
d−1 = 0, and the conclusion

again follows from Lemma 6.18. �
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Exercise 6.21. Give another proof of Lemma 6.19 along the same lines as that of Lemma 6.20.

Lemma 6.22. The map φZ/p,d : Z/p −→ Zd(Z/p) is an isomorphism for all primes p and all d > 1.

Proof. We have seen that φA is a split monomorphism for all A, so it suffices to show either that φZ/p,d is
surjective, or that Zd(Z/p) has dimension at most one over Z/p. First suppose that d is not divisible by p.
Then for any f ∈ Zd(Z/p) we have f2(x, 0) = a1x

d−1 for some a1 ∈ Z/p and it follows from Lemma 6.18
that the map f 7→ a1 gives an injection Zd(Z/p) −→ Z/p, so φZ/p,d is an isomorphism. Now consider the case
d = p. Again, if a1 = 0 we see that f(x, y) = g(xp, yp) for some g ∈ Z1(Z/p), but Z1(A) = 0 for all A by
easy arguments, so f = 0. It follows as before that φZ/p,p is an isomorphism.

Now suppose that d > p is divisible by p. We can then write d = pke for some k > 0 and e > 1 with

either e = p or e 6= 0 (mod p). By repeatedly applying Lemma 6.19, we find that f(x, y) = g(xp
k

, yp
k

) for

some g ∈ Ze(Z/p). It follows that the map g 7→ g(xp
k

, yp
k

) gives a surjection from Ze to Zd, and we know
that Ze ' Z/p, so Zd has dimension at most one, so φZ/p,d is an isomorphism. �

Lemma 6.23. The map φZ/pk : Z/pk −→ Zd(Z/pk) is an isomorphism for all k > 0 and d > 1.

Proof. We argue by induction, using the previous lemma for the case k = 1. Suppose that f ∈ Zd(Z/pk+1).
By the inductive hypothesis applied to the image of f in Zd(Z/pk), we see that there exists a ∈ Z/pk+1 such
that f − φ(a) = 0 (mod pk), say f = φ(a) + pkg for some g. The polynomial g is well-defined mod p, and
it is easy to check that it gives an element of Zd(Z/p). Thus, by the case k = 1, we see that g = φ(b) for
some c ∈ Z/p, and thus f = φ(a+ pkb). This shows that φ is surjective, and we have already seen that it is
injective. �

Proof of Proposition 6.8. We know from Corollary 6.17 and Lemma 6.23 that φA is an isomorphism when
A = Z or A = Z/pk. Any finitely generated Abelian group can be written as a direct sum of groups of these
types, and it is easy to see that Zd(A⊕B) = Zd(A)⊕Zd(B), so we see that φA is an isomorphism whenever
A is finitely generated. Now let A be a general Abelian group, and suppose that f ∈ Zd(A). Let B be the
subgroup of A generated by the coefficients of f , so that B is finitely generated and f ∈ Zd(B). As φB is an
isomorphism, we have some b ∈ B ≤ A such that f = φB(b) = φA(b). Thus, φA is surjective, and we also
know from Lemma 6.14 that it is injective. �

7. The structure of the Lazard ring

Recall the Lazard ring L = OFGL constructed in the proof of Proposition 4.16. In this section, we
investigate the structure of L. In principle, this gives a classification of all formal group laws.

Definition 7.1. Fix integers λdi as in definition 6.13, and write ad =
∑d
i=1 λdiai,d−i ∈ L.

Theorem 7.2. The Lazard ring L is a polynomial algebra over Z on the generators ad for d > 1. In other
words, we have

L = Z[a2, a3, a4, . . .].

This will be proved at the end of this section.
It is technically convenient in the proof to regard L as a graded ring, so we pause to explain some basic

ideas about gradings.

Definition 7.3. A grading on a ring R is a sequence of additive subgroups Rk for k ∈ Z such that 1 ∈ R0

and RiRj ⊆ Ri+j and R =
⊕

k Rk. If a ∈ Rk for some k then we say that a is a homogeneous element of
degree k.

Definition 7.4. Recall that we have an affine scheme Gm defined by Gm(R) = R×. An action of Gm on a
scheme X is a map of schemes α : Gm ×X −→ X such that α(1, x) = x and α(u, α(v, x)) = α(uv, x) for all
rings R and all x ∈ X(R) and u, v ∈ R×. We will often write u.x rather than α(u, x).

Example 7.5. We have an action of Gm on RPS1 by (u.f)(x) = u−1f(ux). We also have an action of Gm
on FGL by (u.F )(x, y) = u−1F (ux, uy).

Proposition 7.6. An action of Gm on an affine scheme X = spec(A) gives a grading of OX = A.
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Proof. Recall that A = OX can be seen as the set of natural maps f : X −→ A1. We let Ak be the set of
those maps that satisfy f(u.x) = ukf(x) (for all rings R and all x ∈ X(R) and u ∈ R×). It is clear that Ak
is an additive subgroup of A, that 1 ∈ A0 and that AiAj ≤ Ai+j . Thus, it suffices to check that A =

⊕
k Ak.

Suppose that f ∈ A. We then have a map g : Gm ×X −→ A1 given by g(u, x) = f(u.x). This is an element
of the ring

OGm×X = OGm
⊗OX = Z[u, u−1]⊗A = A[u, u−1].

There are thus unique elements fk ∈ A for k ∈ Z such that g =
∑
k u

kfk, or in other words f(u.x) =∑
k u

kfk(x) for all x and u. If f = fk then clearly f ∈ Ak. Conversely, if f ∈ Ak then we can get a
decomposition of the type described by taking fk = f and fj = 0 for all j 6= k, and by assumption there is
only one such decomposition. Thus, we have f ∈ Ak iff f = fk. Moreover, the associativity of the action
gives ∑

k

ukvkfk(x) = f((uv).x) = f(u.(v.x)) =
∑
i,j

uivjfij(x).

By the same argument that gives the uniqueness of the fi’s, we can conclude that fk = fkk, so fk ∈ Ak.
Moreover, we have f(x) = f(1.x) =

∑
k fk(x), so f =

∑
k fk. This shows that A =

∑
k Ak, and the

uniqueness of the fk’s shows that the sum is direct. Thus, we have a grading on A. �

Example 7.7. Our action of Gm on FGL gives a grading of the Lazard ring L. For any formal group
law F we have F (x, y) = x + y +

∑
i,j>0 aij(F )xiyj , so (u.F )(x, y) = x + y +

∑
i,j>0 u

i+j−1aij(F )xiyj ,

so aij(u.F ) = ui+j−1aij(F ), so aij ∈ Li+j−1. It follows that ak ∈ Lk−1. Note that L is a quotient of
the polynomial ring generated by the elements aij . These all have strictly positive degree, and for any
integer d there are only finitely many generators aij whose degree is less than d. It follows easily that each
homogeneous piece Lk is a finitely generated Abelian group. It is this finiteness property that makes the
grading useful for us.

Lemma 7.8. There are elements bk ∈ Q⊗ Lk−1 for k > 0 such that b1 = 1 and Q⊗ L = Q[b2, b3, . . .].

Proof. Let M be the ring Z[b2, b3, . . .], so we claim that Q ⊗ L ' Q ⊗M . As we saw in Example 4.13, we
can identify RPS1 with spec(M). We now want to describe spec(Q⊗M). Notice that if every integer n 6= 0
becomes invertible in R then there is a unique homomorphism Q −→ R, and in any other case there are no
homomorphisms Q −→ R. It follows that spec(Q ⊗M)(R) is RPS1(R) if R admits a Q-algebra structure,
and ∅ otherwise. We have a similar description of spec(Q ⊗ L) in terms of spec(L) = FGL, so we conclude
that the map φ in Corollary 3.3 induces an isomorphism spec(Q ⊗M) ' spec(Q ⊗ L). As maps between
schemes biject with maps between rings in the opposite direction (Corollary 4.12) we conclude that there is
an isomorphism φ∗ : Q ⊗ L ' Q ⊗M . If we let Gm act on RPS1 and FGL as in Example 7.5 then one can
check that φ(u.f) = u.φ(f) and thus that φ∗(Lk) ≤Mk. One can also see that bk ∈Mk−1, so the preimage
of bk in Q⊗ L lies in Lk−1. This proves the lemma.

We can be a little more explicit if desired: under the various implicit identifications, the element bk ∈ Q⊗L
is just the coefficient of xk in the logarithm of the universal formal group law F over L. The map φ∗ : L −→M
is the unique map that sends F to f−1(f(x) + f(y)), where f(x) = x+

∑
k>0 bkx

k ∈M [[x]]. �

Definition 7.9. Recall that I is the kernel of the map L −→ Z that sends aij to 0 when i+ j > 1. It is easy
to check that I =

⊕
k>0 Lk. We also write Q = I/I2, and Qd for the part of Q in degree d, which is just

Qd = Ld/
d−1∑
k=1

LkLd−k.

Lemma 7.10. For each d > 1, the group Qd−1 is freely generated by ad.

Proof. We know from Proposition 6.3 that Z(A) = Hom(Q,A), and one can deduce easily that Zd−1(A) =
Hom(Qd−1, A). We also know that the map πd−1 : Zd−1(A) −→ A is an isomorphism. If we identify Zd−1(A)
with Hom(Qd−1, A), then this becomes the map α 7→ α(ad). As this is an isomorphism, we conclude that
Qd−1 is freely generated by ad. �

Proof of Theorem 7.2. Let L′ be the polynomial ring Z[a′2, a
′
3, . . .], and define a map φ : L′ −→ L by φ(a′k) =

ak. There is a unique grading on L′ such that a′k is homogeneous of degree k− 1 for all k, and if we use this
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then φ(L′k) ≤ Lk for all k. We now let I ′ be the ideal generated by {a′k | k > 1}, so that I ′ =
⊕

k>0 L
′
k, and

we put Q′ = I ′/(I ′)2. This is the direct sum of its homogeneous pieces Q′d, and it is easy to see that Q′d is
isomorphic to Z, freely generated by a′d+1. It follows easily that the induced map φ : I ′/(I ′)2 −→ I/I2 is an

isomorphism, and thus that I = φ(I ′) + I2. We now claim that φ : L′d −→ Ld is surjective for all d. Indeed,
this is clear for d = 0. Suppose that it holds for degrees less than d, where d > 0. If a ∈ Ld then a ∈ I so

we have a = φ(b) + c for some b ∈ I ′ and c ∈ I2 =
∑d−1
i=1 LiLd−i. By induction we know that φ : L′i −→ Li is

surjective for 0 < i < d and it follows that c is in the image of φ, and thus that a is in the image of φ. This
shows that φ is surjective. Next, consider the induced map Q⊗ L′ −→ Q⊗ L. It follows from the above that
this is again surjective. On the other hand, we know from Lemma 7.8 that Q ⊗ L ' Q[b2, b3, . . .], with bk
homogeneous of degree k − 1. It follows that Q⊗ L′d and Q⊗ Ld have the same, finite, dimension as vector
spaces over Q. As φ : Q⊗L′d −→ Q⊗Ld is surjective, we conclude easily that it must be an isomorphism. On
the other hand, L′d is a free Abelian group, so the evident map L′d −→ Q⊗ L′d is injective. If a ∈ L′d satisfies

φ(a) = 0 ∈ Ld then the image under the composite L′d −→ Q⊗ L′d
φ−→ Q⊗ Ld is also zero, but this composite

is injective so a = 0. It follows that φ : L′ −→ L is injective. We have already seen that it is surjective, so it
is an isomorphism as required. �

8. The Functional Equation Lemma

The functional equation lemma gives sufficient conditions under which a formal group law defined over a
ring of the form Q⊗R is actually defined over R. We shall not formally state the lemma, but we will prove
two results that implicitly use it.

Proposition 8.1. Let p be a prime, and let n > 0 be an integer. Define l(x) =
∑
k≥0 x

pnk

/pk and F (x, y) =

l−1(l(x) + l(y)). Then F is a formal group law over Z.

Proof. It is clear that F is a formal group law over Q, so it will be enough to show that it is integral, in
other words that the coefficients lie in Z. This is true mod (x, y)2, because F (x, y) = x + y (mod (x, y)2).
Suppose that F is integral mod (x, y)d; it will be enough to deduce that it is integral mod (x, y)d+1. Write
R0 = Z[[x, y]]/(x, y)d+1 and R = Q ⊗ R0 = Q[[x, y]]/(x, y)d+1. Write q = pn and let ψ be the unique ring
map from R to itself that sends x to xq and y to yq. From now on we work in R. Because F is integral mod
(x, y)d, we can write F = A+B where A ∈ R0 and B is homogeneous of degree d. Moreover, A actually lies
in the ideal generated by x and y, so AB = xB = yB = B2 = 0. We make the following claims:

(a) l(x) + l(y) = l(A+B) = l(A) +B.
(b) l(x) = x+ l(xq)/p.
(c) ψ(l(A)) = l(xq) + l(yq).
(d) If u, v ∈ R0 and u− v ∈ pR0 then l(u)− l(v) ∈ pR0 (although usually l(u), l(v) 6∈ R0).
(e) ψ(A)−Aq ∈ pR0.
(f) ψ(l(A))/p− l(Aq)/p ∈ R0.

For claim (a), we note that F = A + B and l(x) + l(y) = l(F ) by the definition of F . If we expand out
l(A+B) using the fact that AB = B2 = 0, we get l(A) +B as claimed. For claim (b), we recall that l(x) =∑
k≥0 x

pnk

/pk; the k = 0 term is just x, and the sum of the remaining terms is l(xq)/p. We next note that

ψ(B) = 0 (because B is homogeneous of degree d). Thus, if we apply the homomorphism ψ to equation (a)

we get claim (c). For claim (d), we use Lemma 6.9 to deduce that up
nk

= vp
nk

(mod pnk+1R0) and the result
follows easily. For (e), we observe that ψ induces an endomorphism ψ of R0 = R0/pR0 = Fp[[x, y]]/(x, y)d+1.

We also have an iterated Frobenius endomorphism φn : R0 −→ R0, and these two endomorphisms have the
same effect on the generators x and y, so they must be the same. By applying them to A we see that
ψ(A) = Aq (mod pR0) as claimed. Claim (f) follows immediately from (d) and (e).

We now have

B = l(x) + l(y)− l(A)

= (x+ y −A) + (l(xq) + l(yq)− l(Aq))/p
= (x+ y −A) + (ψ(l(A))− l(Aq))/p
∈ R0.
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Indeed, the four lines above come from claims (a), (b), (c) and (f) respectively. This proves that B is integral,
so F is integral mod (x, y)d+1, as required. �

We now use similar methods to construct a more complicated formal group law that is p-locally universal,
in a sense that we will not make precise here.

Definition 8.2. Let B be the ring Z[v1, v2, . . .], and let ψ : B −→ B be the ring map that sends vk to vpk for
all k. There is a unique way to extend this to an endomorphism of B[[x, y]] sending x to xp and y to yp; we
again write ψ for the extended map.

Now consider a sequence I = (i1, . . . , ir) of strictly positive integers. We write |I| = r and ‖I‖ =
i1 + . . .+ ir. We also write πt =

∏
s<t p

is and vI =
∏r
t=1 v

πt
it

. We define

l(x) =
∑
I

vIx
p‖I‖/p|I|.

Here the sum runs over all such sequences, including the empty sequence, with ‖∅‖ = |∅| = 0 and v∅ = 1.
Finally, we write

F (x, y) = l−1(l(x) + l(y)) ∈ (Q⊗B)[[x, y]].

Proposition 8.3. The series F defined above is a formal group law over B.

Proof. Every nonempty sequence I can be written in the form iJ for some i > 0 and some possibly empty

sequence J . One checks that |I| = 1 + |J | and ‖I‖ = i + ‖J‖ and vI = viv
pi

J = viψ
i(vJ). It follows easily

that
l(x) = x+

∑
i>0

vi(ψ
il)(xp

i

)/p.

The rest of the proof is much the same as that of Proposition 8.1, except that we use the above equation in
place of the equation l(x) = x+ l(xq)/p. �

9. The Frobenius map

In the next section, we will study formal group laws over Fp-algebras, or equivalently rings R in which
p = 0. As preparation for this, we need some generalities about schemes of the form spec(R) for such rings
R. These are of course just the schemes over spec(Fp).

Definition 9.1. If R is an Fp-algebra, then we have a ring map φ = φR : a 7→ ap from R to itself, called the
algebraic Frobenius map. It is clear that if f : R −→ R′ is a map of rings, then f(ap) = f(a)p, so fφR = φR′f ,
so the following diagram commutes:

R
φR //

f

��

R

f

��
R′

φR′
// R′

This means that φ is a natural transformation from the identity functor to itself.

Definition 9.2. Let X be a functor with a map X −→ spec(Fp), which just means that X(R) = ∅ if p 6= 0
in R. We then define a map FX : X −→ X by (FX)R = X(φR) : X(R) −→ X(R). We call this the geometric
Frobenius map. If f : X −→ Y is a map of functors over spec(Fp), we check easily (using the naturality of fR
with respect to maps of R) that the following diagram commutes:

X
FX //

f

��

X

f

��
Y

FY

// Y.

Proposition 9.3. Let X be a functor over spec(Fp).

(1) If x ∈ X(R) and f ∈ OX then f(FX(x)) = f(x)p.
(2) If X = spec(A), then FX = spec(φA).
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Proof. The first claim follows by regarding f as a map X −→ A1 and using the naturality of F . For the second
claim, let u : A −→ R be a point of X(R). Then FX(u) = X(φR)(u) = φR ◦ u and spec(φA)(u) = u ◦ φA, but
these are the same because φ is natural. �

Definition 9.4. Let f : X ′ −→ X be a map of affine schemes over spec(Fp), and let Y be a formal scheme
over X. Let q : Y −→ X be the given projection map. We define a functor Y ′ = f∗Y from rings to sets by
Y ′(R) = {(a′, b) ∈ X ′(R)× Y (R) | f(a′) = q(b)}. If {y1, . . . , yn} is a system of formal coordinates on Y and
y′i(a

′, b) = yi(b) then one can easily check that {y′1, . . . , y′n} is a system of formal coordinates on Y ′, so Y ′ is
a formal scheme over X ′.

Remark 9.5. Let G be a formal group over an affine scheme X over spec(Fp), and let f : X ′ −→ X be a map
of affine schemes. We can then make G′ = f∗G into a formal group over X ′ by defining σ((a′, b0), (a′, b1)) =
(a′, σ(b0, b1)) and ζ(a′) = (a′, ζ(f(a′))). Here we have used the fact that if (a′, b0) and (a′, b1) lie in G′(R) then
q(b0) = f(a′) = q(b1), so σ(b0, b1) is defined. In a different notation, we could just write (a′, b0) + (a′, b1) =
(a′, b0 + b1) and ζ(a′) = (a′, 0).

Remark 9.6. Now suppose that X = spec(A) and X ′ = spec(A′), so that f : X ′ −→ X comes from a map
u : A −→ A′. Suppose also that G = GF for some formal group law F over A. We then have a formal group
law uF over A′, and one can then identify G′ with GuF .

Definition 9.7. Let X be an affine scheme over spec(Fp), and Y a formal scheme over X, with projection
map q : Y −→ X. We then have a map FX : X −→ X and thus a formal scheme F ∗XY over X. We define the
relative Frobenius map FY/X : Y −→ F∗XY by FY/X(b) = (q(b),FY (b)). (This lies in F∗XY (R) because of the
naturality equation q ◦ FY = FX ◦ q). If y1, . . . , yn are coordinates on Y , and y′1, . . . , y

′
n are coordinates on

F ∗XY as in Definition 9.4, then we see that y′i(FY/X(a)) = yi(a)p.

Lemma 9.8. If G is a formal group over X then the relative Frobenius map FG/X : G −→ F∗XG is a homo-
morphism.

Proof. Consider the addition map σ : G ×X G −→ G, which is a map of schemes over X. As the relative
Frobenius map is natural, we have FG/X◦σ = σ◦FG×XG/X , and one sees from the definitions that FG×XG/X =
FG/X ×X FG/X . Thus, we have FG/X(a+ b) = FG/X(a) + FG/X(b) whenever a+ b is defined (ie, whenever
a and b lie over the same point of X). Thus, FG/X is a homomorphism. �

We next introduce a formal version of differential forms.

Definition 9.9. Let X be an arbitrary affine scheme, and let Y be a formal scheme of dimension n over X.
Then Y ×X Y is a formal scheme of dimension 2n over X. As usual, we let OY×XY denote the ring of maps
Y ×X Y −→ A1, and we let J denote the ideal of functions g ∈ OY×XY such that g(a, a) = 0 for all points a
of Y . We define ΩY/X = J/J2.

Remark 9.10. The analogy to think of is as follows. Let q : Y −→ X be a smooth map of smooth manifolds.
Suppose this has the property that for each point x ∈ X, the preimage Yx = q−1{x} is a submanifold of Y ,
diffeomorphic to Rn. For any point y ∈ Y , let Vy be the cotangent space of the manifold Yq(y) at y. These
vector spaces form a vector bundle of dimension n over Y , and we can define ΩY/X to be the space of global
sections of this bundle. The proof of the next proposition will give some justification of why this is analogous
to our definition for formal schemes.

Proposition 9.11. ΩY/X is a free module of rank n over OY .

Proof. First, suppose that g ∈ J and that h ∈ OY . We then have two functions k0(a, b) = h(a)g(a, b) and
k1(a, b) = h(b)g(a, b), giving two different elements of J . However, the map (a, b) 7→ h(a)− h(b) lies in J , so
k0 − k1 ∈ J2, so k0 and k1 have the same image in J/J2 = Ω1

Y/X . We can thus make ΩY/X into a module

over OY by defining hg = k0 = k1. We can also define a function d : OY −→ ΩY/X by d(h)(a, b) = h(a)−h(b).
We then have

d(hk)(a, b) = h(a) d(k)(a, b) + k(b) d(h)(a, b),

so d(hk) = h d(k) + k d(h).

Now choose coordinates x1, . . . , xn on Y . Then each xi is a map Y −→ Â1 ⊂ A1, and thus can be thought of
as an element of OY . We claim that the elements d(x1), . . . , d(xn) form a basis for ΩY/X over OY . To see this,
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define x′i, x
′′
i : Y ×X Y −→ A1 by x′i(a, b) = xi(a) and x′′i (a, b) = xi(b). We then have OY×XY = OX [[x′i, x

′′
i ]],

and this is the same as OX [[x′i, yi]], where yi = x′i − x′′i . The diagonal inclusion Y −→ Y ×X Y gives rise to a
map OY×XY −→ OY , which sends x′i and x′′i to xi and thus yi to 0. The ideal J is by definition the kernel
of this map, which is easily seen to be generated by the elements yi. It follows that J2 is generated by the
elements yiyj , and thus that J/J2 is a free module over OY generated by the elements yi. However, the
image of yi in ΩY/X = J/J2 is just d(xi), by examining the definitions. �

Remark 9.12. Let s : Y −→ Z be a map of formal schemes over X. We then have an induced map
OZ×XZ −→ OY×XY , sending g to g ◦ (s ×X s). This in turn induces a map s∗ : ΩZ/X −→ ΩY/X . One checks
that this satisfies s∗d(g) = d(g ◦ s) for g ∈ OZ , and s∗(gα) = (g ◦ s) s∗(α) for α ∈ ΩZ/X .

Remark 9.13. Now suppose we choose coordinates y1, . . . , yn on Y and z1, . . . , zm on Z. There are
then power series g1, . . . , gm over OX such that zi(s(a)) = gi(y1(a), . . . , yn(a)), and we have s∗d(zi) =∑
j ∂gi/∂yj d(yj). Thus, the map s∗ : ΩZ/X −→ ΩY/X gives a coordinate-free encoding of the partial deriva-

tives of the series gi.

Proposition 9.14. Let s : Y −→ Z be a map of formal schemes over an affine scheme X, with projection
maps q : Y −→ X and r : Z −→ X. Suppose that the induced map s∗ : ΩZ/X −→ ΩY/X is zero.

(a) If X is a scheme over spec(Q), then there is a unique map s′ : X −→ Z such that r ◦ s′ = 1 and
s = s′ ◦ q (so s is constant along the fibres of Y ).

(b) If X is a scheme over spec(Fp) for some prime p then there is a unique map s′ : F ∗XY −→ Z of
schemes over X such that s = s′ ◦ FY/X

Proof. Choose coordinates, as in Remark 9.13. As s∗ = 0 we have ∂gi/∂yj = 0 for all i and j. For the rest of
the argument, we assume that Y and Z have dimension one; the general case is essentially the same, but with
more elaborate notation. We thus have a single series g(y) over OX with g′(y) = 0. If g(y) =

∑
k≥0 cky

k then

we have
∑
k>0 kcky

k−1 = 0 and thus kck = 0 for all k > 0. If X lies over spec(Q) then OX is a Q-algebra
so ck = 0 for all k. The analysis of proposition 5.10 shows that c0 is nilpotent, or in other words that it is a

map X −→ Â1. We know that z is a coordinate on Z so there is a unique map s′ : X −→ Z over X such that
z(s′(a)) = c0(a). We then have z(s′(q(b))) = c0(q(b)) but by the definition of g this is the same as z(s(b)) so
s′(q(b)) = s(b) as required.

Now suppose instead that X lies over spec(Fp). As kck = 0 for all k, we see that ck = 0 unless p divides k,

so g(y) = h(yp) for some series h, which gives a map X × Â1 −→ X × Â1 as in Proposition 5.10. We identify

the second copy of X × Â1 with Z using the coordinate z, and the first one with F ∗XY using the coordinate
y′ as in Definition 9.4. This gives a map s′ : F ∗XY −→ Z such that z(s′(b)) = h(y′(b)). We also know that
y′(FY/X(a)) = y(a)p, so z(s′(FY/X(a))) = h(y(a)p) = g(y(a)) = z(s(a)). This shows that s = s′ ◦ FY/X as
claimed. �

Definition 9.15. Let G be a formal group over an affine scheme X. Let I be the ideal in OG of functions
g : X −→ A1 such that g ◦ ζ = 0 (or more informally, g(0) = 0).

Define ωG = ωG/X = I/I2, and let d0(g) denote the image of g in ωG/X . We also define

Prim(ΩG/X) = {α ∈ ΩG/X | σ∗α = π∗0α+ π∗1α ∈ ΩG×XG/X}.

Here π0, π1 : G×X G −→ G are the two projections.

We now give a formal version of the fact that left-invariant differential forms on a Lie group biject with
elements of the cotangent space at the identity element.

Proposition 9.16. ωG/X is a free module on one generator over OX . Moreover, there are natural isomor-
phisms ωG/X ' Prim(ΩG/X) and ΩG/X = OG ⊗OX

ωG/X .

Proof. Let x be a normalised coordinate on G. We see from Proposition 5.10 that OG = OX [[x]], and it is
easy to check that I = (x) so I2 = (x2) so ωG/X is freely generated over OX by d0(x).

Now let K be the ideal in OG×XG of functions k such that k(0, 0) = 0. In terms of the usual description
OG×XG = OX [[x′, x′′]], this is just the ideal generated by x′ and x′′. Given g ∈ I, we define δ(g)(u, v) =
g(u+ v)− g(u)− g(v). We claim that δ(g) ∈ K2. Indeed, we clearly have δ(g)(0, v) = 0, so δ(g) is divisible
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by x′. We also have δ(g)(u, 0) = 0, so δ(g) is divisible by x′′. It follows easily that δ(g) is divisible by x′x′′

and thus that it lies in K2 as claimed.
Next, let J be as in Definition 9.9. For any function g ∈ I we define λ(g) ∈ J by λ(g)(u, v) = g(u−v). As

g(0) = 0 we see that λ(g) ∈ J , so λ induces a map ωG/X −→ ΩG/X . We claim that λ(g) ∈ Prim(ΩG/X). To
make this more explicit, let L be the ideal of functions l on G×X G×X G×X G such that l(s, s, u, u) = 0.
The claim is that σ∗λ(g)− π∗0λ(g)− π∗1λ(g) = 0 in L/L2, or equivalently that the function

k : (s, t, u, v) 7→ λ(g)(s+ u, t+ v)− λ(g)(s, t)− λ(g)(u, v)

lies in L2. To see this, note that k = δ(g) ◦ θ, where θ(s, t, u, v) = (s − t, u − v). It is clear that θ∗K ⊂ L
and thus that θ∗K2 ⊂ L2, and we have seen that δ(g) ∈ K2 so k ∈ L2 as claimed. Thus, we have a map
λ : ωG/X −→ Prim(ΩG/X).

Next, given a function h(u, v) in J , we have a function µ(h)(u) = h(u, 0) in I. It is clear that µ induces
a map ΩG/X −→ ωG/X with µ ◦ λ = 1. Now suppose that h gives an element of Prim(ΩG/X) and that

µ(h) ∈ I2. Define k(s, t, u, v) = h(s + u, t + v) − h(s, t) − h(u, v). The primitivity of h means that k ∈ L2.
Define φ : G×X G −→ G×X G×X G×X G by φ(s, t) = (t, t, s− t, 0). One checks that φ∗L ⊆ J and that

h(s, t) = k(t, t, s− t, 0) + h(t, t) + h(s− t, 0).

Noting that h(t, t) = 0, we see that h = φ∗k + ψ∗µ(h), where ψ(u, v) = u− v. As µ(h) ∈ I2 and k ∈ L2 we
conclude that h ∈ J2. This means that µ is injective on Prim(ΩG/X). As µλ = 1, we conclude that λ and µ
are isomorphisms.

Finally, we need to show that the map f ⊗ α 7→ fλ(α) gives an isomorphism OG ⊗OX
ωG/X −→ ΩG/X .

As ΩG/X is freely generated over OG by d(x), we must have λ(d0(x)) = u(x)d(x) for some power series u.
As ωG/X is freely generated over OX by d0(x), it will suffice to check that u is invertible, or equivalently
that u(0) is a unit in OX . To see this, observe that µ(f d(g)) = f(0)d0(g), so that d0(x) = µλ(d0(x)) =
µ(u(x)d(x)) = u(0)d0(x), so u(0) = 1. �

Proposition 9.17. Let G and H be formal groups over an affine scheme X, and let s : G −→ H be a
homomorphism. Suppose that the induced map s∗ : ωH −→ ωG is zero.

(a) If X is a scheme over spec(Q), then s = 0.
(b) If X is a scheme over spec(Fp) for some prime p then there is a unique homomorphism s′ : F ∗XG −→ H

of formal groups over X such that s = s′ ◦ FG/X .

Proof. It follows from the definitions that our identification of ωG/X with Prim(ΩG/X) is natural for homo-
morphisms. Thus, if α ∈ Prim(ΩH/X) then s∗α = 0. We also know that ΩH/X = OH ⊗OX

ωH/X , so any
element of ΩH/X can be written as fα with f ∈ OH . Thus s∗(fα) = (f ◦ s).s∗α = 0. Thus, Proposition 9.14
applies to s. If X lies over spec(Q) then we conclude that s is constant on each fibre. As it is a homomor-
phism, it must be the zero map. Suppose instead that X lies over spec(Fp). In that case we know that there
is a unique map s′ : G′ = F∗XG −→ H such that s = s′ ◦ FG/X , and we need only check that this is a homo-
morphism. In other words, we need to check that the map t′(u, v) = s′(u+ v)− s′(u)− s′(v) (from G′×X G′
to H) is zero. Because s and FG/X are homomorphisms, we see that t′ ◦ FG×XG/X = 0: G ×X G −→ H.
Applying the uniqueness clause in Proposition 9.14 to the map 0: G×X G→ H, we conclude that t′ = 0 as
required. �

Corollary 9.18. Let G and H be formal groups over an affine scheme X, which lies over spec(Fp). Let
s : G −→ H be a homomorphism. Then either s = 0 or there is an integer n ≥ 0 and a homomorphism
s′ : (FnX)∗G −→ H such that s = s′ ◦ FnG/X and (s′)∗ is nonzero on ωH/X .

Before proving this, we reformulate it.

Corollary 9.19. Let s : G −→ H be as above, and let x and y be normalised coordinates on G and H
respectively. Let f be the unique series f(t) ∈ OX [[t]] such that y(s(a)) = f(x(a)) for all points a of G. Then
either f = 0, or there is an integer n and a power series g such that f(t) = g(tp

n

) and g′(0) 6= 0 (So we
cannot have f(t) = tp + tp+1, for example).

Proof of Corollary 9.18. Suppose that there is a largest integer n (possibly 0) such that s can be factored in
the form s = s′ ◦FnG/X . Write G′ = (FnX)∗G, so that s′ : G′ −→ H. If (s′)∗ = 0 on ωH/X then the proposition
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gives a factorisation s′ = s′′ ◦ FG′/X and thus s = s′′ ◦ Fn+1
G/X contradicting maximality. Thus (s′)∗ 6= 0 as

claimed. On the other hand, suppose that there is no largest n. Let f(t) be as in Corollary 9.19. Then
f(0) = 0 and f is a function of tp

n

for arbitrarily large n. It follows that f = 0, as required. �

Corollary 9.20. Let G and H be formal groups over an affine scheme X, and let s : G −→ H be a ho-
momorphism. Suppose that the induced map s∗ : ωH −→ ωG is zero, and that OX is torsion-free. Then
s = 0.

Proof. After introducing a coordinate, the claim is that a certain power series f(x) ∈ OX [[x]] is zero. As
OX is torsion-free, the map OX → Q⊗OX is injective, so it will suffice to check that f(x) becomes zero in
(Q⊗OX)[[x]]. This is clear from Proposition 9.17(a). �

Definition 9.21. Let G and H be formal groups over an affine scheme X, which lies over spec(Fp). Let
s : G −→ H be a homomorphism. If s = 0, we say that s has infinite height. Otherwise, the height of s is
defined to be the integer n occurring in Corollary 9.18. The height of the group G is defined to be the height
of the endomorphism pG : G −→ G (which is just p times the identity map).

Definition 9.22. Let R be an Fp-algebra, and F a formal group law over R. The height of F is the height
of the formal group GF over spec(R). Equivalently, if [p]F (x) = 0 then F has infinite height. Otherwise,
there is a unique integer n > 0 such that [p]F (x) = g(xp

n

) for some series g with g′(0) 6= 0, and then the
height of F is n.

Lemma 9.23. Let G be a formal group over X. For m ∈ Z we let mG : G −→ G be the map a 7→ ma. Then
we have m∗Gα = mα for all α ∈ Prim(ΩG/X).

Proof. We leave it to the reader to reduce to the case m > 1. Let δ : G −→ GmX be the diagonal map, let
σm : GmX −→ G be the addition map, and let π1, . . . , πm : GmX −→ G be the projection maps. By the definition
of Prim(ΩG/X) we have σ∗2α = π∗1α+π∗2α. It follows inductively that σ∗mα =

∑m
k=1 π

∗
kα. We have σmδ = mG

and πkδ = 1 so m∗Gα = δ∗σ∗mα =
∑m
k=1 α = mα, as claimed. �

Corollary 9.24. If G is a formal group over a scheme X over spec(Fp), then p∗G = p = 0 on ωG, so G has
height at least one.

Example 9.25. (1) Take G = Ĝa × spec(Fp), which is a formal group over spec(Fp). With the usual
coordinate we have F (x, y) = x+ y so [p](x) = px = 0, so G has infinite height.

(2) Take G = Ĝm × spec(Fp). We then have pG(u) = up = FG(u), so pG = FG, so clearly G has height
one.

(3) Take F (x, y) = (x+y)/(1+xy), considered as an FGL over Fp. If p = 2 then this has infinite height,
otherwise it has height one. This follows from the isomorphisms given in Example 2.14.

(4) Let C be an elliptic curve over a scheme X over spec(Fp), and let Ĉ be its formal completion. Then

it turns out that Ĉ has height one or two. In the case where OX is a field, the curve is said to be

supersingular if Ĉ has height two, and ordinary if Ĉ has height one.

(5) Let F be the formal group law over Z with logarithm
∑
k≥0 x

pnk

/pk, as considered in Proposition 8.1.
We shall show in a minute that the reduction of this formal group law mod p has height n.

(6) Let f(x) be a monic polynomial over Z such that f(x) = px (mod x2) and f(x) = xp
n

(mod p), for
some n > 0. We will see later that there is a unique FGL over the ring Zp of p-adic integers such

that f(F (x, y)) = F (f(x), f(y)), and that for this FGL we have [p]F (x) = f(x). If we write F for
the resulting FGL over Zp/pZp = Z/pZ = Fp then we see that [p]F (x) = xp

n

, so that F has height
n.

Proposition 9.26. Let F be the formal group law over Z such that logF (x) =
∑
k≥0 x

pnk

/pk (as considered

in Proposition 8.1), and let F be the resulting formal group law over Fp. Then [p]F (x) = xp
n

, so that F has
height n.

Proof. Write q = pn. We observe from the definition that p logF (x) = px+ logF (xq), and by applying expF
we find that [p](x) = expF (px) +F x

q. Write

f(x) = logF (px)/p =
∑
k≥0

pp
nk−k−1xp

nk

.
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One checks that f(x) ∈ Z[[x]] and f(x) = x (mod x2) so f is reversible in Z[[x]]. The reverse is easily seen to
be the series g(x) = expF (px)/p, so we conclude that this series is integral, and thus that expF (px) ∈ pZ[[x]].
We can thus reduce the equation [p](x) = expF (px) +F x

q mod p to obtain [p]F (x) = xq, as claimed. �

10. Formal groups of height at least n

Definition 10.1. Fix a prime p. For any formal group law F and k > 0, we let uk(F ) be the coefficient of
xk in [p]F (x), so uk ∈ OFGL = L and u1 = p. If we define (w.F )(x, y) = w−1F (wx,wy) then [p]w.F (x) =
w−1[p]F (wx), so uk(w.F ) = wk−1uk(F ), so uk is a homogeneous element of degree k − 1 with respect to
the grading introduced in Examples 7.5 and 7.7. We also write vk = upk (so that v0 = p and vk has degree

pk − 1).

Definition 10.2. Now fix an integer n > 0, and let FGLp,n(R) be the set of formal group laws of height at
least n over R. Write In for the ideal in L generated by the elements uk for which k is not divisible by pn.
It is clear that a formal group law F has height at least n if and only if uk(F ) = 0 for all such k, and thus
that FGLp,n = spec(L/In).

Lemma 10.3. The ideal In is generated by {v0, . . . , vn−1}.

Proof. Let F be a FGL of height m > 0. Then [p]F (x) = g(xp
m

) for some series g with g′(0) 6= 0,
say g′(0) = a. This means that [p]F (x) = axp

m

(mod xp
m+1), so v0(F ) = . . . = vm−1(F ) = 0 and

vm(F ) = a 6= 0. It follows easily that F has height at least n if and only if v0(F ) = . . . = vn−1(F ) = 0,
which means that FGLp,n = spec(L/(vk | k < n)) and thus that In = (vk | k < n). �

Proposition 10.4. We have

L/p = Fp[vi | i > 0]⊗ Fp[ak | k is not a power of p],

and thus

OFGLp,n = L/In = Fp[vi | i ≥ n]⊗ Fp[ak | k is not a power of p].

The proof will be given after two lemmas.

Lemma 10.5. Let A be an Abelian group, and f(x, y) =
∑
d>1 adcd(x, y) a symmetric cocycle over A. Make

R = Z ⊕ A into a ring as in the proof of Proposition 6.3, and let F (x, y) = x + y + f(x, y) be the resulting
FGL over R. Then for m > 0 we have

[m]F (x) = mx+
∑
d>1

(md −m)/ν(d) adx
d,

and the numbers (md −m)/ν(d) are integers.

Proof. Using the fact that mp = m (mod p) for all primes p, we see that (md −m)/ν(d) is an integer.
Suppose that A is torsion-free. In this case it is clearly sufficient to work in A′ = Q⊗A. Write a′d = ad/ν(d)

and g(x) =
∑
d a
′
dx
d so that f(x, y) = g(x+ y)− g(x)− g(y). As g has coefficients in A′ and x+F y = x+ y

(mod A) and A2 = 0, this is the same as g(x +F y) − g(x) − g(y). After feeding this into the definition
F (x, y) = x+y+f(x, y) we find that x+F y−g(x+F y) = x−g(x)+y−g(y), so the series h(x) = x−g(x) is
a homomorphism from F to the additive FGL. This implies that h([m]F (x)) = mh(x). Using A2 = 0 again
we see that g([m]F (x)) = g(mx) so

[m]F (x) = mh(x) + g(mx) = mx+ g(mx)−mg(x) = mx+
∑
d>1

(md −m)/ν(d) adx
d,

as claimed.
Now let A be an arbitrary Abelian group. Write A′ =

⊕
d>1 Z, and let a′d be the evident basis vector

in A′, and define f ′ =
∑
d a
′
dcd ∈ Z(A′). Let π : A′ −→ A be the map that sends a′d to ad. The previous

paragraph gives the conclusion for f ′, and by applying π we can deduce the conclusion for f . �

Lemma 10.6. When k > 0 we have vk = −apk (mod I2 + (p)), where I =
⊕

k>0 Lk < L as usual.
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Proof. We reuse the ideas in the proof of Proposition 6.3. It will be enough to show that if F is an
FGL of the type considered there, over a ring R = Fp ⊕ A in which pA = 0, then vk(F ) = −apk(F ). If
F (x, y) = x + y +

∑
d>1 adcd(x, y) then apk(F ) is just apk . On the other hand, Lemma 10.5 tells us that

[p]F (x) = px+
∑
d>1(pd − p)/ν(d) adx

d. It is clear that (pd − p)/ν(d) = 0 (mod p) unless d is a power of p,

in which case (pd − p)/ν(d) = pd−1 − 1 = −1 (mod p). Thus [p]F (x) = −
∑
k>0 apkx

pk and vk(F ) = −apk ,
as required. �

Proof of Proposition 10.4. Define

L′ = Fp[v′i | i > 0]⊗ Fp[a′k | k is not a power of p].

We can make this into a graded ring with v′i in degree pi − 1 and a′k in dimension k − 1. We can define
a map φ : L′ −→ L/p of graded rings by φ(v′i) = vi and φ(a′k) = ak. Let I ′ be the ideal in L′ generated

by the elements v′i and a′k, and let I be the image of I in L/p. It is easy to see from Lemma 10.6 that φ

induces an isomorphism I ′/(I ′)2 ' I/I
2
. It follows as in the proof of Theorem 7.2 that φ is surjective. On

the other hand, L and L′ are polynomial rings with generators in the same degrees, so we see that L′k and
Lk are vector spaces over Fp with the same finite dimension, and φ : Lk −→ L′k is surjective so it must be an
isomorphism. �

Corollary 10.7. For each n > 1, there is a formal group law over Fp of height n.

Proof. Using the proposition, we can define a map αn : L/p −→ Fp sending vn to 1 and all other generators
to 0. If Fn is the FGL that corresponds to αn under the bijection FGL(Fp) = Hom(L,Fp), then it is clear
that Fn has height n. �

11. Formal groups in positive characteristic

Let X = spec(R) be an affine scheme over spec(Fp). In this section, we attempt to classify formal groups
over X up to isomorphism. We will succeed completely in the case where R is an algebraically closed field.

It is convenient to reformulate the problem slightly. We can let RPS(R) act on FGL(R) by F f (x, y) =
f−1F (f(x), f(y)) (so that f is an isomorphism F f −→ F ).

Exercise 11.1. The set of isomorphism classes of formal groups over spec(R) bijects naturally with FGL(R)/RPS(R).

We first observe that the answer does not have as simple a form as one might hope for.

Proposition 11.2. The functor T (R) = FGL(R)/RPS(R) is not a scheme.

Proof. Corollary 10.7 tells us that T (Fp) is infinite. As L is a polynomial ring, it is easy to see that the map
FGL(Z) −→ FGL(Fp) is surjective, and thus the map T (Z) −→ T (Fp) is surjective, so T (Z) is infinite. On the
other hand, it follows from Proposition 3.1 that T (Q) has only one element. Thus, the map T (Z) −→ T (Q)
cannot be injective. However, if X is a scheme then it is clear that the map X(Z) −→ X(Q) is injective,
because the map Z −→ Q is. �

Despite this, we can obtain some interesting results. We now start working towards this.

Definition 11.3. If f, g ∈ R[[x, y, z]] we write f = g+O(k) if f = g (mod (x, y, z)k), and similarly for other
sets of variables. A formal group law F is additive to order k if we have F (x, y) = x+ y +O(k + 1).

Lemma 11.4. Let F and F ′ be two FGL’s over a ring R, and suppose that F (x, y) = F ′(x, y) + O(k) for
some k > 0. Then there is a unique element u ∈ R such that

F ′(x, y) = F (x, y) + uck(x, y) +O(k + 1).

Proof. Clearly there is a unique homogeneous polynomial f(x, y) of degree k such that F ′(x, y) = F (x, y) +
f(x, y) +O(k+ 1), and by Proposition 6.8 it suffices to check that f ∈ Zk(R). As F (x, y) = F (y, x) we have
f(x, y) = f(y, x). To check the cocycle condition, it suffices to work modulo (x, y, z)k+1. To this accuracy,
we have xf(x, y) = yf(x, y) = 0 and thus F ′(x, y) = x+F y +F f(x, y). It follows that

F ′(x, F ′(y, z)) = F ′(x, y +F z +F f(y, z)) = x+F y +F z +F f(y, z) +F f(x, F ′(y, z)).
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On the other hand, because F ′(y, z) = y + z (mod yz) and f is homogeneous of degree k we see that
f(x, F ′(y, z)) = f(x, y + z) to our accuracy. It follows that

F ′(x, F ′(y, z))−F x−F y −F z = f(y, z) +F f(x, y + z) = f(y, z) + f(x, y + z).

As F ′ is commutative and associative, the right hand side is invariant when we exchange x and z. We thus
have

f(y, z)− f(z, x+ y) + f(x, y + z)− f(y, x) = 0.

As f is symmetric, this gives the cocycle condition. �

Corollary 11.5. If F ∈ FGL(R) is additive to order k − 1 then there is a unique element u ∈ R such that
F (x, y) = x+ y + uck(x, y) +O(k + 1). �

Lemma 11.6. If F (x, y) = x+ y + ack(x, y) +O(k + 1) and m ∈ Z then n = (mk −m)/ν(k) is an integer
and [m]F (x) = mx+ naxk +O(k + 1).

Proof. This is essentially the same as Lemma 10.5. �

Corollary 11.7. Let F be a formal group law over an Fp-algebra R. If F is additive to order pr − 1 and
r < height(F ) then F is additive to degree pr.

Proof. We know from Corollary 11.5 that there is some element u ∈ R such that F (x, y) = x+y+ucpr (x, y)+

O(pr + 1). Lemma 11.6 tells us that [p]F (x) = −uxpr + O(pr + 1). On the other hand, if F has height n
then [p](x) = 0 +O(pn). If n > r we conclude that u = 0, so that F is additive to order pr. �

Lemma 11.8. If f(x) = x+axk then F f (x, y) = F (x, y)−a bk(x, y)+O(k+1), where bk(x, y) = (x+y)k−
xk − yk = ν(k)ck(x, y).

Proof. Exercise. �

Lemma 11.9. Suppose that F (x, y) = x + y + ack(x, y) + O(k + 1) and f(x) = vx for some unit v ∈ R×.
Then F f (x, y) = x+ y + avk−1ck(x, y) +O(k + 1).

Proof. Exercise. �

Lemma 11.10. Suppose that F (x, y) = x+ y + cpn(x, y) +O(pn + 1), and k > n and f(x) = x+F vx
pk−n

.
Then

F f (x, y) = F (x, y) + (vp
n

− v)cpk(x, y) +O(pk + 1).

Proof. Let F be a formal group law over an Fp-algebra R. We work everywhere modulo (x, y)p
k+1. Note

that to this accuracy, if w ∈ (x, y) and z ∈ (x, y)p
k

then wz = 0 so w +F z = w + z; we shall repeatedly use

this without explicit mention. We put c = cpk(x, y) ∈ (x, y)p
k

. The right hand side of the displayed equation

can be rewritten as x+F y +F v
pnc−F vc. We thus need to check that

f(x) +F f(y) = f(x+F y +F v
pnc−F vc),

or equivalently

x+F y +F vx
pk−n

+F vy
pk−n

= x+F y +F v
pnc−F vc+F v(x+F y)p

k−n

.

Here we have used the fact that k > n, so applying the pk−n’th power map kills the terms involving c. We
now cancel the terms x+F y and use the approximation F (X,Y ) = X +Y + cpn(X,Y ) mod (X,Y )p

n+1 and

the fact that c = cpn(x, y)p
k−n

(Lemma 6.10). We find that we need to check that

vxp
k−n

+ vyp
k−n

+ vp
n

c = vp
n

c−F vc+F v(xp
k−n

+ yp
k−n

+ c).

Finally, we observe that the formal sums can be rewritten as ordinary sums, and this makes the claim
clear. �

Theorem 11.11. Let F be a formal group law over an Fp-algebra R. If F has finite height n, then F is
isomorphic to a formal group law F ′ that is additive to order pn − 1. If F has infinite height then F is
isomorphic to the additive formal group law Fa(x, y) = x+ y.

26



Proof. We start with the finite height case. We will recursively define formal group laws Fk for 2 ≤ k ≤ pn

such that Fk is additive to order k − 1. We start with F2 = F , which clearly has the required form. Given
Fk, we know from Corollary 11.5 that Fk(x, y) = x+ y+uck(x, y) +O(k+ 1) for some u ∈ R. If k is a power
of p and k < pn then Corollary 11.7 tells us that u = 0. In that case, we put Fk+1 = Fk and fk(x) = x. If k

is not a power of p then ν(k) is a unit in Fp. We define fk(x) = x+ uxk/ν(k) and Fk+1 = F fkk . Lemma 11.8
tells us that Fk+1 is additive to order k. At the end of this process we have a formal group law F ′ = Fpn of
the required form, and isomorphisms fk : Fk+1 −→ Fk so F ′ ' F2 = F .

In the case where F has infinite height, we can define Fk and fk for all k, by the same procedure as that
given above. We then define gk(x) = f2(f3(. . . fk(x))), so that gk : Fk+1 −→ F2 = F , so that F gk = Fk+1.
We have fk(x) = x+ O(k) for all k, so gk = gk−1 + O(k), so there is a unique series g(x) ∈ R[[x]] such that
g(x) = gk−1(x)+O(k) for all k. We thus have F g = Fk = x+y+O(k) for all k, so F g(x, y) = x+y = Fa(x, y).
Thus g gives an isomorphism Fa ' F , as claimed. �

Theorem 11.12. Let K be an algebraically closed field of characteristic p > 0. Then any two formal group
laws over K are isomorphic if and only if they have the same height.

Proof. Let F and F ′ be two formal group laws over K. If they both have infinite height then they are both
isomorphic to the additive FGL and thus to each other (by Theorem 11.11). We may thus assume that they
have the same finite height n. Using Theorem 11.11 again, we may replace F and F ′ by isomorphic formal
group laws that are additive to order pn− 1. We thus have F (x, y) = x+ y+ucpn(x, y) +O(pn + 1) for some

u ∈ K. It follows that [p]F (x) = −uxpn + O(pn + 1) and we know that F has height n so u 6= 0. As K is
algebraically closed, we can choose v ∈ K such that vp

n−1u = 1. Using Lemma 11.9, we can replace F by an
isomorphic formal group law for which u = 1, or in other words F (x, y) = x+y+cpn(x, y) mod (x, y)p

n+1. We
may also replace F ′ by an isomorphic formal group law of the same type. We now define recursively a sequence
of formal group laws Fk (for k > pn) and isomorphisms fk : Fk+1 −→ Fk such that Fk(x, y) = F ′(x, y) +O(k).
We start with Fpn+1 = F . Suppose we have defined Fk. We know from Lemma 11.4 that there is a unique
element u ∈ R such that F ′(x, y) = Fk(x, y) + uck(x, y) + O(k + 1). If k is not a power of p then ν(k) is

a unit in Fp so we can define fk(x) = x + uxk/ν(k) and Fk+1 = F fkk . It then follows from Lemma 11.8
that Fk+1(x, y) = F ′(x, y) + O(k + 1) as required. On the other hand, suppose that k = pr for some
r > n. As K is algebraically closed, there is an element v ∈ K such that vp

n − v = u. We can thus define

fk(x) = x+Fk
vxp

k−n

and Fk+1 = F fkk . It follows from Lemma 11.10 that Fk+1(x, y) = F ′(x, y) +O(k + 1).
Now define gpn(x) = x and gk+1(x) = gk(fk+1(x)) for all k ≥ pn. It is easy to see that the series gk(x)

converges to a unique limit g(x), in the sense that for any N we have g(x) = gk(x) + O(N) for k � 0.
Moreover, we find that F g = F ′, so g is the required isomorphism from F ′ to F . �

12. Formal group laws of infinite height

Let FGLp,∞(R) be the set of formal group laws of infinite height over R. This is an affine scheme over
spec(Fp), and we see from Proposition 10.4 that the corresponding ring of functions is

L/I∞ = L/(vk | k ≥ 0) = Fp[ak | k is not a power of p].

This is a reasonably satisfactory picture, except that the generators ak are not very explicit or easy to work
with. In this section we give a different description of the scheme FGLp,∞, due to Steve Mitchell.

Definition 12.1. Write C = RPS1× spec(Fp), which is a group scheme under composition over spec(Fp).
Let A be the subgroup scheme consisting of formal power series f(x) such that f(x) = x (mod x2) and
f(x + y) = f(x) + f(y). Using Lemma 6.5, we see that this is just the group of series of the form f(x) =

x+
∑
k>0 akx

pk . We write A(R) \ C(R) for the set of right cosets of A(R) in C(R).

Let Y ⊂ C be the scheme of series of the form
∑
k>0 bkx

k such that bpk = 0 for all k > 0. Given a series

f ∈ C we define φ(f)(x, y) = f−1(f(x) + f(y)). This is a formal group law, and f gives an isomorphism
from φ(f) to the formal group law Fa(x, y) = x+ y, so φ(f) has infinite height.

Theorem 12.2. The map (f, g) 7→ f ◦ g gives an isomorphism A × Y −→ C. The inclusion Y −→ C and
the map φ : C −→ FGLp,∞ induce isomorphisms Y (R) −→ A(R) \ C(R) −→ FGLp,∞(R). Thus, the functor
A \ C : R 7→ A(R) \ C(R) is a scheme, and we have isomorphisms Y −→ A \ C −→ FGLp,∞.
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Proof. We may assume that R is an Fp-algebra (otherwise the theorem merely claims a bijection between
empty sets). We know from Theorem 11.11 that if F ∈ FGLp,∞(R) then there exists an isomorphism
f : F −→ Fa. If f ′(0) = u ∈ R× then we can compose with the automorphism x/u of Fa and thus assume
that f ′(0) = 1, so that f ∈ C(R). By assumption we have f(F (x, y)) = f(x) + f(y), so F = φ(f). This
shows that φ : C(R) −→ FGLp,∞(R) is surjective. It is easy to see that if g ∈ A(R) then φ(g ◦ f) = φ(f), so
we get an induced map A(R) \ C(R) −→ FGLp,∞(R), which is again surjective. If φ(f) = φ(g) = F then f
and g give maps F −→ Fa so h(x) = g(f−1(x)) defines a map Fa −→ Fa, in other words an element of A(R).
As g = h ◦ f we see that f and g give the same element of A(R) \C(R), so our map φ : A \C −→ FGLp,∞ is
an isomorphism.

We now define a map τ : C −→ A by τ(
∑
k>0 bkx

k) =
∑
k≥0 bpkx

pk . Note that τ(g)(x) = x if and only if

g ∈ Y . If f(x) =
∑
j ajx

pj ∈ A(R) and g(x) =
∑
k>0 bkx

k ∈ C(R) then we have f(g(x)) =
∑
j,k ajb

pj

k x
kpj

so

τ(f ◦ g) =
∑
i,j

ajb
pj

pix
pi+j

= f ◦ τ(g).

Now define σ(h) = τ(h)−1 ◦ h, so that h = τ(h) ◦ σ(h). By applying the above with f = τ(h)−1 and g = h,
we see that τ(σ(h))(x) = τ(h)−1(τ(h)(x)) = x, so σ(h) ∈ Y . We thus have a map (τ, σ) : C −→ A× Y , which
is easily seen to be inverse to the map (f, g) 7→ f ◦ g. �

Remark 12.3. In topology, the group scheme A is naturally identified with spec(P∗), where P∗ is the
polynomial part of the dual Steenrod algebra. If X is a space then the Steenrod algebra acts on H∗(X;Fp).
If X is a finite CW complex and H∗(X;Fp) is concentrated in even degrees then this gives rise to an action
of the group scheme A on the scheme XH = spec(H∗(X;Fp)). In the case p = 2, a similar construction
gives an action of A on spec(H∗(MO;F2)), where MO is the spectrum representing unoriented bordism.
This scheme can be identified with our scheme C, in a manner compatible with the action of A. Our A-
equivariant isomorphism C ' A × Y implies that the Adams spectral sequence for π∗(MO) collapses and
thus that spec(π∗(MO)) = Y = FGL2,∞. This tells us the structure of the ring π∗(MO). On the other hand,
a theorem of René Thom tells us that π∗(MO) is the ring of cobordism classes of compact closed manifolds.
(Two manifolds M and N are said to be cobordant if M qN is the boundary of some manifold W ; addition
is defined by disjoint union and multiplication by Cartesian product; this gives an algebra over F2 because
∂(M × I) = M q M .) Thus, the procedure outlined above contributes to a rather striking theorem in
topology. If MU is the complex bordism spectrum then spec(π∗(MU)) = FGL and spec(H∗(MU ;Fp)) = C
and if R denotes the image of the Hurewicz map π∗(MU) −→ H∗(MU ;Fp) then spec(R) = FGLp,∞.

13. The p-adic integers

In this section we define and study the ring Zp of p-adic integers, and various extensions of Zp. These
rings will be useful for several different reasons. In Section 14 we will develop the method of Lubin and
Tate for studying formal group laws over Zp. This will in turn give formal group laws over Zp/pZp = Fp. In
Section 16 we will study the endomophism rings of certain formal groups, and we will find that they contain
Zp.

Definition 13.1. Let ρk : Z/pk −→ Z/pk−1 be the evident projection map. Let Zp be the set of sequences
a ∈

∏
k>0 Z/pk such that ρk(ak) = ak−1 for all k > 1. This is a ring under the obvious pointwise operations.

Definition 13.2. Let a be an integer. If a = 0 then we define vp(a) = ∞, otherwise there is a largest
number k ≥ 0 such that pk divides a and we define vp(a) = k. Similarly, if a ∈ Zp we let vp(a) be the largest
k such that ak = 0 ∈ Z/pk, or vp(a) =∞ if a = 0. These definitions are clearly compatible if we think of Z
as a subring of Zp. We also define |a|p = p−vp(a), and dp(a, b) = |a − b|p. One can check that this gives a
metric on Zp and thus on Z ⊂ Zp.

Theorem 13.3. The topology on Zp induced by our metric d(a, b) = |a− b|p is the same as its topology as
a subspace of the product of the discrete spaces Z/pk. It is a compact Hausdorff space, and can be identified
with the completion of Z with respect to d. Every element a ∈ Zp has a unique expression as a convergent
infinite sum a =

∑
k≥0 bkp

k with bk ∈ {0, 1, . . . , p− 1}.
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Proof. Let a be an element of Zp, and suppose that ε > 0, so p−k < ε for some k. As Z/pk is discrete, the set
{ak} is open in Z/pk so U = {b ∈ Zp | bk = ak} is open in the product topology. If b ∈ U then one sees from
the definition of Zp that bj = aj for j ≤ k so vp(b−a) ≥ k so |b−a|p < ε. Thus, U is contained in the ball of
radius ε round a, and it follows that every open set in the metric topology is open in the product topology.
On the other hand, the basic neighbourhoods of A in the product topology are of the form V = Zp ∩

∏
k Vk,

where ak ∈ Vk ⊂ Z/pk and Vk = Z/pk for all but finitely many k. If Vk = Z/pk for all k ≥ m then one checks
easily that the ball of radius p−m round a is contained in V . It follows easily that the metric topology is the
same as the product topology.

Now let (a1, a2, . . .) be a Cauchy sequence in Zp. Then for any k there exists m such that |ai−aj |p < p−k

for i, j ≥ m. This means that ai,k = am,k for all i ≥ m. If we define bk = am,k then one can check that
b ∈ Zp and the sequence converges to b. Thus, Zp is complete under the metric. It is clear that any point
a ∈ Zp has distance at most p−k from some integer b ∈ {0, . . . , pk − 1}. It follows both that Zp is totally
bounded, and that Z is dense in Zp. Any complete, totally bounded metric space is compact Hausdorff,
and is the completion of any dense subspace. This shows that Zp is a compact Hausdorff space, and is the
completion of Z.

Now let a be an element of Zp. One can easily prove by induction that there is a unique sequence of
elements bk ∈ {0, . . . , p− 1} for k ≥ 0 such that ak =

∑
j<k bjp

j ∈ Z/pk, and it follows that a =
∑
j bjp

j ∈
Zp. �

Corollary 13.4. For any k ≥ 0 we have Zp/pkZp = Z/pk.

Proof. Define ρ : Zp −→ Z/pk by ρ(a) = ak. The restriction of ρ to Z ⊂ Zp is clearly surjective, so ρ is

surjective. If we write a =
∑
j bjp

j as in the theorem then ρ(a) =
∑k−1
j=0 bjp

j . If ρ(a) = 0 it is easy to see

that b0 = . . . = bk−1 = 0. As Zp is complete, the series
∑
j≥k bjp

k−j converges to an element c ∈ Zp and

a = pkc ∈ pkZp. Thus, ρ induces the claimed isomorphism. �

Proposition 13.5. An element a ∈ Zp is invertible if and only if a 6= 0 (mod p).

Proof. The corollary above shows that p is not invertible, so if a = 0 (mod p) then a is not invertible. Next,
suppose that a = 1 (mod p), say a = 1 − pb for some b ∈ Zp. The series

∑
k≥0 p

kbk then converges to an

inverse for a. Finally, suppose merely that a 6= 0 (mod p), so a has nontrivial image in Zp/pZp = Z/p. As
Z/p is a field, there is an integer b such that ab = 1 (mod p), so ab is a unit in Zp, so a must also be a
unit. �

Corollary 13.6. Every nonzero element of Zp is a unit multiple of pk for some k ≥ 0; so Zp is a principal
ideal domain, with pZp as the only maximal ideal. �

Definition 13.7. Let A be an abelian group. We say that A is a p-torsion group if for each a ∈ A there
exists k ≥ 0 with pka = 0.

Note that k is allowed to vary with a, so
⊕

j Z/pj counts as a p-torsion group, for example.

Proposition 13.8. Let A be a p-torsion group. Then A has a natural structure as a module over Zp.

Proof. Let n be an element of Zp, corresponding to a sequence of elements ni ∈ Z/pi. We use the same
notation ni for the unique representative lying in {0, 1, . . . , pi − 1}. Given a ∈ A we choose k with pka = 0,
and then define na = nka. It is clear that this does not depend on the choice of k. Given a, b ∈ A we can
choose k large enough that pka = pkb = 0 and then n(a + b) = nk(a + b) = nka + nkb = na + nb. All the
other module axioms can be checked by similar arguments. �

Proposition 13.9. Let F be a formal group law over a ring k, and fix i, j ≥ 0. Then for sufficiently large
m be have

[pm]F (x) = 0 (mod pi, xj).

Proof. We can replace k by k/pi and so assume that pi = 0 in k. This means that [pi]F (x) ∈ k[[x]].x2. In
general, if f(x) ∈ k[[x]].xr and g(x) ∈ k[[x]].xs then f(g(x)) ∈ k[[x]].xrs. It follows that [pin]F (x) is divisible
by x2n

, and so is divisible by xj for large n. �
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Proposition 13.10. Let G be a formal group over a scheme S = spec(k), and suppose that pi = 0 in k.
Recall that G gives a functor G′ from k-algebras to abelian groups, as in Section 5. Then G′(R) is always a
p-torsion group, and thus a Zp-module.

Proof. Choose a coordinate on G. This allows us to identify G(R) with Nil(R), with the group structure
given by a formal group law F over k. The claim now follows easily from Proposition 13.9. �

Definition 13.11. Let F be a formal group law over a ring k in which pi = 0. Fix n ∈ Zp. Proposition 13.10
tells us that multiplication by n gives a well-defined endomorphism of the groups (Nil(R), F ), and Propo-
sition 5.10 tells us that this corresponds to a formal power series over k. We write [n]F (x) for this power
series.

Similarly, if F is a formal group law over Zp then the previous paragraph gives compatible power series
[n]F (x) ∈ [[(Z/pi)]]x for all i, and these fit together to give [n]F (x) ∈ Zp[[x]].

Remark 13.12. More concretely, we can calculate [n]F (x) modulo (pi, xj) as follows: we find m such that
[pm]F (x) ∈ (pi, xj), then we find n0 ∈ N such that n = n0 (mod pm), then we define [n0]F (x) to be the
formal sum of n0 copies of x in the usual way, and we find that [n]F (x) is the same as [n0](x) modulo (pi, xj).

Remark 13.13. Using the correspondence between power series and natural transformations, it is easy to
check that

(a) [n]F (x) is as in Definition 1.1 whenever n ∈ Z ⊂ Zp.
(b) [n]F (F (x, y)) = F ([n]F (x), [n]F (y)), so [n]F is an endomorphism of F .
(c) [nm]F (x) = [n]F ([m]F (x)) and [n+m]F (x) = F ([n]F (x), [m]F (x)).

We next want to understand various finite extensions of Zp.

Definition 13.14. We say that a ring R is reduced if the only nilpotent element is zero. We let W be the
category of finite, reduced Fp-algebras. We also let W be the category of Zp-algebras R such that

(a) R is finitely generated and free as a Zp-module;
(b) R/pR is reduced.

Theorem 13.15. The functor R 7→ R/pR gives an equivalence W →W.

The proof will be given after a number of preliminary results. First, however, we explain the structure of
W:

Proposition 13.16. Let R be a finite Fp-algebra, and let φ : R → R be the Frobenius map, defined by
φ(a) = ap. Then the following are equivalent:

(a) R is reduced
(b) R is a finite product of fields
(c) φm = 1 for some m > 0.

Proof. First suppose that R is reduced. If R = R0 ×R1 with R0, R1 6= 0 then we can argue by induction on
|R| that R is a product of fields. So suppose that R cannot be split in this way, or in other words that the
only idempotent elements of R are 0 and 1. Let a be an arbitrary element of R. As R is finite, the powers
of a cannot all be distinct, so we can choose i, j with j > 0 and ai = ai+j , so ai(1 − aj) = 0. From this it
follows that ai(1− aij) = 0 and then that aij(1− aij) = 0 so the element aij is idempotent. If aij = 0 then
(as R is reduced) we have a = 0. If aij = 1 then a is invertible. It follows that R is a field. This shows
that (a) implies (b).

If R is a field of dimension m over Fp, it is standard that φm = 1 on R. If φmi = 1 on Ri for i = 0, 1,
then we find that φm0m1 = 1 on R0 ×R1. From this it follows easily that (b) implies (c).

Finally, suppose that φm = 1 in R, so φmn = 1 for all n. If a ∈ R is nilpotent then φmn(a) = 0 for n
sufficiently large, so a = 0. This shows that (c) implies (a). �

Corollary 13.17. If we put Um = Zp[t]/(tp
m − t) then Um/p is reduced, and is a finite product of fields.

Proof. The map φm : Um/p → Um/p is a ring homomorphism that acts as the identity on the generator u,
so it acts as the identity on the whole ring. �
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Definition 13.18. For R ∈ W we define φ0 : R→ R by φ0(a) = ap (so φ0 preserves multiplication but not
addition). We put

T (R) = {a ∈ R | φm0 (a) = a for some m > 0}.

Proposition 13.19. We have 0, 1 ∈ T (R), and T (R) is closed under multiplication, and T (R0 × R1) =
T (R0)× T (R1).

Proof. It is clear that 0, 1 ∈ T (R). If φm0 (a) = a and φn0 (b) = b then φmn0 (ab) = ab, so T (R) is closed
under multiplication. If ai ∈ Ri with φmi

0 (ai) = ai then φm0m1
0 (a0, a1) = (a0, a1), so T (R0 × R1) =

T (R0)× T (R1). �

Proposition 13.20. Let R be a ring in W. Then

(a) The reduction map π : R→ R/pR gives a bijection T (R)→ R/pR.
(We will write τ for the inverse map R/p→ T (R).)

(b) Every element a ∈ R can be expressed uniquely as
∑
i≥0 τ(ai)p

i with ai ∈ R/p.

(c) If B ⊆ R/p is a basis for R/p over Fp, then τ(B) is a basis for R over Zp.

Proof. (a) By Proposition 13.16, there exists m such that φm = 1 on R/pR. Thus, for a ∈ R we have
φm0 (a) = a (mod p). Define ai = φmi0 (a). Using Lemma 6.9 we can show by induction that ai+1 = ai
(mod p1+mi). Also, as R is a finitely generated free module over Zp, we see that R is the inverse limit
of the quotients R/ptR. It follows that there is a unique element a∞ ∈ R with a∞ = ai (mod p1+mi)
for all i. By uniqueness, we see that φm0 (a∞) = a∞, so a∞ ∈ T (R). By construction we have a∞ = a
(mod p), and it follows from this that the map π : T (R)→ R/p is surjective.

Now suppose we have a, b ∈ T (R) with π(a) = π(b). We can choose n > 0 such that φn0 (a) = a and

φn0 (b) = b. As π(a) = π(b) we see that a = b (mod p). It follows by Lemma 6.9 that φnj0 (a) = φnj0 (b)
(mod p1+nj), so a = b (mod p1+nj). As j was arbitrary, this gives a = b. Thus, we see that π is also
injective.

(b) Given a ∈ R we put b0 = a and a0 = π(b0) ∈ R/p. Then π(b0 − τ(a0)) = 0, so b0 − τ(a0) = pb1 for
some b1. Similarly, we put ai = π(bi) and bi+1 = (bi − τ(ai))/p for all i, so a = pibi +

∑
j<i τ(aj)p

j .

In the limit we get a =
∑
i≥0 τ(ai)p

i.

(c) First, we have assumed that R is a free module over Zp of finite rank, so we can choose a basis
u1, . . . , un. For any other list of elements v1, . . . , vn, we can write vi =

∑
jmijuj for some matrix

m ∈Mn(Zp), and v is a basis iff det(m) ∈ Z×p . However, an element of Zp is invertible iff its image
in Fp is invertible, so we see that v is a basis for R over Zp iff π(v) is a basis for R/p over Fp. The
claim is clear from this.

�

Corollary 13.21. If we put

E(R) = {e ∈ R | e2 = e} = { idempotents in R}
then π gives a bijection E(R)→ E(R/p).

Proof. It is clear that π(E(R)) ⊆ E(R/p). It is also clear that E(R) ⊆ T (R) and π : T (R)→ R/p is injective
so π : E(R)→ E(R/p) is injective. Finally, if e ∈ E(R/p), then there is a unique e ∈ T (R) with π(e) = e. We
then have e2 ∈ T (R) with π(e2) = e2 = e, so e2 = e, so e ∈ E(R). This proves that we have a bijection. �

Corollary 13.22. Suppose that R ∈ W. Then the following are equivalent:

(a) E(R) = {0, 1} (with 0 6= 1)
(b) E(R/p) = {0, 1} (with 0 6= 1)
(c) R/p is a field.
(d) R is an integral domain.

Proof. It is clear from Corollary 13.21 that (a) and (b) are equivalent. We know that S/p is a finite product
of fields, so (b) and (c) are equivalent. As every idempotent e ∈ E(R) satisfies e(1− e) = 0, we see that (d)
implies (a).

We next show that that (c) implies (d). Suppose that R/p is a field, and consider nonzero elements
a, b ∈ R. We then have a = pia0 and b = pjb0 for some i, j ≥ 0 and a0, b0 ∈ R with π(a0), π(b0) 6= 0 in R/p.
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As R/p is a field it follows that π(a0b0) 6= 0 and so a0b0 6= 0. As R is a free module over Zp it follows that
the element ab = pija0b0 is also nonzero, as required. �

Proposition 13.23. If F is any field of order pd, then there is an idempotent e ∈ E(Ud) such that the ring
R = Ud/e ∈ W has R/p ' F . Moreover, if S is any other ring in W with S/p ' F , then S ' R.

Proof. It is well known that F× is cyclic of order pd − 1; let u be a generator, and let α : Ud → F be

the map that sends t to u. Let φ(t) be the minimal polynomial of u, so tp
d − t = φ(t)ψ(t) for some ψ(t).

By differentiating this relation, we get φ′(t)ψ(t) + φ(t)ψ′(t) = −1. From this it follows that the element

e = −φ(t)ψ(t) gives an idempotent in the ring Ud/p = Fp[t]/(tp
d − t). By Corollary 13.21, there is a unique

idempotent lifting e ∈ E(Ud). If we put R = Ud/e, we find that R ∈ W and that α induces an isomorphism
R/p→ F .

Now suppose we have another ring S ∈ W, and an isomorphism β : S/p→ F . Let v ∈ T (S) be the element

with π(v) = β−1(u). Then vp
d ∈ T (S) with π(vp

d

) = π(v), so vp
d

= v, so there is a unique homomorphism
γ : Ud → S with γ(t) = v. The diagram

Ud
γ //

α

��

S

π

��
F S/p

'
β

oo

commutes when evaluated on t ∈ Ud, but t is a generator, so it commutes on all elements. It follows that
πγ(e) = 0, but π : E(S) → E(S/p) is bijective, so γ(e) = 0, so we have an induced map γ : R = Ud/e → S.
Using the above diagram we see that the induced map R/p → S/p is an isomorphism, and both R and S
are finitely generated free modules over Zp, so it follows that γ is an isomorphism. �

Proof of Theorem 13.15. First, Proposition 13.23 shows that the essential image of ρ contains all fields in
W. It is also clear that the essential image is closed under products, so ρ is essentially surjective.

Next, suppose we have two morphisms f, g ∈ W(R,S) with ρ(f) = ρ(g) : R/pR → S/pS. We have a
natural bijection T (R)→ R/p, so we see that f = g on T (R). However, T (R) generates R as a Zp-module,
so f = g. This proves that ρ is faithful.

We now want to prove that ρ is full, or in other words that the map

ρRS : W(R,S)→W(R/p, S/p)

is surjective. If we know that this holds for S0 and S1, then it also holds for S0 × S1. We can thus reduce
to the case where S does not split as a nontrivial product, or equivalently E(S) = {0, 1}. Corollary 13.21
then tells us that S/p must be a field, and S is an integral domain. Now fix S with this property, and let
V be the class of rings R ∈ W such that ρRS is a bijection. As S is an integral domain, it is not hard to
identify W(R0 ×R1, S) with W(R0, S)qW(R1, S), and W(R/p, S/p) with W(R0/p, S/p)qW(R1/p, S/p).
It follows that R0 × R1 ∈ V iff R0 and R1 both lie in V. Using this in one direction, we reduce to the case
where R/p is also a field. Using the opposite direction in combination with Proposition 13.23, we reduce

to the case where R = Ud for some d. In this case we can identify W(R,S) with {b ∈ S | bpd = b}, and it
follows from Proposition 13.20 that ρRS is a bijection, as required. �

Corollary 13.24. For R ∈ W, there is a ring homomorphism φ : R→ R given by

φ(
∑
i

τ(ai)p
i) =

∑
i

τ(api )p
i.

(We call this the lifted Frobenius map.)

Proof. We temporarily write φ1 for the Frobenius map a 7→ ap on R/p. By the proposition, there is a unique
ring homomorphism φ : R → R with ρ(φ) = φ1. As τ gives a natural bijection R/p → T (R), we see that
φ(τ(a)) = τ(φ1(a)) = τ(ap). As φ is a ring homomorphism it must also satisfy φ(p) = p, and so must be
continuous with respect to the p-adic topology. It therefore preserves the relevant infinite sums, and we find
that

φ(
∑
i

τ(ai)p
i) =

∑
i

τ(api )p
i.
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�

Remark 13.25. In Section 22 we will develop the theory of Witt vectors, which is useful for a number of
reasons. One application is that it gives a more explicit functor W →W that is inverse to ρ. However, this
turns out to be less useful than one might imagine. Instead, we can proceed as follows. Given a finite field
F , we can choose a generator u ∈ F , and let f(t) ∈ Fp[t] be the minimal polynomial, so F ' Fp[u]/f(u).

We can then choose a monic polynomial f̃(t) ∈ Zp[t] lifting f(t), and put R = Zp[u]/f(u); then R ∈ W with
ρ(R) ' F .

14. Lubin-Tate theory

Fix a prime p and an integer n > 0. Let R be a Zp-algebra such that

(a) R is finitely generated and free as a Zp-module;

(b) R/p is a field of order pm for some m dividing n, so that ap
n

= a for all a ∈ R/p.
(This means that R lies in the category W from Definition 13.14.)

Our results will already be interesting for R = Zp, and the reader may wish to focus on that case. However,
the more general case is important in number theory (specifically, the local class field theory of finite field
extensions with abelian Galois group).

Let F be the set of formal power series f(x) ∈ R[[x]] such that

(a) f(x) = px (mod x2)
(b) f(x) = xp

n

(mod p).

For each such f , we will define a formal group law Ff over R. It will turn out that given another series
g ∈ F , there is a canonical isomorphism uf,g : Ff −→ Fg, and we can use these to define a formal group that
is independent of any choices.

All our arguments will rest on the following lemma:

Lemma 14.1. Suppose that f, g ∈ F and that λ1 is a linear form in k variables over R, say

λ1(x1, . . . , xk) =
∑
i

αixi

with αi ∈ R for all i. Then there is a unique power series λ ∈ R[[x1, . . . , xk]] such that

λ = λ1 mod (x1, . . . , xk)2

and

λ(f(x1), . . . , f(xk)) = g(λ(x1, . . . , xk)).

Proof. Write I = (x1, . . . , xk) < R[[x1, . . . , xk]], and write λ ◦ fk for the series λ(f(x1), . . . , f(xk)) and so on.
We will construct recursively polynomials λm of degree at most m such that

λm ◦ fk = g ◦ λm +O(m+ 1).

We are given λ1, which has the required property because f(x) = px = g(x) + O(2). Suppose we have
constructed λm−1. We next claim that

λm−1 ◦ fk = g ◦ λm−1 (mod p).

To see this, we work mod p until further notice. We thus have g(x) = xp
n

and thus g(x+ y) = g(x) + g(y)
and g(xy) = g(x)g(y) and g(a) = a for all a ∈ R/p. Because of this, applying g to the power series
λm−1(x1, . . . , xk) is just the same as raising the variables xi to the pn’th power, or equivalently applying
f to them. This gives the congruence as claimed. Working integrally again and discarding terms of total
degree greater than m, we see that there is a unique homogeneous polynomial ψm of degree m such that

λm−1 ◦ fk = g ◦ λm−1 + pψm +O(m+ 1).

Define ψ′m = ψm/(1 − pm−1) (noting that 1 − pm−1 is a unit in Zp) and λm = λm−1 + ψ′m. Because
g(x) = px+O(2) we have

g ◦ λm = g ◦ λm−1 + pψ′m +O(m+ 1).
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On the other hand, we have f(x) = px+O(2) and ψ′m is homogeneous of degree m so

ψ′m ◦ fk = ψ′m(px1, . . . , pxk) = pmψ′m +O(m+ 1).

Thus, working modulo Im+1, we have

λm ◦ fk = λm−1 ◦ fk + pmψ′m

= g ◦ λm−1 + (p− pm)ψ′m + pmψ′m

= g ◦ λm
as required. It follows that there is a unique power series λ such that λ = λm + O(m + 1) for all m. This
series satisfies λ ◦ fk = g ◦λ+O(m) for all m, so λ ◦ fk = g ◦λ. One can check by induction that λ is unique
modulo Im for all m, and thus is unique. �

Proposition 14.2. If f ∈ F then there is a unique formal group law Ff (x, y) over R such that f ◦ Ff =
Ff ◦ f2, and moreover we have [p]Ff

(x) = f(x).

Proof. We start by applying Lemma 14.1 with g = f and λ1(x, y) = x + y. This gives a unique series
Ff = λ with Ff ◦ f2 = f ◦ Ff and Ff (x, y) = x + y mod (x, y)2. We claim that this is a formal group law.
Indeed, the series Ff (y, x) has the defining property of Ff (x, y) so Ff (x, y) = Ff (y, x). Similarly, the series
Ff (Ff (x, y), z) and Ff (x, Ff (y, z)) are both equal to x+ y + z mod (x, y, z)2 and they both commute with
f so the uniqueness clause in Lemma 14.1 implies that Ff is associative. Thus Ff is an FGL, so we can
define [p]Ff

(x). Both this and f(x) are power series in one variable that commute with f and agree with px

modulo x2. By the same kind of uniqueness argument, we have [p]Ff
= f . �

Proposition 14.3. Given two series f, g ∈ F there is a unique strict isomorphism uf,g : Ff −→ Fg. Given a
third such series h ∈ F , we have uf,h = ug,h ◦ uf,g, and uf,f (x) = x.

Proof. We start by applying Lemma 14.1 with k = 1 and λ1(x) = x. This gives a unique power series
u = uf,g with u ◦ f = g ◦ u and u(x) = x (mod x2). We claim that this is a homomorphism of formal group
laws, or in other words that u ◦ Ff = Fg ◦ u2. Indeed, Lemma 14.1 implies that there is a unique series
G(x, y) such that G(x, y) = x + y mod (x, y)2 and G ◦ f2 = g ◦ G, so it suffices to check that u ◦ Ff and
Fg ◦ u2 both have these properties. As u(x) = x (mod x2) and Ff (x, y) = Fg(x, y) = x+ y mod (x, y)2, we
see that u(Ff (x, y)) = Fg(u(x), u(y)) = x + y mod (x, y)2. As Ff ◦ f2 = f ◦ Ff and Fg ◦ g2 = g ◦ Fg and
u ◦ f = g ◦ u, we see that

u ◦ Ff ◦ f2 = u ◦ f ◦ Ff = g ◦ u ◦ Ff
and

Fg ◦ u2 ◦ f2 = Fg ◦ g2 ◦ u2 = g ◦ Fg ◦ u2,

as required. Thus, u is a homomorphism of FGL’s. As u(x) = x (mod x2), it is even a strict isomorphism.
If v is any other strict isomorphism Ff −→ Fg then we must have v ◦ [p]Ff

= [p]Fg
◦ v, or in other words

v ◦ f = g ◦ v. We must also have v(x) = x (mod x2), so v = u.
Now suppose we have a third series h ∈ F . It is clear that ug,h ◦ uf,g is a strict isomorphism Ff −→ Fh, so

by uniqueness we must have ug,h ◦ uf,g = uf,h. A similar argument shows that uf,f (x) = x. �

An important feature of the formal group laws Ff is that they allow us to define series [r]f (x) ∈ R[[x]] for
r ∈ R, extending the definition for r ∈ Zp that was given in Definition 13.11.

Definition 14.4. For r ∈ R we define [r]f (x) ∈ R[[x]] to be the unique series such that [r]f (x) = rx (mod x2)
and f([r]f (x)) = [r]f (f(x)). (This is obtained by applying Lemma 14.1 to λ1(x) = rx with f = g.)

Proposition 14.5. The series [r]f (x) have the following properties.

(a) [0]f (x) = 0 and [1]f (x) = x.
(b) [r]f (Ff (x, y)) = Ff ([r]f (x), [r]f (y)), so [r]f is an endomorphism of Ff .
(c) [rs]f (x) = [r]f ([s]f (x)) and [r + s]f (x) = Ff ([r]f (x), [s]f (x)).
(d) For any i, j ≥ 0 there exists m ≥ 0 such that [r]f (x) = [s]f (x) (mod pi, xj) whenever r = s mod pm.

(In other words, the construction r 7→ [r]f (x) is continuous with respect to the p-adic topology on R
and the (p, x)-adic topology on R[[x]].)

(It follows from (a) and (c) that [r]f (x) is as in Definition 1.1 when r ∈ Z.)
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Proof. Claims (a) to (c) involve various equations. In each case, both sides have the same linear term and
commute with f in an appropriate sense, so they are the same by the uniqueness clause in Lemma 14.1.

If we fix i and j, we know from Proposition 13.9 that [pm]f (x) = 0 (mod pi, xj) for large m. Using (c)
it follows that [r]f (x) = 0 (mod pi, xj) whenever r ∈ pmR, and thus that [r]f (x) = [s]f (x) (mod pi, xj)
whenever r = s (mod pmR). �

Definition 14.6. Given any R-algebra A, we define

G(A) = (F ×Nil(A))/ ∼,
where (f, a) ∼ (g, b) if and only if uf,g(a) = b. We define a binary operation on G(A) by

[f, a] + [g, b] = [g, Fg(uf,g(a), b)],

so in particular we have

[f, a] + [f, b] = [f, Ff (a, b)].

For r ∈ R and [f, a] ∈ G(A) we also define r.[f, a] = [f, [r]f (a)].

Proposition 14.7. G is a formal group over spec(R), and the endomorphism ring of G is R.

Proof. Fix h ∈ F and define x : G −→ Â1 by x[f, a] = uf,h(a). It is easy to check that this is well-defined and
is an isomorphism. This proves that G is a formal group.

Now let E be the endomorphism ring of G. For any m ∈ E, we have an induced map m∗ : ωG → ωG of
R-modules, and ωG is free of rank one over R, so this is multiplication by an element δ(m) ∈ R. This defines
a homomorphism δ : E → R, which is injective by Corollary 9.20. On the other hand, it is easy to see that
our definition r.[f, a] = [f, [r]f (a)] gives a map µ : R→ E, with δ ◦ µ = 1. As δ is injective, it follows that δ
and µ are mutually inverse isomorphisms. �

15. Moduli schemes of morphisms

Suppose we have two formal groups, say G0 and G1, over the same scheme S. As discussed previously,
a homomorphism from G0 to G1 means a map f : G → H of formal schemes that is compatible with the
projections to S and with the group structures. Thus, for any ring R we have a set S(R), and bundles G(R)
and H(R) of groups over S(R), and a natural map fR : G(R) → H(R) of bundles of groups. We will write
hom(G0, G1) for the set of homomorphisms in this sense. This is easily seen to be an abelian group under
pointwise addition. Also, if we have a third formal group G2 over S then the composition map

hom(G1, G2)× hom(G0, G1)→ hom(G0, G2)

is additive in both variables.
Now suppose we have coordinates x0 and x1 on G0 and G1, giving rise to formal group laws F0 and F1

over OS , so xi(a + b) = Fi(xi(a), xi(b)) . There is then a unique power series mf (t) =
∑
i>0 ait

i ∈ OS [[t]]
such that x1(f(a)) = mf (x0(a)), and this is a homomorphism of formal group laws from F0 to F1.

Rather than just considering the set hom(G0, G1), it is often natural to consider an analogous scheme.
Specifically, suppose we have a ring R and a point a ∈ S(R). This gives formal groups Gia = spec(R)×S Gi
over spec(R) for i = 0, 1. We put

Hom(G0, G1)(R) = {(a, f) | a ∈ S(R), f ∈ hom(G0a, G1a)}.
This defines a functor from rings to sets.

Proposition 15.1. The functor Hom(G0, G1) is a scheme, as is the subscheme Iso(G0, G1) of isomorphisms.

Proof. For i = 0, 1 we choose a coordinate xi on Gi, and let Fi denote the associated formal group law. Put

A0 = OS [a1, a2, . . . ],

and define m(t) =
∑
i ait

i ∈ A0[[t]]. Let J be the ideal in A0 generated by the coefficients of the series

m(F0(s, t))− F1(m(s),m(t)) ∈ A0[[s, t]].

Put A = A0/J . Then it is not hard to identify Hom(G0, G1) with spec(A), so it is a scheme as claimed.
Similarly, we have Iso(G0, G1) = spec(A[a−1

1 ]). �
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Example 15.2. Put

G = spec(Fp)× Ĝa = spf(Fp[[x]]),

and consider this as a formal group over Fp. Then Hom(G,G) is the scheme A from Definition 12.1. Explicitly,

for any Fp-algebra R, the set A(R) is the set of power series f(t) ∈ R[[t]] of the form f(t) =
∑
k≥0 akt

pk .

Definition 15.3. In the above context, we note that ωG0 and ωG1 are both free modules of rank one over
OS , as is Hom(ωG1 , ωG0), so we have a scheme A(Hom(ωG1 , ωG0)) over S as in Example 5.2. Given a point
(a, f) ∈ Hom(G0, G1)(R) we have a map

f∗ : ωG1a
→ ωG0a

,

and thus a point (a, f∗) ∈ A(Hom(ωG1
, ωG0

))(R). This construction gives a map

d : Hom(G0, G1)→ A(Hom(ωG1
, ωG0

)).

Proposition 15.4. If OS is a Q-algebra, then the above map d is an isomorphism.

Proof. This is essentially a reformulation of Proposition 9.17(a), but we will give an independent argument.
Using Proposition 5.20 we can choose additive coordinates x0 and x1 on G0 and G1. We note that dxi is

a generator for ωGi
, so there is a unique element u of Hom(ωG1

, ωG0
) such that u(dx1) = dx0.

Now Hom(G0, G1) corresponds to the functor AlgA → Sets that sends B to the set of power series
f(t) =

∑
i>0mit

i with f(s + t) = f(s) + f(t). As OS is a Q-algebra we know that all binomial coefficients
are invertible inOS , and it follows that mi must vanish for i > 1, so f(t) = m1t. We also see that d(f) = m1u,
and it is clear from this that d is an isomorphism. �

Now suppose we have formal groups G0 and G1 over different base schemes S0 and S1. We then define

Hom(G0, G1)(R) = {(a0, a1, f) | a0 ∈ S0(R), a1 ∈ S1(R), f ∈ hom(G0,a0 , G1,a1)}.
(In principle this could cause some ambiguity in cases where S1 happens to be the same as S0, but we will
add clarifying remarks where necessary.) It is easy to see that this is again a scheme, as is the subfunctor

Iso(G0, G1)(R) = {(a0, a1, f) | a0 ∈ S0(R), a1 ∈ S1(R), f : G0,a0
'−→ G1,a1}.

Remark 15.5. In topology, these schemes arise as follows. Suppose we have even periodic cohomology
theories represented by spectra E0 and E1, giving rise to formal groups Gi = spf(E0

i (CP∞)) over Si =
spec(π0(Ei)). There is then a natural map

spec(π0(E0 ∧ E1))→ Iso(G0, G1),

which is an isomorphism under certain natural conditions that are often satisfied. Next, the object π0(E0 ∧
(Ω∞E1)+) has two different products, and the second product induces a ring structure on the group of
indecomposables with respect to the first one. It turns out that there is a natural map

spec(Ind(π0(E0 ∧ (Ω∞E1)+)))→ Hom(G0, G1)

which is again often an isomorphism.

16. The Morava stabiliser group

In Example 15.2, we considered the moduli scheme of automorphisms of a formal group of infinite height,
and mentioned its importance in algebraic topology. This scheme has natural geometric structure, and so
does not behave like an ordinary discrete group.

By contrast, if we have formal groups Gi of height n over base schemes Si over spec(Fp), then the scheme
Hom(G0, G1) behaves much more like a discrete set, at least if the rings OSi

are sufficiently close to being
algebraically closed. Moreover, the relevant discrete set does not depend very strongly on the choice of G0

and G1. We will postpone any justification of this claim, but we will use it to motivate our approach in this
section: we will pick a specific formal group of height n, and investigate its endomorphisms.

Definition 16.1. In this section, we fix a prime p, an integer n > 0, and a field k of order pn. We let F0

be the formal group law over Z(p) with logarithm logF (x) =
∑
xp

ni

/pi, as in Proposition 8.1, and we let F

denote the resulting FGL over Fp ⊆ k. We put S = spec(k) and G = S×Â1, with the formal group structure
determined by F . We put D = end(G) and Γ = D× = aut(G). We call Γ the Morava stabiliser group.
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Remark 16.2. We will show that Γ is a p-adic analytic Lie group of dimension n2. It turns out that various
cohomology groups of Γ are of great importance in chromatic homotopy theory. These cohomology groups
are hard to calculate. However, it turns out that there are certain open subgroups of finite index whose
cohomology is very simple, and this is a good way to start the calculations.

Definition 16.3. For any f ∈ D, we let [f ](t) ∈ k[[t]] be the power series such that x(f(a)) = mf (x(a)) for
all a ∈ G. We note that

[f + g](t) = F ([f ](t), [g](t))

[f ◦ g](t) = [f ]([g](t))

[p](t) = [p]F (t) = tp
n

.

We also define

Jm = {f ∈ D | [f ](t) ∈ tp
m

k[[t]]}.
It is easy to see that this is a two-sided ideal in D, with JmJj ≤ Jm+j and D = lim

←−m
D/Jm.

Proposition 16.4. (a) There is an element s ∈ D with [s](t) = tp. This satisfies sn = p in D.
(b) For each a ∈ k there is an element τ(a) ∈ D with [τ(a)](t) = at. These satisfy τ(ab) = τ(a)τ(b) and

τ(0) = 0 and τ(1) = 1 and sτ(a) = τ(ap)s.

Proof. (a) The formal group law F0 has the form F0(t0, t1) =
∑
i,j aijt

i
0t
j
1 with aij ∈ Z(p), which means

that apij = aij (mod pZ(p)). From this it follows that over Fp ⊆ k we have F (t0, t1)p = F (tp0, t
p
1), so

the series [s](t) = tp gives an endomorphism of G, as required. From [s](t) = tp we get [sk](t) = tp
k

for all k and so [sn](t) = tp
n

= [p](t), so sn = p in D.

(b) Consider the ring U = Z(p)[u]/(up
n − u), and note that in U we have up

nk

= u for all k ≥ 0. In
(Q⊗ U)[[t]] we therefore have

logF (ut) =
∑
k

up
nk

tp
nk

pk
=
∑
k

u tp
nk

pk
= u logF (t).

By taking t = F (t0, t1) and applying log−1
F we get uF (t0 + t1) = F (ut0, ut1), so the series ut gives

an endomorphism of F0 defined over U . For any a ∈ k we have ap
n

= a, so there is a unique ring
homomorphism U → k sending u to a. By applying this to the above endomorphism, we conclude
that there is an element τ(a) ∈ D with [τ(a)](s) = as as claimed. Clearly [τ(a)]([τ(b)](t)) = abt =
[τ(ab)](t) so τ(ab) = τ(a)τ(b). The identities τ(0) = 0 and τ(1) = 1 are also clear. Moreover, we
have

[s]([τ(a)](t)) = [s](at) = aptp = [τ(ap)]([s](t))

so sτ(a) = τ(ap)s.
�

Proposition 16.5. Every element f ∈ D has a unique expansion f =
∑∞
m=0 τ(am)sm with am ∈ k.

Moreover, f is invertible iff a0 is nonzero.

Proof. For any f ∈ D, put a0 = m′f (0) ∈ k and f0 = f − τ(a0). Then f ′0(0) = 0, so Proposition 9.17 tells
us that f0 factors uniquely through the relative Frobenius map, which is called s in our current notation.
In other words, there is a unique f1 ∈ D with f = τ(a0) + f1s. An evident induction based on this gives a
sequence of elements ai ∈ k and fi ∈ D with f =

∑
j<i τ(aj)s

j + fis
i and fi = τ(ai) + fi+1s. In the limit

we get f =
∑
i τ(ai)s

i as required. It is clear that the map f 7→ m′f (0) gives a ring homomorphism from

D to k, so if f is invertible then a0 6= 0. Conversely, if a0 6= 0 then we can write f as τ(a0)(1 − g) with
g ∈ Ds = J1 , and it follows that the sum

∑
j τ(a−1

0 )gj converges in D to an inverse for f . �

Corollary 16.6. D is a free module of rank n2 over Zp.

Proof. Let X be the set of sums
∑n−1
m=0 τ(am)sm with am ∈ k, so |X| = pn

2

<∞. As p = sn, the proposition
tells us that every element of D has a unique representation

∑
j xjp

j with xj ∈ X. It follows that D is
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generated by X, so in particular it is finitely generated. It also follows that the map X → D/p is bijective,

so |D/p| = pn
2

, so the rank of D must be n2. �

Definition 16.7. We let W denote the subset of D consisting of sums
∑
j τ(aj)p

j with aj ∈ k.

Proposition 16.8. (a) An element f ∈ D lies in W iff it commutes with τ(a) for all a ∈ k.
(b) W is a commutative subring of D. It is a free module of rank n over Zp with W/p = k, so it is an

object of the category W described in Section 13.
(c) D is free as a left module over W , with basis {si | 0 ≤ i < n}. It is also free as a right module, with

the same basis.
(d) For a ∈W we have sa = φ(a)s, where φ : W →W is the lifted Frobenius map, as in Corollary 13.24.
(e) The centre of D is Zp.

Proof. (a) If f =
∑
i τ(ai)s

i then

τ(u)−1fτ(u) =
∑
i

τ(up
i−1ai)s

i

for all u ∈ k×. If u is a generator of k× then it has order pn − 1, so up
i−1 is only equal to 1 if i

is divisible by n. It follows that f commutes with τ(u) iff ai = 0 whenever i is not divisible by n,
which means that f =

∑
j anjs

nj =
∑
j anjp

j ∈W .

(b) From (a) it is clear that W is a subring. Every element of W can be written uniquely as
∑
i τ(ai)p

i

with ai ∈ k, so by the method of Corollary 16.6 we see that W is free of rank n over Zp. We also
see that W/p maps isomorphically to k, so W ∈ W.

(c) We can define β : Wn → D by β(w) =
∑n−1
i=0 wis

i. From what we have said already it is clear that
this gives an isomorphism Wn/p → D/p, and both Wn and D are free of rank n2 over Zp, so β is
an isomorphism. Essentially the same argument shows that we also have a right module basis.

(d) This is clear from the formula sτ(a) = τ(ap)s.
(e) If f ∈ D and f commutes with τ(u) for all u then we have f =

∑
i τ(ai)p

i for some ai ∈ k. If f also
commutes with s then we find that api = ai for all i, so ai ∈ Fp. From this we see that f ∈ Zp.

�

Definition 16.9. For w ∈W \ {0}, we define vp(w) to be the largest k such that w ∈ pkW . We also define
vp(0) =∞.

Definition 16.10. For f ∈ D, we define µ(f) ∈Mn(W ) to be the matrix such that

fsi =

n−1∑
j=0

sjµ(f)ji

for 0 ≤ i < n. We also define

MD = {m ∈Mn(W ) | mji ∈ pW when j < i}
= {m ∈Mn(W ) | m is lower triangular mod p}.

Proposition 16.11. The map µ gives an injective ring homomorphism D → MD. Moreover, for any
f ∈ D, the characteristic polynomial of µ(f) lies in Zp[t].

Proof. First, if f =
∑n−1
m=0 ams

m with ai ∈W we find that

fsi =

n−1∑
m=0

ams
m+i =

n−1∑
m=0

sm+iφ−m−i(am).

In cases where m + i ≥ n, we can write sm+i as p.sm+i−n. After reindexing the terms, and noting that
φn = 1, we obtain

µ(f)ji =

{
φ−j(aj−i) if i ≤ j
pφ−j(aj−i+n) if j < i.
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This shows that µ(f) ∈MD. As µ(f)j0 = φ−j(aj), it is easy to see that µ is injective. We also have

fgsi =
∑
j

fsjµ(g)ji =
∑
m,j

smµ(f)mjµ(g)ji

=
∑
m

sm(µ(f)µ(g))mi,

so µ(fg) = µ(f)µ(g), so µ is a ring homomorphism. Next, a straightforward calculation gives det(µ(s)) =
(−1)np, so in particular det(µ(s)) 6= 0.

Now let χ(t) be the characteristic polynomial of µ(f). Let φ(µ(f)) be the matrix obtained by applying φ
to each entry in µ(f). We then find that µ(s)µ(f) = φ(µ(f))µ(s). After taking determinants and cancelling
det(µ(s)) we get det(µ(f)) = φ(det(µ(f))), so det(µ(f)) ∈ Zp. After replacing f by t− f with t ∈ Zp we see
that χ(t) ∈ Zp whenever t ∈ Zp. From this it follows easily that the coefficients of χ(t) lie in Zp. �

Example 16.12. If n = 4 and f = a0 + a1s+ a2s
2 + a3s

3 then

µ(f) =


a0 pa3 pa2 pa1

φ−1(a1) φ−1(a0) pφ−1(a3) pφ−1(a2)
φ−2(a2) φ−2(a1) φ−2(a0) pφ−2(a3)
φ−3(a3) φ−2(a2) φ−2(a1) φ−3(a0)


Definition 16.13. For f ∈ D we define trace(f) and norm(f) to be the trace and determinant of the matrix
µ(f). (These lie in Zp, by the proposition above.) We call them the reduced trace and determinant of f .
We put

SΓ = ker(det : Γ = D× → Z×p ).

For m > 0 we also put Γm = 1 + smD = 1 +Dsm < Γ and SΓm = Γm ∩ SΓ. All these subgroups are easily
seen to be normal. The notation x = y + O(m) will mean that x − y ∈ smD; if x and y are in Γ this is
equivalent to xΓm = yΓm. We also write o(m) for O(m+ 1).

Definition 16.14. For x, y ∈ D we write [x, y]a = xy − yx. If x, y ∈ D× we also write [x, y]m = xyx−1y−1.

Lemma 16.15. Suppose that x = 1 + a and y = 1 + b with a ∈ siD and b ∈ sjD and i, j > 0. Then

[x, y]a = [a, b]a ∈ si+jD
xy = 1 + a+ b+O(i+ j) = 1 +O(min(i, j))

xyx−1 = y + [a, b]a +O(2i+ j)

[x, y]m = 1 + [a, b]a +O(i+ j + min(i, j))

xp =

{
1 + ap + o(pi) if i < n/(p− 1)

1 + pa+ o(i+ n) if i > n/(p− 1).

Note that we have said nothing about xp in the case where i(p− 1) = n; this case will be discussed later.

Proof. The following identities can be verified by substituting x = 1 + a and y = 1 + b and expanding out:

xy − (1 + a+ b) = ab ∈ si+jD
[x, y]a = [a, b]a ∈ si+jD

(xyx−1 − y − [a, b]a)x = −[a, b]aa ∈ s2i+jD

([x, y]m − 1− [a, b]a)yx = [a, b]a(−a− b− ba) ∈ si+j+min(i,j)D.

As x and y are invertible, our first four claims follow from this. For the last claim, note that

xp − 1 =

p∑
m=1

( pm ) am.

For m < p, the binomial coefficient is divisible by sn = p, so the m’th term is divisible by smi+n. On the
other hand, the p’th term is divisible by spi. If i < n/(p − 1) then mi + n > pi for 0 < m < p and so
xp− 1 = ap+ o(pi). On the other hand, if i > n/(p− 1) then pi > i+n and also mi+n > i+n for 1 < i < p
so xp − 1 = pa+ o(i+ n). �
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Corollary 16.16. (a) Γ/Γ1 is isomorphic to k×

(b) For i > 0 the quotient Γi/Γi+1 is isomorphic to k, considered as a group under addition.
(c) [Γi,Γj ]m ≤ SΓi+j
(d) The centre of Γ is Z×p
(e) If n is not divisible by p then Γ1 is isomorphic to (1 + pZp)× SΓ1.
(f) The map x 7→ xp gives an isomorphism Γi/Γi+1 → Γi+n/Γi+n+1 provided that i > n/(p− 1).

Proof. (a) Follows from the ring isomorphism D/sD = k
(b) The map a 7→ 1 + τ(a)si (mod Γi+1) gives the required isomorphism.
(c) As SΓ is the kernel of a homomorphism to the abelian group Z×p , we see that all commutators are

contained in SΓ. From the relation for [x, y]m in the lemma, we see that [Γi,Γj ] ≤ Γi+j .
(d) We saw in Proposition 16.8 that the centre of D is Zp, and the claim is clear from that.
(e) If n is not divisible by p then the map u 7→ un is bijective on 1 + pZp, so we can define a map

µ : (1 + pZp) × SΓ1 → Γ1 by µ(u, x) = u1/nx. We find that norm(µ(u, x)) = u, and using this it is
not hard to see that µ is an isomorphism.

(f) This follows easily from the last part of the lemma.
�

Lemma 16.17. Consider an element x = 1 + apisj ∈ Γ1 with i, j ≥ 0 and j < n, so norm(x) ∈ Z×p .

(a) If j > 0 then norm(x) = 1 (mod pi+1).
(b) If j = 0 then norm(x) = 1 + piτ(b) (mod pi+1) where

b = tracek/Fp
(a) =

m−1∑
r=0

φr(a) ∈ Fp.

Proof. We can write a as
∑n−1
h=0 ahs

h with ah ∈W . This gives asj =
∑
h a
′
hs
h for certain elements a′h ∈W .

If j > 0 we find that a′0 = pan−j ∈ pW , and it follows that the matrix µ(asj) is divisible by p on the diagonal
as well as above it. This means that µ(x) is one mod pi+1 on the diagonal, and zero mod pi+1 above the
diagonal, so det(µ(x)) = 1 (mod pi+1) as claimed.

Now consider the case where j = 0. Let a0 be the image of a in k, and put y = 1 + τ(a0)pi and z = y−1x
so x = yz. Then z ∈ 1 + pisD, so norm(z) = 1 (mod pi+1) by the previous case, so norm(x) = norm(y)
(mod pi+1). Now µ(y) is just the diagonal matrix with entries 1 + τ(φ−h(a0))pi, so norm(y) is just the
product of these entries, which is easily seen to be 1 + piτ(b) (mod pi+1) as claimed. �

We have mentioned that the cohomology of the group Γ is important for applications in stable homotopy
theory. In order to calculate the cohomology, one needs to know whether Γ has any finite p-subgroups. The
following result will help with this.

Lemma 16.18. Put R = Zp[v]/(vp−1 + p) and

ϕ(t) = (tp − 1)/(t− 1) =

p−1∑
i=0

ti.

Then R contains an element u with u = v (mod v2) and ϕ(1 + u) = 0, and R can also be described as
Zp[u]/ϕ(1 + u). Moreover, for any m ∈ F×p there is an automorphism ψm : R → R with ψm(v) = τ(m)v,
and this satisfies ψm(1 + u) = (1 + u)m.

Proof. Note that R freely generated as a Zp-module by {1, v, . . . , vp−2}, and has R/v = Fp. From this it
follows that every element of R is a unit multiple of vi for some i, and that R is an integral domain.

Put u0 = v, and note that

(1 + u0)p − 1 =

p∑
i=1

( pi ) vi = v(p+ vp−1) +

p−1∑
i=2

( pi ) vi =

p−1∑
i=2

( pi ) vi ∈ R.pv2 = R.vp+1.

Suppose more generally that we have found um with um = v (mod v2) and (1 + um)p − 1 ∈ R.vp+1+m. Let
a be such that

(1 + um)p − 1 = avp+1+m = −pavm+2,
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and put um+1 = um + avm+2, which is again equal to v mod v2. We then have

(1 + um+1)p − 1 = −1 +

p∑
i=0

( pi ) v(m+2)iai(1 + um)p−i.

We claim that this is zero mod vp+2+m = −pvm+3. Indeed, the term for i = 0, together with the −1, gives
−pavm+2. The term for i = 1 is pavm+2(1 + um)p−1, and um = v (mod v2), so this all cancels modulo
pvm+3, just leaving the terms for 1 < i < p. Each of these is divisible by pv2(m+2) and 2(m+ 2) ≥ m+ 3, so
the claim follows. As um+1 = um (mod vm+2) we see that the elements um converge p-adically to an element
u with (1 + u)p = 1, or equivalently uϕ(1 + u) = 0. As u = v (mod v2) we find that u is a unit multiple of v
and so up−1 is a unit multiple of vp−1 = −p so u is not a zero divisor so ϕ(1+u) = 0. Note also that ϕ(1+u)
is a monic polynomial of degree p − 1 in u. Also, as u = v (mod v2) we find that {ui | 0 ≤ i < p − 1} is
another basis for R/p over Fp, and thus also for R over Zp. Using this we can identify R with Zp[u]/ϕ(1+u).

Next, as ϕ(1 + u) = 0 we have (1 + u)p = 1 so it is meaningful to write (1 + u)m for m ∈ F×p . We put

um = (1 + u)m − 1. This has um = mv (mod v2), so the elements um are distinct and nonzero. We also
have (1 + um)p = (1 + u)mp = 1 so ϕ(1 + um) = 0. We thus have p − 1 distinct roots of ϕ(t), so this must
be a complete list of roots.

Next, recall that the map τ : Fp → Zp is injective and multiplicative, so τ(m)p−1 = 1 for all m ∈ F×p . It
is clear from this that there is an automorphism ψm sending v to τ(m)v. This must send u to some root of
ϕ(1 + t), and thus to uj for some j. As u = v (mod v2) and uj = jv (mod v2) we find that j = m. �

Lemma 16.19. Let H be a finite subgroup of Γ. Then the subgroup N = H ∩ (1 + sD) is a p-group and
is normal in H, and H/N is a cyclic subgroup of order dividing pn − 1 (and thus coprime to p). Moreover,
there is a section of the projection H → H/N , so H is a semidirect product of H/N with N .

Proof. We have seen that 1 + sD is normal in Γ with Γ/(1 + sD) = k× ' Cpn−1. From this it is clear that
N is normal and that H/N has the claimed structure. Consider a nontrivial element x ∈ N , so x = 1 + asi

for some i > 0 and some a ∈ D \ sD. It follows that xm = 1 +masi (mod si+1) for all m ∈ Z, and thus that
xm 6= 1 if p does not divide m. This implies that N must be a p-group.

Now choose an element h ∈ H that projects to a generator of H/N . Then h generates a cyclic group,
which we can split as the product of a p-part and a p′-part. It is then easy to see that the p′-part maps
isomorphically to H/N , so H is a semidirect product. �

We now want to understand something about the finite p-sugroups of Γ, which are contained in 1 + sD
by the lemma. For p = 2, it is easy to see that the only element of order p in D× is −1. For odd primes we
have the following:

Proposition 16.20. Suppose that p > 2. If n is not divisible by p− 1, then the only finite p-subgroup of Γ
is the trivial group. If n is divisible by p − 1 then Γ contains a copy of Cp, but does not contain a copy of
C2
p .

Proof. We are looking for elements x ∈ D with xp = 1 but x 6= 1. In other words, the element u = x − 1
should satisfy ϕ(1 + u) = 0, so we have a ring map from Zp[u]/ϕ(1 + u) to D. In view of Lemma 16.18, it is
equivalent to look for elements v ∈ D with vp−1 + p = 0. Note that v cannot be zero, so we have v = τ(a)si

(mod si+1) for some i ≥ 0 and some a ∈ k×. This means that vp−1 is a unit multiple of s(p−1)i, whereas
p = sn, so we can only have vp−1 + p = 0 if n = (p− 1)i. This proves the first claim.

Now suppose that n = (p − 1)i. Choose a generator a ∈ k× ' Cpn−1. We have assumed that p > 2 so

(pn−1)/2 ∈ N and a(pn−1)/2 is a primitive square root of 1 so it must be equal to −1. Put b = τ(a(pi−1)/2)si.

One can check by induction that vj = τ(a(pij−1)/2)sij , and thus that vp−1 = τ(a(pn−1)/2)sn = −p. Thus, we
have a copy of Cp in Γ.

Now suppose we have two commuting elements u0, u1 6= 1 with upi = 1. These give two commuting

elements v0, v1 ∈ D with vp−1
i = −p. By our earlier analysis, both v0 and v1 must be invertible multiples

of si, so v1 = zv0 for some z ∈ D×. As v0 and v1 commute, we see that zp−1 = 1. It follows that the
image of z in D/s = k× must actually lie in F×p . Thus, we have z = τ(c)(1 + d) for some c ∈ F×p and

d ∈ sD. As τ(c) is central and has τ(c)p−1 = 1, we see that (1 + d)p−1 = 1. However, we also have
(1 + d)p−1 = 1 + (p − 1)d (mod d2) and it follows that we must have d = 0. This means that v1 = τ(c)v0,
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and it follows that 1 + u1 = (1 + u0)c. The, the subgroup generated by u0 and u1 is just a Cp and not a
C2
p . �

Proposition 16.21. There is a finite set A ⊂ Γ such that the subgroup generated by A is dense in Γ. In
other words, Γ is finitely topologically generated.

Proof. Put N = np/(p − 1) = n + n/(p − 1) (which may or may not be an integer). Let A consist of the
elements τ(a) for a ∈ k×, together with the elements 1 + τ(a)sj with a ∈ k and j ≤ N . Let H be the
subgroup generated by A. We need to show that H is dense, or equivalently that HΓj = Γ for all j > 0,
which we will prove by induction. The claim is clear for j = 1, because Γ/Γ1 = k× and τ(k×) ⊆ A. For the
induction step, it will suffice to show that for all j > 0 and all x ∈ Γj there exists y ∈ H with xy−1 ∈ Γj+1.
If j ≤ N then it is clear that we can even take y ∈ A. Suppose instead that j > N , and that x = 1 + a with
a ∈ sjD. This means that x = 1 + pb with b ∈ sj−nD, and j − n > n/(p − 1). By induction there exists
z ∈ H with z = 1 + b (mod sj−n+1). Now zp ∈ H, and the last part of Lemma 16.15 tells us that zp = 1 + a
(mod sj+1), as required. �

17. Divisors

Definition 17.1. A Weierstrass series or W-series of degree n over a ring R is a power series f(x) =∑
k akx

k ∈ R[[x]] such that an is a unit and ak is nilpotent for k < n. A Weierstrass polynomial or W-
polynomial is a W-series that is also a monic polynomial of degree n.

Proposition 17.2. Let f(x) be a W-series of degree n > 0 over a ring R. Then there is a unique map
α : R[[y]] −→ R[[x]] of R-algebras such that α(y) = f(x), and this makes R[[x]] into a free module over R[[y]]
with basis {1, x, . . . , xn−1}.

Proof. Write f(x) =
∑
k akx

k and I = (ak | k < n), so I is a nilpotent ideal. After replacing f(x) by
f(x)/an we may assume that an = 1. As I is nilpotent it is easy to see that f(x) is nilpotent modulo xN for
any N . Thus, given any series g(x) =

∑
k bky

k ∈ R[[y]] the series g(f(x)) =
∑
k bkf(x)k converges in R[[x]].

We can thus define α(g) = g(f(x)) to get the required map α.
We claim that {1, x, . . . , xn−1} is a basis for R[[x]] over R[[y]]. To see this, we define elements zm for m ≥ 0

as follows. There is a unique way to write m = nk+ j with 0 ≤ j < n and k ≥ 0, and we put zm = f(x)kxj .
Our claim is easily equivalent to the statement that any element of R[[x]] can be written uniquely in the form∑
m bmzm for some sequence of elements bm ∈ R.
To prove this, it is convenient to consider a more general statement. For any R-module M we define a

map

θM :
∏
m≥0

M −→M [[x]]

by θ(b) =
∑
m bmzm. Thus, our claim is that θR is an isomorphism.

Suppose that IM = 0, and consider a series c =
∑
k ckx

k ∈ M [[x]]. For any bm ∈ M we have Ibm = 0
so f(x)kbm = xnkbm (mod xnk+1) so zmbm = xmbm (mod xm+1). Given this, an easy induction shows that
there is a unique sequence of bm’s such that c =

∑
j<m bjzj (mod xm) for all m. This proves that θM is an

isomorphism when IM = 0.
Now suppose we have a short exact sequence L � M � N of R-modules, and that θL and θN are

isomorphisms. We then have a diagram∏
m L

// //

θL '
��

∏
mM

// //

θM

��

∏
mN

' θN

��
L[[x]] // // M [[x]] // // N [[x]]

It is trivial to check that the rows are exact and a diagram chase shows that θM is also an isomorphism. We
can now use that short exact sequences Ik/Ik+1 � R/Ik+1 � R/Ik to show that θR/Ik is an isomorphism

for all k. For k � 0 we have Ik = 0 and we conclude that θR is an isomorphism as claimed. �

Corollary 17.3. If f(x) ∈ R[[x]] is a W-series of degree n then f(x) is not a zero-divisor in R[[x]], and
R[[x]]/f(x) is a free module over R with basis {1, x, . . . , xn−1}. �
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Corollary 17.4. If f(x) ∈ R[[x]] is a W-series of degree n then there is a unique factorisation of the form
f(x) = u(x)g(x) where u(x) ∈ R[[x]]× and g(x) is a W-polynomial of degree n.

Proof. The previous corollary tells us that there are unique elements bj ∈ R such that −xn =
∑n−1
j=0 bjx

j

(mod f(x)), and it is clear that g(x) = xn+
∑n−1
j=0 bjx

j is the unique monic polynomial of degree n such that

f(x) divides g(x), say g(x) = f(x)v(x). As f(x) is not a zero-divisor, the series v(x) is uniquely characterised
by this. Modulo I we know that xn divides f(x) and thus g(x), but g(x) is a monic polynomial of degree n
so g(x) = xn (mod I) (which implies that g is a W -polynomial). As f(x) is a unit multiple of xn modulo I,
we see that v(0) ∈ R× and thus v(x) ∈ R[[x]]× so we can take u(x) = 1/v(x). �

Lemma 17.5. Let f and g be monic polynomials of degree n and m over a ring R, such that f(x)g(x) =
xn+m. Then f and g are W-polynomials.

Proof. Write f(x) =
∑
i≤n aix

i and g(x) =
∑
j≤m bjx

j , so an = bm = 1. Fix k with 0 ≤ k < n; we may
assume inductively that aj is nilpotent for j < k. It will suffice to show that some power of ak lies in the
nilpotent ideal I = (a0, . . . , ak−1), so we can work modulo I and thus assume that aj = 0 for j < k. By
considering the coefficient of xk in the equation f(x)g(x) = xn+m we see that akb0 = 0. We claim that more

generally we have ai+1
k bi = 0 for i = 0, . . . ,m. Indeed, if this holds for i < j then ajkg(x) = ajkbjx

j +O(j+1),

so it also holds for i = j by considering the coefficient of xk+i in the equation ajkg(x)f(x) = ajkx
n+m. The

case j = m gives amk = 0, as required. �

Definition 17.6. A formal curve over a scheme X is a formal scheme C over X of dimension one, so that

C ' X × Â1. Of course, a formal group is a formal curve, but in this section we will not need the group
structure.

Definition 17.7. Let C be a formal curve over a scheme X.

(a) We define

N = {f : C −→ Â1} < {f : C −→ A1} = OC .
This is clearly an ideal in OC .

(b) Given an ideal J ≤ OC , we define a functor V (J) ⊂ C by

V (J)(R) = {c ∈ C(R) | f(c) = 0 for all f ∈ J}.
We also define √

J = {f ∈ OC | fK ∈ J for some K}.
(c) We put

D+
n (C) = {J ≤ OC | N ≤

√
J and OC/J is free of rank n over OX }.

(d) We define W+
n (C) to be the set of functions f ∈ OC such that the ideal (f) is an element of D+

n (C).
Note that O×C acts on W+

n (C) by multiplication and we have a map W+
n (C)/O×C −→ D+

n (C) sending
f to (f).

Proposition 17.8. Take C = X × Â1, write R = OX , and identify OC with R[[x]] in the usual way.
Then N is the set of series f(x) ∈ R[[x]] such that f(0) is nilpotent. Moreover, W+

n (C) is the set of W-
series of degree n over R. Thus, if Pn(R) denotes the set of W-polynomials of degree n over R, we have
W+
n (C) ' Pn(R)×O×C and D+

n (C) = W+
n (C)/O×C ' Pn(R).

Proof. The first statement follows from Proposition 5.10, and it follows in turn that N ≤
√
J if and only if

x ∈
√
J .

Next, let f be a W-series of degree n. We claim that J = (f) ∈ D+
n (C), so that f ∈ W+

n (C). In view of
Corollary 17.4, we may assume that f is a W-polynomial. As the lower coefficients of f are nilpotent, it is
clear that xn is nilpotent mod J , and thus that x is nilpotent mod J , and thus that N ≤

√
J . We also know

from Corollary 17.3 that R[[x]]/f(x) is free of rank n over R, and the claim follows.
Next, suppose that J ∈ Dn(R). We claim that J is generated by a W-polynomial of degree n. To see this,

A = R[[x]]/J . By assumption, this is a free module of rank n over R. Moreover, x ∈ N ≤
√
J so xK = 0 in

A for some K.
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For any element z ∈ R[[x]] we define µz : A −→ A by µz(a) = za. If p(t) is a polynomial over R then clearly
µp(z) = p(µz).

The map µx is an R-linear endomorphism of the free module A, so it has a characteristic polynomial f(t),
which is a monic polynomial of degree n over R. The Cayley-Hamilton theorem tells us that µf(x) = f(µx) =

0, so f(x) = µf(x)(1) = 0 in A, so f(x) ∈ J . Next, recall that xK ∈ J for some K. Write s =
∑K−1
j=0 xjtK−j ,

so that (t − x)s = tK ∈ A[t]. We can regard µt−x, µs and µt as R[t]-linear endomorphisms of A[t]. If we
let g(t) be the determinant of µs then we find that f(t)g(t) = tnK . It follows from Lemma 17.5 that f(t)
is a W-polynomial of degree n, so that R[[x]]/f(x) is free of rank n over R. Moreover, A is a quotient of
R[[x]]/f(x) and A is also free of rank n, so A = R[[x]]/f(x) and J = (f) (by Lemma 17.9 below). Thus J is
generated by a W-polynomial, as claimed.

Now suppose that g ∈ W+
n (C). Our previous claim shows that there is a W-polynomial f such that

(g) = (f), say f = ug and g = vf . Then f = uvf but f is not a zero-divisor so uv = 1 so u and v are
units. It is not hard to see that any unit multiple of a W-polynomial is a W-series, and we conclude that
W+
n (C) is precisely the set of W-series of degree n. We have also seen that every ideal in D+

n (C) is generated
by a W-polynomial, so the map W+

n (C)/O×C −→ D+
n (C) is surjective. As Weierstrass series are not zero

divisors, we see easily that any two of them generate the same ideal iff they differ by a unit, so the map
W+
n (C)/O×C −→ D+

n (C) is actually a bijection. Moreover, Corollary 17.4 tells us that W+
n (C) = Pn(R)×O×C ,

and thus that D+
n (C) = Pn(R). �

Lemma 17.9. Let M and N be free modules of finite rank n over a ring R, and let α : M −→ N be a
surjective homomorphism. Then α is an isomorphism.

Proof. We may assume that M = N = Rn, and write ei for the i’th basis vector. As α is surjective we
can choose ai with α(ai) = ei, and then define β : Rn −→ Rn by β(ei) = ai. We then have αβ = 1 so
det(α) det(β) = 1 so det(α) is a unit in R, so α is an isomorphism. �

Corollary 17.10. Let C be a formal curve over a scheme X.

(a) If J ∈ D+
n (C) then J is a free module of rank one over OC .

(b) D+
m(C) = W+

m(C)/O×C .

(c) If also K ∈ D+
m(C) then JK ∈ D+

n+m(C).
(d) If also L ∈ D+

m(C) and JK = JL then K = L.
(e) If f ∈W+

n (C) and g ∈W+
m(C) then fg ∈W+

n+m(C).

Proof. We may assume that C = X × Â1 and this makes everything fairly clear. Some points to note are as

follows. Firstly, if f ∈W+
n (C) and g ∈W+

m(C) then we have a short exact sequence OC/(f)
×g−−→ OC/(fg) −→

OC/(g), which shows that OC/(fg) is free of rank n+m over OX . Moreover, if h ∈ N then for large r we
have hr ∈ (f) and hr ∈ (g) so h2r ∈ (fg). This shows that fg ∈ Wn+m(C), as claimed in (e). Also, for
any J and K as above one can check that K = {f | fJ ⊆ JK}, so that J and JK determine K, which
proves (d). �

Remark 17.11. We can summarise this corollary by saying that D+(C) =
∐
n≥0D

+
n (C) and W+(C) =∐

n≥0W
+
n (C) are commutative monoids under multiplication, in which cancellation is valid.

Proposition 17.12. Let C be a formal curve over X, with projection map π : C −→ X say. Write Γ(X,C)
for the set of sections of C, in other words the set of maps σ : X −→ C such that πσ = 1. Then there is a
natural isomorphism Γ(X,C) ' D+

1 (C).

Proof. Given a section σ, we define Jσ = {f : C −→ A1 | f ◦ σ = 0}, which is an ideal in OC . We claim
that this lies in D+

1 (C), and that the map σ 7→ Jσ is the required bijection. For this, we may assume that

C = X × Â1. The sections are then the maps of the form σ(a) = (a, u(a)) where u : X −→ Â1, in other words
u ∈ Nil(OX). We also have Jσ = {f(x) ∈ OX [[x]] | f(u) = 0}. It is easy to see that this is generated by
the W-polynomial x− u. We also know from Proposition 17.8 that every ideal in D+

1 (C) is generated by a
unique W-polynomial of degree one, and these clearly all have the form x− u. The proposition follows. �
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Definition 17.13. Let C be a formal curve over a scheme X. Given a ring R and a point a ∈ X(R) we
have a formal curve Ca = spec(R)×X C over spec(R), and we define

Div+
n (C)(R) = {(a,D) | a ∈ X(R) and D ∈ D+

n (Ca)}.
This defines a functor Div+

n (C) from rings to sets.

Remark 17.14. It follows from Proposition 17.12 that Div+
1 (C) = C. Also, Corollary 17.10 gives product

maps Div+
n (C)×X Div+

m(C) −→ Div+
n+m(C). A choice of coordinate on C gives a natural bijection D+

n (Ca) '
Pn(R) ' Nil(R)n, and thus an isomorphism Div+

n (C) ' Ân ×X, showing that Div+
n (C) is a formal scheme

of dimension n over X.

18. Meromorphic functions

Definition 18.1. Let C be a formal curve over a scheme X. We define MC to be the ring obtained from
OC by inverting all the elements of W+

n (C) for all n. (We shall see shortly that it is equivalent to choose a
coordinate x and just invert x.) We write W0(C) for the subgroup of M×C consisting of elements f/g where

f, g ∈ W+
n (C) for some n (the same n for f and g). We also write D0(C) = W0(C)/O×C . It is clear that

W0(C) and D0(C) are groups under multiplication.

Remark 18.2. You should think of the elements of MC as meromorphic functions on C whose poles are
infinitesimally close to the origin.

Definition 18.3. A Weierstrass Laurent series or WL-series of degree n over a ring R is a series f(x) =∑
k∈Z akx

k such that

(1) ak = 0 for k � 0
(2) ak is nilpotent for k < n
(3) an is invertible.

Clearly f(x) is a WL-series of degree n if and only if xmf(x) is a W-series of degree m+ n for m� 0.
We write P (R) for the set of WL-series of degree 0 such that

(1) ak = 0 for k > 0
(2) a0 = 1.

Clearly f(x) ∈ P (R) if and only if xmf(x) is a W-polynomial of degree m for m� 0.

Remark 18.4. You should again think of f(x) as having poles infinitesimally close to the origin. Recall
that a genuine meromorphic function of a complex variable has different Laurent expansions in different
annuli, depending on where the poles are. Our formal Laurent series should be thought of as expansions
valid outside a small disc that contains all the poles.

Proposition 18.5. Take C = X × Â1, write R = OX , and identify OC with R[[x]] in the usual way. Then
MC = R[[x]][1/x], and W0(C) is the set of WL-series of degree 0. We also have W0(C) = O×C × P (R) and
thus D0(C) ' P (R).

Proof. Write K = R[[x]][1/x]. We have P (R) ⊂ K and if f(x) ∈ P (R) then 1− f(x) is nilpotent, so f(x) is
invertible. Thus P (R) ≤ K×. If g(x) is a W-polynomial of degree n then g(x)/xn ∈ P (R) so g(x) ∈ K×. It
now follows from Corollary 17.4 that every W-series becomes invertible in K. In view of Proposition 17.8,
this means that W+

n (C) ⊂ K×, and it follows easily that K = MC . Let V be the set of WL-series of
degree 0. If f(x) ∈ V then for some m we have xmf(x) ∈ W+

m(C), so Corollary 17.4 gives a factorisation
f(x) = u(x)g(x)/xm with u(x) ∈ O×C and g(x)/xm ∈ P (R). Note that P (R) and O×C are groups with

trivial intersection, and that P (R).O×C ⊆ V . It follows that V is a group and that V = P (R) × O×C . If
f(x), g(x) ∈ W+

n (C) then it is clear that f/xn and g/xn lie in V , so f/g = (f/xn)/(g/xn) lies in V . This
implies that W0(C) = V = O×C × P (R) as claimed. �

Definition 18.6. Let C be a formal curve over a scheme X. Given a ring R and a point a ∈ X(R) we have
a formal curve Ca = spec(R)×X C over spec(R), and we define

Div0(C)(R) = {(a,D) | a ∈ X(R) and D ∈ D0(Ca)}.
This defines a functor Div0(C) from rings to Abelian groups.

45



Remark 18.7. A choice of coordinate on C gives a natural bijection

D0(Ca) ' P (R) '
⊕
k<0

Nil(R),

and thus an isomorphism Div0(C) ' X×
⊕

k<0 Â1. This is not a formal scheme according to our definitions,
but one can set up a more general theory of formal schemes which does include Div0(C).

19. Elliptic curves

Definition 19.1. A Weierstrass cubic over a ring R is a homogeneous polynomial f(x, y, z) of degree
three such that f = y2z (mod x, z2) and f = −x3 (mod y, z). This means that there are elements
α1, α2, α3, α4, α6 ∈ R such that

f(x, y, z) = y2z + α1xyz + α3yz
2 − x3 − α2x

2z − α4xz
2 − α6z

3.

Remark 19.2. If R is an algebraically closed field then every nonzero irreducible homogeneous cubic can
be put in this form by a suitable change of coordinates. For more general rings there is a more complicated
statement which again essentially reduces the study of all cubics to that of Weierstrass cubics. Such a cubic
defines a subscheme C of the projective plane, and there is a coordinate-free description of the schemes that
can arise in this way. These are non-affine schemes, but with suitable definitions they can still be regarded
as functors from rings to sets. We shall not give details here, however.

As in example 5.9, we can use a Weierstrass cubic f(x, y, z) over OX to define a formal curve Ĉ over X
by

Ĉ(R) = {(u, a, c) ∈ X(R)×Nil(R)2 | f(a, 1, c) = 0}.

Our main task in this section is to show that Ĉ has a canonical group structure.

Remark 19.3. The analytic analogy is as follows. If f is a Weierstrass cubic over C and we write C =
{[x : y : z] ∈ CP 2 | f(x, y, z) = 0} then the classical analytic theory of elliptic curves gives an isomorphism
C ' C/Λ for some lattice Λ ≤ C, with the zero element in C/Λ corresponding to [0 : 1 : 0]. This shows
that C has a natural group structure. We next explain a purely algebraic characterisation of this structure,
which we can use to generalise the theory to rings other than C. Let Z{C} be the free Abelian group on the
points of C, and let [c] denote the basis element corresponding to a point c ∈ C. Any nonzero meromorphic
function f on C has zeros {ai} with multiplicities {ni}, where poles count as zeros of negative multiplicity.
This gives an element div(f) =

∑
i ni[ai] ∈ Z{C}, called the divisor of f . A fundamental result (which can

be proved by contour integration, for example) says that an element
∑
i ni[ai] arises in this way if and only

if we have
∑
i ni = 0 ∈ Z and

∑
i niai = 0 ∈ C. On the other hand, if we allow functions that are only

meromorphic on an open subset of C, we get all elements of Z{C}, and we only get the zero element if f
is an invertible holomorphic function. Thus Z{C} can be thought of as something like the group of local
invertible meromorphic functions modulo local invertible holomorphic functions. We can define D0(C) to be
the subgroup of elements

∑
i ni[ai] with

∑
i ni = 0 and Q(C) to be the quotient by the group of divisors

of global meromorphic functions. It is then easy to check that the map c 7→ [c] − [0] gives an isomorphism
C ' Q(C) of groups, and this gives the required characterisation of the group structure on C.

We write

A = OĈ = R[[x, z]]/f(x, 1, z) = R[[x]].

Note that

f(x, 1, z) = z + α1xz + α3z
2 − x3 − α2x

2z − α4xz
2 − α6z

3,

so that f(x, 1, x3) = 0 (mod x4). It follows from Proposition 5.6 and its proof that there is a unique power
series ξ(x) ∈ R[[x]] such that z = ξ(x) in A, and moreover we have ξ(x) = x3 (mod x4). We may thus write
ξ(x) =

∑
k≥3 ξkx

k, with ξ3 = 1. We also have

Ĉ(R) = {(u, a, ξ(a)) | u ∈ X(R) and a ∈ Nil(R)}.
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Next, we write

A′ = R[[z]] < A

B = R[X,Y ]/f(X,Y, 1)

B′ = R[Y ]

U = {u ∈ B | u = 1 mod Nil(R)B} ≤ B×

U1 = 1 + Nil(R) = R× ∩ U < U

K = A[1/x] = A[1/z] =MĈ

K ′ = A′[1/z] < K.

We know that z is a unit multiple of x3 in A, which is why A[1/x] = A[1/z]. We see from Proposition 17.2
that A is a free module over A′ with basis {1, x, x2}, and thus that K is a free module over K ′ with the
same basis. One can also check that f(X,Y, 1) can be regarded as a monic polynomial of degree three in X
over B′, and thus that B is a free module over B′ with basis {1, X,X2}.
Remark 19.4. The relevant analogies for elliptic curves over the complex numbers are as follows. The ring
A is the ring of functions on an formal neighbourhood of the origin. The ring K consists of meromorphic
functions on a formal neighbourhood, whose poles are concentrated in an infinitesimal neighbourhood (where
“infinitesimal” is smaller than “formal”). The ring B consists of meromorphic functions on the whole curve,
whose poles (if any) are concentrated in an infinitesimal neighbourhood of the origin. The group U consists
of functions on the whole curve that are very close to 1 away from an infinitesimal neighbourhood of the
origin, so all the zeros and poles are contained in such a neighbourhood.

Definition 19.5. We define a map α : B −→ K by α(X) = x/z and α(Y ) = 1/z.

Lemma 19.6. The map α is injective.

Proof. Note that α(B′) ≤ K ′, that B is freely generated over B′ by {1, X,X2}, and that K is freely generated
over K ′ by {α(1), α(X), α(X2)}. It will thus be enough to show that α is injective on B′, which is trivial. �

From now on we will allow ourseleves to think of B as a subring of K, and thus of B× and U as subgroups
of K×.

Definition 19.7. We write Q = Q(C) = D0(Ĉ)/U = W0(Ĉ)/A×.U . We also define a map φ : Γ(X, Ĉ) −→
Q(C) by φ(c) = Jc/J0, where Jc is as in Proposition 17.12. If we use x as a coordinate to identify Γ(X, Ĉ)

with Nil(OX) then we have (1− c/x) ∈W0(Ĉ) and our map becomes φ(c) = [1− c/x].

Theorem 19.8. The map φ : Γ(X, Ĉ) −→ Q(C) is a bijection. As Q(C) is a group, this gives a natural group

structure on Γ(X, Ĉ).

Lemma 19.9. Suppose that h ∈W+
3m−1(Ĉ) for some m > 0. Then there exists u ∈ U such that zmu ∈ Ah,

and u is unique modulo U1.

Proof. We know that B has basis {XiY j | i ≥ 0 , 3 > j ≥ 0} over R. Let U ′ be the subset of U consisting
of elements u =

∑
i,j uijX

iY j where u00 = 1 (and necessarily uij ∈ Nil(R) for (i, j) 6= (0, 0)). This need not

be a subgroup but we do have U = U1 ×U ′ so it will suffice to show that there is a unique choice of u lying
in U ′.

Write

T = {(i, j) | m− 1 > i ≥ 0 , 3 > j ≥ 0} ∪ {(m− 1, 0), (m− 1, 1)}
= {(i, j) | i ≥ 0 , 3 > j ≥ 0 , 3i+ j < 3m− 1}
= {(i, j) | m > i ≥ 0 , 3 > j ≥ 0 , i+ j ≤ m}.

For each k ∈ {0, . . . , 3m − 2} there is a unique element (i, j) ∈ T such that zixj = xk (mod xk+1), and it
follows by the method of Proposition 17.2 that {zixj | (i, j) ∈ T} is a basis for A/hA over R. Thus, there
are unique elements aij ∈ R such that −zm =

∑
T aijz

ixj (mod Ah). We define

u = 1 +
∑
T

aijz
i−mxj = 1 +

∑
T

aijX
iY m−i−j ∈ B,
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so that zmu ∈ Ah. If h is a unit multiple of x3m−1 then clearly zm ∈ Ah and so aij = 0 for all (i, j). We
can always put ourselves in this situation by working modulo the nilpotent ideal generated by the lower
coefficients of h, so we conclude that the elements aij are always nilpotent. Thus u ∈ U ′.

Now suppose we have some other v ∈ U ′ such that zmv ∈ Ah. We can then write w = v − u =∑
i,j wijX

jY i where j runs from 0 to 2 and w00 = 0, and zmw ∈ Ah. Note that zmw =
∑
i,j wijz

m−i−jxj .

As K is freely generated over K ′ by {1, x, x2} one can check that wij = 0 when i + j > m. We also have
w00 = 0, in other words wij = 0 when i+ j = 0. If we write k = m− i− j then we find that wij = 0 unless
0 ≤ k < m and 0 ≤ j < 3 and j + k = m− i ≤ m. Using our third description of T , we see that zmw lies in
the span of {zixj | (i, j) ∈ T} but this set is a basis for A/Ah and zmw ∈ Ah so zmw = 0 so u = v. �

Proof of Theorem 19.8. Define Ym = {g ∈ W0(Ĉ) | x−1zmg−1 ∈ A}. If g ∈ Ym then x−1zmg ∈ W+
3m−1(Ĉ)

so the lemma gives an element u ∈ U such that zmu ∈ zmx−1g−1A. Thus u = x−1g−1k for some k ∈ A. As

u, g ∈ W0(Ĉ) one can check that k ∈ W+
1 (Ĉ), so Corollary 17.4 gives a unique factorisation k = (x − c)v

with c ∈ Nil(R) and v ∈ A×. We define ψm(g) = c (it is easy to see that this is well-defined even though u
can be multiplied by an element of U1). It is easy to check that the restriction of ψm+1 to Ym is ψm, and

the union of the sets Ym is W0(Ĉ), so we get a map ψ : W0(Ĉ) −→ Nil(R).
Now suppose that g ∈ Ym as above and w ∈ U and t ∈ A×. Choose n large enough that znw−1 ∈ A. We

then have uw−1 ∈ U and vt ∈ A× and

zn+m(uw−1) = zn+mx−1(twg)−1(x− c)(vt),

which implies that ψm+n(twg) = c. Thus ψ(twg) = ψ(g), so ψ induces a map ψ : Q(C) = W0(Ĉ)/UA× −→
Nil(R).

Now identify Nil(R) with Γ(X, Ĉ), so that φ becomes the map c 7→ [1 − c/x]. If we take g(x) = 1 − c/x
then for m� 0 we have zmg−1 ∈W+

3m−1(Ĉ) and zm.1 = zmx−1g−1(x− c) so ψ(g) = c. Thus ψφ = 1.

On the other hand, if we start with g ∈ Ym and define u, v and c as above we find that g = (1−c/x)u−1v ∈
(1− c/x)UA×, so [g] = φ(c) in Q(C). Thus φψ = 1. �

We now consider another characterisation of the group structure on an elliptic curve. The statement is
simplest when X = spec(k) for some algebraically closed field k. We then have a set

C = {[x : y : z] ∈ P2(k) | f(x, y, z) = 0}.
The group structure on this is characterised by the facts that

(a) The identity element is [0 : 1 : 0].
(b) If Pi = [xi : yi : zi] ∈ C for i = 0, 1, 2 and P0 +P1 +P2 = 0 then the Pi’s are collinear, or equivalently

we have

det

 x0 x1 x2

y0 y1 y2

z0 z1 z2

 = 0.

In our context we need to do something a little more delicate, as many of our elements are nilpotent so
we cannot divide by them. A key point is the following lemma:

Lemma 19.10. Define

χ(x0, x1, x2) =
∑
i,j,k

ξi+j+k+2x
i
0x
j
1x
k
2 ,

where as usual ξ(x) =
∑
k≥3 ξkx

k is the series such that f(x, 1, ξ(x)) = 0. Then we have

det

 x0 x1 x2

1 1 1
ξ(x0) ξ(x1) ξ(x2)

 = (x1 − x0)(x2 − x1)(x0 − x2)χ(x0, x1, x2),

and χ(x0, x1, x2) = x0 + x1 + x2 +O(2).

Proof. Define ζ(x0, x1) =
∑
i,j ξi+j+1x

i
0x
j
1. One can check directly that

(x1 − x0)ζ(x0, x1) = ξ(x1)− ξ(x0)

(x2 − x1)χ(x0, x1, x2) = ζ(x0, x2)− ζ(x0, x1).
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Of course we also have similar identities with the variables permuted. If we subtract the first column of
our matrix from the second and third columns and then divide those columns by (x1 − x0) and (x0 − x2)
respectively, we get the matrix  x0 1 −1

1 0 0
ξ(x0) ζ(x0, x1) −ζ(x0, x2)

 .

We can now expand with respect to the first column to get the claimed factorisation. As ξk = 0 for k < 3
and ξ3 = 1 it is immediate from the definitions that χ(x0, x1, x2) = x0 + x1 + x2 +O(2). �

Proposition 19.11. If a0, a1, a2 ∈ Γ(X, Ĉ) satisfy a0 + a1 + a2 = 0 (using the group structure coming from
Theorem 19.8) then χ(a0, a1, a2) = 0 and thus

det

 x0 x1 x2

1 1 1
ξ(x0) ξ(x1) ξ(x2)

 = 0.

Proof. We need to show that φ(a0)φ(a1)φ(a2) = 1 in Q(C), or equivalently that (1 − a0/x)(1 − a1/x)(1 −
a2/x) ∈ UA×. Consider the series h(x) = χ(a0, a1, x) ∈ A. As χ(x0, x1, x2) = x0 + x1 + x2 + O(2), we see
that h is a W-series of degree one, and h(a2) = 0 so h(x) = v(x)(x− a2) for some v ∈ A×. Now consider

g(x) = (x− a0)(x− a1)(x− a2)v(x) = (x− a0)(x− a1)χ(a0, a1, x).

On the other hand, if ζ(x0, x1) is as in the proof of Lemma 19.10 we have

(x− a0)(x− a1)χ(a0, a1, x) = (x− a0)(ζ(a0, x)− ζ(a0, a1))

= z − ξ(a0)− ζ(a0, a1)x+ a0ζ(a0, a1).

This implies easily that u(x) = g(x)/z ∈ U and of course w(x) = z/x3 lies in A×, and so

(1− a0/x)(1− a1/x)(1− a2/x) = g(x)/(x3v(x)) = u(x)w(x)/v(x) ∈ UA×,
as required. �

Proposition 19.12. If a ∈ Γ(X, Ĉ) then the inverse of a is −a/(1 + α1a + α3ξ(a)), where the coefficients
αi come from the defining Weierstrass cubic

f(x, y, z) = y2z + α1xyz + α3yz
2 − x3 − α2x

2z − α4xz
2 − α6z

3.

Proof. The basic point is that if a′ is the inverse of a then (a′, ξ(a′)) must lie on the line through the origin
containing (a, ξ(a)), and it is easy to verify that

f(ta, 1, tξ(a)) = ξ(a)t(1− t)(1 + (1 + α1a+ α3ξ(a))t).

If we could divide by ξ(a) and (1 − t) we could deduce the result, but these quantities are nilpotent so we
need a more delicate argument.

We define θ(x) =
∑
k ξkx

k−1, so that ξ(x) = xθ(x). We also define g(x, t) = f(x, 1, tx)/x ∈ R[x, t]. It is
easy to check that g(x, θ(x)) = 0 ∈ R[[x]]. Define

b = θ(a)

d = α1 + α3b

v = 1 + ad = 1 + α1a+ α3ξ(a)

u = 1 + α2b+ α4b
2 + α6b

3

c = bdu−1 − a

Note that u and v are invertible in R. Clearly g(a, b) = 0 and by writing this out we find that vb = a2u.
Given this it is easy to verify that g(x, b) = (x− a)(bd− u(x+ a)) and thus that

f(x, 1, bx) = xg(x, b) = −ux(x− a)(x− c).
Of course we also have f(x, 1, z) = 0 so modulo z − bx we have f(x, 1, bx) = 0 so

x(x− a)(x− c) = (z − bx)w
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for some w ∈ A. Modulo nilpotents we have x3 = zw and it follows easily that w ∈ A×. We also have
zx−3 ∈ A× and

(1− a/x)(1− c/x) = (1− bX)w(zx−3) ∈ UA×.
This shows that c is the inverse of a in Γ(X, Ĉ). On the other hand we have vb = a2 so vbd = au.ad =
au(v−1) = auv−au so bdu−1 = a−av−1 so c = bdu−1−a = −av−1 = −a/(1+α1a+α3ξ(a)) as claimed. �

20. Additive extensions

Definition 20.1. Let C and D be formal curves over a scheme X. Recall that OC is the ring of maps

C −→ A1 and let NC be the ideal of maps C −→ Â1. We say that a map q : C −→ D is an isogeny of degree d
if the resulting map q∗ : OD −→ OC makes OC a free module of rank d over OD, and NC ≤

√
q∗ND.

Lemma 20.2. Let q : C −→ D be a map of formal curves over X, and let x and y be coordinates on C and D
respectively. Let f be the unique power series over OX such that q∗y = f(x). Then q is an isogeny of degree
d if and only if f is a W-series of degree d. If this holds then {1, x, . . . , xd−1} is a basis for OC over OD.

Proof. First note that NC = Nil(OX)+xOX [[x]] so the condition NC ≤
√
q∗ND is equivalent to the condition

that xN = 0 (mod f(x)) for N � 0. It is clear from Proposition 17.2 that if f is a W-series then q is an
isogeny, and that {1, x, . . . , xd−1} is a basis. Conversely, if q is an isogeny then OC is free of rank d over OD
so OC/f(x) is free of rank d over OD/y = OX so f(x) ∈ W+

d (C). We conclude from Proposition 17.8 that
f is a Weierstrass series of degree d. �

Lemma 20.3. Let q : C −→ D be an isogeny of formal curves over X. Then q is an epimorphism in the
category of formal schemes over X. In other words, if r, s : D −→ E are maps of formal schemes over X and
rq = sq then r = s.

Proof. Choose coordinates x on C, y on D and z1, . . . , zr on E. We then have series f, gi, hi such that
q∗y = f(x) and r∗zi = gi(y) and s∗zi = hi(y), so gi(f(x)) = hi(f(x)) in OX [[x]] = OC . As q∗ : OD −→ OC is
injective we conclude that gi = hi so r = s. �

Definition 20.4. Let p be a prime, let X be a scheme such that p is nilpotent in OX , and let G be a formal
group over X. We say that G has Weierstrass height n (or W-height n) if the map pG : G −→ G is an isogeny
of degree pn. We say that G is p-divisible if it has W-height n for some n (where necessarily 0 < n <∞).

Remark 20.5. Write Xred = spec(OX/Nil(OX)) ⊆ X, which is a scheme over spec(Fp). Write Gred =
G×X Xred, which is a formal group over Xred. This has height n for some n with 0 < n ≤ ∞; if n <∞ then
in terms of a coordinate we have [p](x) = uxp

n

+O(pn + 1). It is easy to see that G has W-height n if and
only if n <∞ and u is invertible.

Definition 20.6. For the rest of this section, X will be a scheme such that p is nilpotent in OX and G will

be a formal group of W-height n over X. The symbol Ĝa will really denote Ĝa ×X, considered as a formal
group over X.

Lemma 20.7. We have Hom(G, Ĝa) = 0.

Proof. Let s : G −→ Ĝa be a homomorphism. For N � 0 we have pN = 0 in OX so pN = 0 as an

endomorphism of Ĝa. By considering the following square, we see that s ◦ pNG = 0.

G
pNG // //

s
��

G

s
��

Ĝa
pN=0

// Ĝa

As pNG is an isogeny, it is an epimorphism, so s = 0. �

Definition 20.8. An additive extension of G is a sequence of formal group schemes and homomorphisms

Ĝa
j−→ E

q−→ G such that qj = 0 and there exist maps Ĝa
r←− E

s←− G (not necessarily homomorphisms) with
rj = 1Ĝa

and jr + sq = 1E and qs = 1G. Such a pair (r, s) is a (non-additive) splitting of the extension.
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Remark 20.9. Let E, j, q, r and s be as above. Note that j and s are monomorphisms and r and

q are epimorphisms. Define maps f : Ĝa × G −→ E and g : E −→ Ĝa × G by f(a, u) = j(a) + s(u) and
g(e) = (r(e), q(e)). Then it is easy to check that fg = jq+sr = 1E . Moreover, as q is a homomorphism with
qj = 0 and qs = 1 we have qf(a, u) = u. Also, we have jrf(a, u) = (1 − sq)f(a, u) = f(a, u) − s(u) = j(a)
and j is a monomorphism so rf(a) = a. We now see that gf = 1, so that f and g are mutually inverse
isomorphisms.

Definition 20.10. Let E and E′ be additive extensions of G. A morphism from E to E′ is a homomorphism
f : E −→ E′ of formal group schemes such that fj = j′ and q′f = q, so that the following diagram commutes:

Ĝa //
j // E

q // //

f

��

G

Ĝa //
j′
// E′

q′
// // G.

If we choose splittings r, s, r′ and s′ and define g = sq′ + jr′(1 − fsq′) : E′ −→ E then one can check that

fg = 1E′ and gf = 1E so f is automatically an isomorphism. We write Ext(G, Ĝa) for the set of isomorphism
classes of additive extensions of G.

Lemma 20.11. If E and E′ are additive extensions of G then there is at most one morphism from E to E′.

Proof. Let f0, f1 : E −→ E′ be morphisms and put δ = f0 − f1, so we need to show that δ = 0. As fij = j′

and q′fi = q for i = 0, 1 we have δj = 0 and q′δ = 0. Now put ζ = r′δs : G −→ Ĝa. As 1E = sq + jr and
1E′ = s′q′ + j′r′ we have

δ = (s′q′ + j′r′)δ(sq + jr) = j′r′δsq = j′ζq.

As j′ is monic and a homomorphism, and q is epic and a homomorphism, and j′ζq is a homomorphism, it

is not hard to check that ζ is a homomorphism. As Hom(G, Ĝa) = 0 we see that ζ = 0 so δ = 0 as required.
In fact, we do not need to show that ζ is a homomorphism but merely that ζ ◦ pG = pĜa

◦ ζ, as one sees
easily from the proof of Lemma 20.7. This is easier so we will give the details. We claim that

j′ζpGq = j′ζqpE = pE′j
′ζq = j′pĜa

ζq.

The three equalities use the fact that q, j′ζq = δ and j′ respectively are homomorphisms. As j′ is mono and
q is epi we conclude that ζpG = pĜa

ζ as required. �

Definition 20.12. We write

Z(G) = {σ : G×X G −→ Ĝa | σ(u, v) = σ(v, u) , σ(u, 0) = 0 ,

σ(v, w)− σ(u+ v, w) + σ(u, v + w)− σ(u, v) = 0}

C(G) = {τ : G −→ Ĝa | τ(0) = 0}.

We also define a map δ : C(G) −→ Z(G) by

δ(τ)(u, v) = τ(u+ v)− τ(u)− τ(v).

We call Z(G) the group of symmetric two-cocycles on G with values in Ĝa.

Remark 20.13. The case v = w = 0 of the cocycle identity σ(v, w)−σ(u+ v, w) +σ(u, v+w)−σ(u, v) = 0
gives σ(u, 0) = σ(0, 0). Thus, it would be equivalent to replace the condition σ(u, 0) = 0 by σ(0, 0) = 0 in
Definition 20.12.

Remark 20.14. It is clear that δ : C(G) −→ Z(G) is a homomorphism of OX -modules. The kernel is

Hom(G, Ĝa) = 0, so δ is injective. We may thus think of δC(G) as a subgroup of Z(G) and define the
quotient module Z(G)/δC(G).

Definition 20.15. Given σ ∈ Z(G) we define Eσ = Ĝa ×G with group operation

(a, u) + (b, v) = (a+ b− σ(u, v), u+ v).
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(The inverse of (a, u) is (−a+ σ(u,−u),−u).) We also define Ĝa
j−→ Eσ

q−→ G and Ĝa
r←− Eσ

s←− G by

j(a) = (a, 0)

s(u) = (0, u)

q(a, u) = u

r(a, u) = a.

One can check directly that this gives an additive extension of G. We define a map θ : Z(G) −→ Ext(G, Ĝa)
by θ(σ) = Eσ.

Proposition 20.16. The map θ induces a bijection Z(G)/δC(G) ' Ext(G, Ĝa).

Proof. First, suppose we have two symmetric cocycles σ and σ′ with σ − σ′ = δ(τ). One can then check
that the map f(a, u) = (a + τ(u), u) gives an isomorphism of extensions Eσ ' Eσ′ , so that θ(σ) = θ(σ′) ∈
Ext(G, Ĝa). Thus, θ induces a map θ : Z(G)/δC(G) −→ Ext(G, Ĝa).

Now suppose instead that we have symmetric cocycles σ and σ′ and an isomorphism of extensions f : Eσ −→
Eσ′ . Define τ = r′fs : G −→ Ĝa (using the usual splittings of Eσ and Eσ′). It is easy to see that τ(0) = 0
so that τ ∈ C(G). As q′f = q we have f(0, u) = (τ(u), u). As fj = j′ we have f(a, 0) = (a, 0). As
(a, u) = (a, 0) + (0, u) we have f(a, 0) = (a, 0) + (τ(u), u) = (a + τ(u), u). This gives f((0, u) + (0, v)) =
f(−σ(u, v), u+v) = (τ(u+v)−σ(u, v), u+v). On the other hand we have f((0, u)+(0, v)) = f(0, u)+f(0, v) =
(τ(u) + τ(v)− σ′(u, v), u+ v). By comparing these answers we see that σ − σ′ = δ(τ). It follows easily that

our map θ : Z(G)/δC(G) −→ Ext(G, Ĝa) is injective.
Finally, suppose we start with an additive extension E′. Choose splittings r′ and s′ in the usual way and

define σ(u, v) = r′(s′(u+ v)− s′(u)− s′(v)). We know that q′ : E′ −→ G is a homomorphism with q′s′ = 1 so
q′(s′(u+ v)− s′(u)− s′(v)) = 0 and j′r′ = 1− s′q′ so we see that

j′σ(u, v) = (1− s′q′)(s′(u+ v)− s′(u)− s′(v)) = s′(u+ v)− s′(u)− s′(v).

From this it follows that j′σ satisfies the symmetric cocycle conditions and j′ is a monomorphism so σ
satisfies the conditions, so σ ∈ Z(G). We define f : Eσ −→ E′ by f(a, u) = j′(a) + s′(u). One can check
directly that this is an isomorphism of extensions, so that the isomorphism class of E′ lies in the image of θ.
It now follows that θ is an isomorphism. �

Remark 20.17. If we choose a coordinate x on G (giving a formal group law F (x, y)) then Z(G) becomes
the set of power series σ(x, y) such that σ(x, y) = σ(y, x) and σ(x, 0) = 0 and

σ(y, z)− σ(x+F y, z) + σ(x, y +F z)− σ(x, y) = 0.

Lemma 20.18. For any formal group law F over any ring R and any k ≥ 2 there is a naturally defined
symmetric cocycle σk(F )(x, y) such that σk(F )(x, y) = ck(x, y) +O(k + 1).

Proof. Recall from Theorem 7.2 that the Lazard ring L is a polynomial ring on generators aj for j ≥ 2. The
formal group law F over R corresponds to a ring map φ : L −→ R, sending aj to αj say. Define R′ = R[ε]/ε2.
Let φ′ : L −→ R′ be the map that sends ak to αk + ε and sends aj to αj for j 6= k. Let F ′ be the formal group
law over R′ coming from φ′, so F ′ = F (mod ε), so (x+F ′ y)−F x−F y has the form εσ(x, y) for some series
σ ∈ R[[x, y]]. It is easy to see that this is symmetric and σ(x, 0) = 0. Next note that when x = x′ (mod ε)
we have εσ(x, y) = εσ(x′, y), because ε2 = 0. We also have εu+F εv = ε(u+ v). It follows that

x+F ′ y +F ′ z = x+F y +F z +F ε(σ(x, y) + σ(x+F y, z)).

Using the commutativity and associativity of F and F ′ it is easy to conclude that σ is a symmetric cocycle.
We define σk(F ) = σ.

We now need to prove that σ(x, y) = ck(x, y) +O(k+ 1). It will suffice to do this for the universal formal
group law over L. We give L its usual grading and then give L′[[x, y]] the grading extending this such that
ε is homogeneous of degree k − 1 and x and y are homogeneous of degree −1. With these gradings one
can check that F (x, y) and F ′(x, y) are homogeneous of degree −1 and thus that σ(x, y) is homogeneous of
degree −k. This means that σ(x, y) =

∑
ij bijx

iyj where bij ∈ L is homogeneous of degree k − i − j. This

means that bij = 0 when i + j < k and that bij ∈ Z when i + j = k. Define σ′(x, y) =
∑
i+j=k bijx

iyj . All
52



that is left is to show that σ′(x, y) = ck(x, y). For this we note that σ′ = σk(Fa), where Fa(x, y) = x+ y is
the additive formal group law. One can see from the construction in Proposition 6.3 and the definition of ak
that σk(Fa) = ck as required. �

We leave the proof of the next two lemmas to the reader.

Lemma 20.19. If F is a formal group law over R and σ(x, y) is a symmetric cocycle for F and σ(x, y) =
0 +O(k) then there is a unique a ∈ R such that σ(x, y) = ack(x, y) +O(k + 1). �

Lemma 20.20. We have δ(xk) = bk(x, y)+O(k+1), where bk(x, y) = (x+y)k−xk−yk = ν(k)ck(x, y). �

Now let G be a formal group over X of W-height n. It follows from Theorem 11.11 that we can choose
a coordinate x on Gred such that the resulting formal group law is additive to order pn − 1. The map
OG −→ OGred

is clearly surjective, so we can choose a coordinate on G extending x; we call this coordinate
x also. If x +F y = x + y +

∑
ij aijx

iyj and I = (p) + (aij | i + j < pn) we find that I is nilpotent and

that there is an element u ∈ OX such that x+F y = x+ y + ucpn(x, y) + O(pn + 1) (mod I). We see from

Lemma 11.6 that [p]F (x) = −uxpn +O(pn + 1) (mod I); as G has W-height n we deduce that u is a unit in
OX . We now see that

δ(xp
r

) = (x+F y)p
r

− xp
r

− yp
r

= up
r

cpn+r (x, y) +O(pn+r + 1) (mod I).

Proposition 20.21. The group Ext(G, Ĝa) is a free module of rank n− 1 over OX . If x is a coordinate as

above and F is the resulting formal group law then {σpr (F )(x, y) | 1 ≤ r ≤ n− 1} is a basis for Ext(G, Ĝa).

Proof. Write R = OX , and let u ∈ R× be as in the preceeding discussion. For k ≥ 2 we define τk(x, y) ∈ Z(G)
by

τk(x, y) =


δ(xk/ν(k)) if k is not a power of p

δ((x/u)p
r−n

) if k = pr ≥ pn

σpr (F )(x, y) if k = pr < pn.

Note that τk(x, y) = ck(x, y) +O(k + 1) (mod I) for all k.
For any R-module M we let Z(G;M) denote the set of formal power series σ(x, y) ∈M [[x, y]] that satisfy

the symmetric cocycle conditions. Define a map θM :
∏
k≥2M −→ Z(G;M) by θ(m) =

∑
kmkτk (one can

check that this converges, because δ(xk) = 0 + O(k) for all k). One can check using Lemma 20.19 that θM
is an isomorphism when IM = 0. As in the proof of Proposition 17.2, we deduce that θR/Ik is iso for all k
and thus that θR is iso. This implies that

Z(G) = R{σp(F ), . . . , σpn−1(F )} ⊕ δ(C(G))

and thus that

Ext(G, Ĝa) = Z(G)/δ(C(G)) = R{σp, . . . , σpn−1}.
�

Definition 20.22. Given a formal group scheme H of dimension d over X, we define J = JH = {f ∈
OH | f(0) = 0} and ωH = J/J2 and tH = HomOX

(ωH ,OX). It is easy to see that ωH and tH are free
modules of rank d over OX . Moreover, a map q : G −→ H induces a map q∗ : tG −→ tH provided only that
q(0) = 0; we do not need q to be a homomorphism.

Definition 20.23. Let Ĝa
j−→ E

q−→ G be an additive extension. A rigidification of this extension is a pair

of maps OX = tĜa

r0←− tE
s0←− tG such that r0j∗ = 1 and q∗s0 = 1 and j∗r0 + s0q∗ = 1.

Exercise 20.24. Show that if r0 : tE −→ OX satisfies r0j∗ = 1 then there is a unique map s0 : tG −→ tE such
that (r0, s0) is a rigidification. Similarly, show that if s0 satisfies q∗s0 = 1 then there is a unique r0 such
that (r0, s0) is a rigidification.

Exercise 20.25. Show that if (r0, s0) is a rigidification and u ∈ ωG = HomOX
(tG,OX) then (r0 + j∗u, s0 −

uq∗) is another rigidification, and this construction gives a bijection between ωG and the set of rigidifications.

Exercise 20.26. Given a rigidification (r0, s0), there is a splitting (r, s) such that r0 = r∗ and s0 = s∗.
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Definition 20.27. A rigidified additive extension of G is an additive extension with a specified rigidification.
An isomorphism of rigidified extensions is an isomorphism f : E −→ E′ of extensions such that r′0 ◦ f∗ = r0

and f∗ ◦ s0 = s′0. We write M(G) = Extrig(G, Ĝa) for the set of isomorphism classes of rigidified additive
extensions of G. This is also called the Dieudonné module of G.

Exercise 20.28. Prove that there is a natural short exact sequence

ωG −→ Extrig(G, Ĝa) −→ Ext(G, Ĝa),

so that Extrig(G, Ĝa) is a free OX -module of rank n.

Exercise 20.29. Define

Crig(G) = {τ : G −→ Ĝa | τ(0) = 0 and τ∗ = 0: tG −→ OX}.
Prove that

Extrig(G, Ĝa) = Z(G)/δCrig(G) = OX{σp(F ), . . . , σpn(F )}.

Definition 20.30. For any OX -algebra R we put

Ẽ(R) = {(a, u) ∈ HomOX
(Z(G),Nil(R))×G(R) | a(δ(τ)) = τ(u) for all τ ∈ C(G)}.

We define addition on this set by

(a, u) + (b, v) = (a+ b+ ε(u, v), u+ v),

where ε(u, v) : Z(G)→ R is defined by ε(u, v)(σ) = σ(u, v).

We will now construct a “universal additive extension” Ẽ of G, from which all additive extensions can be

obtained by pushout. Here Ẽ itself is not actually an additive extension of G according to our definitions,

because the kernel of the projection Ẽ → G is not Ĝa but rather a formal group isomorphic to Ĝn−1
a .

Theorem 20.31. The above definitions make Ẽ into a formal group scheme of dimension n over X, which
fits naturally in an extension

Hom(Ext(G, Ĝa), Ĝa) −→ Ẽ −→ G.

The resulting short exact sequence of cotangent spaces is naturally identified with the sequence

ωG −→ Extrig(G, Ĝa) −→ Ext(G, Ĝa).

In particular, this gives ωẼ ' Extrig(G, Ĝa) = M(G).

Proof. The given rule does indeed give a binary operation on Ẽ(R), because we have

(a+ b+ ε(u, v))(δ(τ)) = a(δ(τ)) + b(δ(τ)) + ε(u, v)(δ(τ))

= τ(u) + τ(v) + δ(τ(u, v)) = τ(u+ v).

One can check directly from the definitions that this operation gives a commutative group structure on Ẽ(R),

with unit element (0, 0) and inverses given by −(a, u) = (−a − ε(u,−u),−u). The projection q : Ẽ → G is
evidently a homomorphism, and the kernel is

{(a, 0) | a ∈ HomOX
(Z(G),Nil(R)) | a(δ(τ)) = 0 for all τ ∈ C(G)},

which is naturally identified with the group

HomOX
(Z(G)/δC(G),Nil(R)) = Hom(Ext(G, Ĝa),Nil(R)) = Hom(Ext(G, Ĝa), Ĝa)(R).

Now choose a coordinate on G, which gives a splitting

Z(G) = R{σp, . . . , σpn−1} ⊕ δ(C(G))

as in Proposition 20.21. This gives a bijection Ẽ(R)→ Nil(R)n−1 ×G(R) by

(a, u) 7→ (a(σp(F )), . . . , a(σpn−1(F )), u).

We can make the target into a group by the rule

(a1, . . . , an−1, u) + (b1, . . . , bn−1, v) = (a1 + b1 + σp(F )(u, v), . . . , an−1 + bn−1 + σpn−1(F )(u, v), u+ v),
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and then our bijection becomes an isomorphism. Using this it is easy to give a nonadditive splitting of the
sequence

Hom(Ext(G, Ĝa), Ĝa) −→ Ẽ −→ G.

All that is left is to identify the cotangent space ωẼ . Consider an OX -linear map f : Z(G)/δCrig(G)→ OX .
We define a ring map

χf : OG = OX ⊕ C(G)→ OX [ε]/ε2

by χf (r, τ) = r + εf(δ(τ)). This defines a section uf of G over spec(OX [ε]/ε2) which restricts to zero on X.
Now let af be the composite

Z(G) −→ Z(G)/δCrig(G)
f−→ OX

×ε−−→ OX [ε]/ε2.

For any τ ∈ C(G) we have τ(uf ) = χf (τ) = εf(δ(τ)) = af (τ), so (af , uf ) ∈ Ẽ(OX [ε]/ε2). This reduces
modulo ε to zero, so it defines an element αf ∈ tẼ . One can check directly that this construction gives an
isomorphism

HomOX
(M(G),OX) = HomOX

(Z(G)/δCrig(G),OX)→ tẼ
and dually an isomorphism ωẼ →M(G). �

We now give another description of the module M(G) which is sometimes useful. We will formulate the
first step for formal groups of arbitrary dimension, purely so that we can treat G×X G on the same footing
as G.

Definition 20.32. Given any formal group scheme G of dimension d over X we define ΩG/X as before (so

this is a free module of rank d over OG). We then let ΩkG/X denote the k’th exterior power of ΩG/X over

OG, and define a formal de Rham differential d : ΩkG/X → Ωk+1
G/X by the usual rule

d(f0df1 ∧ · · · ∧ dfk) = df0 ∧ df1 ∧ · · · ∧ dfk.
This satisfies d2 = 0 so we can define the cohomology groups H∗dR(G/X) = H∗(Ω•G/X); these are contravari-

antly functorial in G. Next, we have natural maps di : G ×X G → G for i = 0, 1, 2 given by d0(u, v) = v
and d1(u, v) = u + v and d2(u, v) = u, which induce map d∗i : H∗dR(G) −→ H∗dR(G ×X G). We say that a
class α ∈ H∗dR(G) is primitive if d∗0(α)− d∗1(α) + d∗2(α) = 0. We write Prim(H∗dR(G/X)) for the subgroup of
primitives (which is naturally an OX -module).

We now revert to the case where G is a one-dimensional group of Weierstrass height n <∞.
We next want to define a map φ : Z(G)→ Prim(H1

dR(G/X)). Let J be the ideal in OG×XG of functions
that vanish on the diagonal, so that ΩG/X = J/J2. Given σ ∈ Z(G), put α̃(u, u′) = σ(u, u′ − u), so α̃ ∈ J ,
and let α be the image of α̃ in ΩG/X .

Lemma 20.33. If I is the ideal in OG×XG defining the zero section, then Z(G) ≤ I2.

Proof. Let I0 and I1 be the ideals defining 0×G and G× 0 respectively. From the definitions it is clear that
Z(G) ≤ I0 ∩ I1 and I0, I1 ≤ I so it will suffice to prove that I0 ∩ I0 = I0I1. This is clear after we choose a
coordinate giving OG×XG = OX [[x0, x1]] with I0 = (x0) and I1 = (x1). �

Lemma 20.34. We have d∗0α−d∗1α+d∗2α = dσ ∈ ΩG×XG/X . In particular, the left hand side is a coboundary,

so [α] ∈ Prim(H1
dR(G/X)).

Proof. Let J ′ be the ideal of functions f on G4
X that satisfy f(u, v, u, v) = 0, so ΩG×XG/X = J ′/(J ′)2. The

form dσ is represented by the function λ ∈ J ′ given by λ(u, v, u′, v′) = σ(u, v)− σ(u′, v′), or equivalently

λ(u, v, u+ x, v + y) = σ(u, v)− σ(u+ x, v + y).

The form
∑
j(−1)jd∗jα is represented by the function µ ∈ J ′ given by

µ(u, v, u+ x, v + y) = α̃(v, v + y)− α̃(u+ v, u+ v + x+ y)− α̃(u, u+ x)

= σ(v, y)− σ(u+ v, x+ y) + σ(u, x).

Let R(a, b, c) denote the cocycle identity

σ(b, c)− σ(a+ b, c)− σ(a, b+ c) + σ(a, b) = 0.
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After expanding and cancelling the identity

R(u, x, v + y)−R(u, v, x+ y)−R(x, v, y) +R(v, x, y)

we find that

µ(u, v, u+ x, v + y)− λ(u, v, u+ x, v + y) = σ(x, y).

Here σ ∈ I2 by Lemma 20.33, and it follows that µ− λ ∈ (J ′)2 as required. �

It is now clear that the construction σ 7→ [α] gives a homomorphism Z(G) → Prim(H1
dR(G/X)). It will

be useful to control the target of this map more precisely.

Definition 20.35. We put

Z ′(G) = {α ∈ ΩG/X | α|X = 0, [α] ∈ Prim(H1
dR(G))}.

Proposition 20.36. The construction σ 7→ α gives a homomorphism φ : Z(G) → Z ′(G) fitting into a
diagram as follows:

Crig(G)

−1

��

// δ // Z(G)

φ

��

// // Ext1
rig(G, Ĝa)

φ

��
Crig(G)

d
// Z ′(G) // // Prim(H1

dR(G/X)).

The top row is a splittable short exact sequence, and the bottom row is right exact.

Proof. We have seen previously that the top row is a splittable short exact sequence. Now consider an element
σ ∈ Z(G) and define α̃(u, u + x) = σ(u, x) and φ(σ) = α as before. Note that α̃(0, x) = σ(0, x) = 0, so
α|X = 0. Given this and Lemma 20.34 we see that α ∈ Z ′(G), so we have a homomorphism φ : Z(G)→ Z ′(G)
as indicated. Now consider the case σ = δτ for some τ ∈ Crig(G). We then have α̃(u, u+ x) = (δτ)(u, x) =
τ(u+x)− τ(u)− τ(x), whereas dτ is represented by the function (u, u+x) 7→ τ(u)− τ(u+x). The condition
τ ∈ Crig(G) means that τ vanishes to second order at the identity and thus that the term τ(x) can be
neglected when we project to ΩG/X . It follows that φ(δ(τ)) = −dτ , so the left hand square commutes.

We now prove that the bottom row is right exact. It is clear that dCrig(G) ≤ Z ′(G) and that the
construction α 7→ [α] gives a homomorphism Z ′(G)/dCrig(G) → Prim(H1

dR(G/X)); we claim that this
is an isomorphism. For the proof it is convenient to choose a coordinate x on G, and to let Dx denote
the unique element in Prim(ΩG/X) with (Dx)|X = (dx)|X (as in Proposition 9.16). Consider an element

c ∈ Prim(H1
dR(G/X)). Choose a representative form α ∈ ΩG/X , let t be the scalar such that α|X =

t dx|X , and put α′ = α − t dx. We find that α′ is another representative of c lying in Z ′(G), so the map
Z ′(G)/dCrig(G)→ Prim(H1

dR(G/X)) is surjective. If α ∈ Z ′(G) and [α] = 0 then we must have α = dτ for
some τ ∈ OG, and after subtracting a constant we may assume that τ ∈ C(G). The assumption α|X = 0
then forces τ ∈ Crig(G). It follows that our map is also injective.

Finally, as the left square commutes we have an induced map of cokernels, which gives φ : Extrig(G, Ĝa)→
Prim(H1

dR(G/X)) as required. �

So far we have implicitly worked with a formal group G of finite Weierstrass height over an affine scheme
X (which forces p to be nilpotent in OX). Our results extend more or less automatically to cover the case
where X is a formal scheme where p is topologically nilpotent in OX , but need not be actually nilpotent. In
that context it is possible for OX to be torsion-free.

Proposition 20.37. If OX is torsion-free then the map φ : Z(G) → Z ′(G) is an isomorphism, as is the

induced map Extrig(G, Ĝa)→ Prim(H1
dR(G/X)).

Proof. The key point about the torsion-free case is that if f ∈ OGr
X
' OX [[x1, . . . , xr]] and df = 0 then f is

constant (i.e. it lies in the subring OX). This will be used several times.
Suppose that σ ∈ Z(G) satisfies φ(σ) = 0. Lemma 20.34 then gives dσ =

∑
j(−1)jd∗jφ(σ) = 0, so σ is

constant. We also have σ(0, 0) = 0 by the definition of Z(G), so σ = 0. This proves that φ is injective.
Now suppose we start with α ∈ Z ′(G). As the class [α] is primitive we must have

∑
j(−1)jd∗jα = dσ

for some function σ ∈ OG×XG. After subtracting a constant we may assume that σ(0, 0) = 0, and then σ
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is uniquely determined. We claim that σ ∈ Z(G). Indeed, using the uniqueness property we deduce that
σ(u, v) = σ(v, u). We next introduce maps

di : G×X G×X G→ G×X G

as follows:

d0(u, v, w) = (v, w) d1(u, v, w) = (u+ v, w) d2(u, v, w) = (u, v + w) d3(u, v, w) = (u, v).

For the cocycle identity we must show that the function ρ =
∑
i(−1)id∗i σ ∈ OG×XG×XG is zero. As OX

is torsion-free and ρ(0, 0, 0) = 0 it will suffice to prove that dρ = 0. Here d commutes with the operators
d∗i and dσ =

∑
j(−1)jd∗jα so dρ =

∑
i,j(−1)i+jd∗i d

∗
jα. This is zero by a standard argument with simplicial

identities, which can also be written out more explicitly if desired. Thus, σ satisfies the cocycle identity, and
also the identity σ(u, 0) = 0 by Remark 20.13. Thus σ ∈ Z(G) as claimed.

Now put β = φ(σ) ∈ Z ′(G) and γ = α− β ∈ Z ′(G). By the construction of σ we have
∑

(−1)jd∗jα = dσ,

but by Lemma 20.34 we have
∑

(−1)jd∗jβ = dσ, so
∑

(−1)jd∗jγ = 0. This means that γ ∈ Prim(ΩG/X). We
know from Proposition 9.16 that the map θ 7→ θ|X gives an isomorphism Prim(ΩG/X)→ ωG, but γ ∈ Z ′(G)
so γ|X = 0, so γ = 0. This means that α = β = φ(σ), so φ is surjective and thus an isomorphism. It

follows directly from Proposition 20.36 that the induced map Extrig(G, Ĝa)→ Prim(H1
dR(G/X)) is also an

isomorphism. �

21. Curves and their operators

Definition 21.1. Let G be a formal group over a scheme X. A curve on G just means a morphism

γ : Â1 ×X → G of formal schemes over X that preserves the zero sections. We write Curves(G) for the set
of all curves on G, and we use the group structure of G to make this a group.

Definition 21.2. We say that a curve γ is basic if the map γ : Â1 ×X → G is an isomorphism. If so, the
inverse map has the form u 7→ (x(u), π(u)) for some coordinate x. By a slight abuse of language, we say
that γ and x are inverse to each other.

To be explicit, a curve should be written as γ(a, t) to indicate the dependence on a ∈ X and t ∈ Â1.
However, we will often streamline the notation by omitting explicit mention of a.

Definition 21.3. We define maps θa, vm, fn : Curves(G) → Curves(G) (for n,m ∈ N+ and a ∈ OX) as
follows.

(a) We define (θaγ)(t) = γ(at), or more explicitly (θaγ)(x, t) = γ(x, a(x)t) for x ∈ X and t ∈ Â1. These
are called homothety operators.

(b) Similarly, we put (vmγ)(t) = γ(tm), or (vmγ)(x, t) = γ(x, tm). These are called verschiebung opera-
tors.

(c) The definition of fn is more complicated. First, we let f ′mγ : (Âm/Σm)×X → G be the unique map
making the right hand square below commute.

Â1 ×X

im
��

Âm ×X

����

γm

// GmX

+

��
Âm ×X (Âm/Σm)×X

σ

'oo
f ′mγ

// G.

We then let σ(t1, . . . , tm) be the list of elementary symmetric functions in the variables ti, starting
with

∑
i ti and ending with

∏
i ti. This defines an isomorphism σ as shown. Next, we define

im(t) = (0, . . . , 0, (−1)m+1t) and fmγ = (f ′mγ)σ−1im. These are called frobenius operators. (The
connection with Frobenius morphisms as discussed previously is rather indirect, and will not be
discussed until much later.)

Remark 21.4. Suppose that OX contains a primitive m’th root of unity ζ, so that
∏m−1
i=0 (1− tζi) = 1− tm

in OX [t]. This means that the elementary symmetric functions of the vector ζ∗(t) = [t, ζt, . . . , ζm−1t] are
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0, . . . , 0, (−1)m+1. We can thus define ψm : Â1 → Â1 by ψm(t) = tm and then enlarge the above diagram as
follows:

Â1 ×X

im
��

Â1 ×X
ψm

oooo ζ∗ // Âm ×X

����

γm

// GmX

+

��
Âm ×X (Âm/Σm)×X

σ

'oo
f ′mγ

// G.

Using this we find that (vmfmγ)(t) = (fmγ)(tm) =
∑m−1
i=0 γ(ζit). Note that this characterises fmγ, because

the map ψm is an epimorphism of schemes. If OX does not have a primitive m’th root of unity then we
can just adjoin one by forming the ring OX [ζ]/φm(ζ) (where φm is the m’th cyclotomic polynomial) and the
corresponding scheme X ′. This is faithfully flat over X so most properties of fm can be proved by changing
base to X ′.

Example 21.5. Consider the case where G = Ĝa × X, so Curves(G) = {g(t) ∈ OX [[t]] | g(0) = 0}, with
group structure by ordinary addition. If g(t) =

∑
i>0 cit

i, then

(θag)(t) = g(at) =
∑
i>0

(cia
i)ti

(vng)(t) = g(tn) =
∑
i>0

cit
ni

(fng)(tn) =
∑
i>0

cit
i
n−1∑
j=0

ζij =
∑
k>0

n cnkt
nk

(fng)(t) =
∑
k>0

n cnkt
k.

Proposition 21.6. All the above operators respect addition in Curves(G), and they satisfy the following
identities:

θaθb = θab

vnvm = vnm

fnfm = fnm

fnvn = n

fnvm = vmfn if (n,m) = 1

fnθa = θanfn

θavn = vnθan .

Moreover, we have θ1 = v1 = f1 = id.

Proof. It is straightforward to check that all operators preserve addition and that θaθb = θab and vnvm = vnm
and θavn = vnθan . Next, after making a faithfully flat base change if necessary, we may assume that OX
contains a primitive nm’th root of unity, say ξ. We then have

(fnfmγ)(tnm) =

n−1∑
i=0

(fmγ)(ξmitm) =

n−1∑
i=0

(fmγ)((ξit)m)

=

n−1∑
i=0

m−1∑
j=0

γ(ξnjξit) =

nm−1∑
k=0

γ(ξkt) = (fnmγ)(tnm).

It follows that fnfm = fnm as claimed. For the remaining identities we use the element ζ = ξm, which is a
primitive n’th root of unity. Next, we have

(fnvnγ)(tn) =

m−1∑
i=0

(vnγ)(ζit) =

m−1∑
i=0

γ(ζnitn) =

m−1∑
i=0

γ(tn) = nγ(tn).
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This gives fnvn = n. On the other hand, if m and n are coprime then the map ζi 7→ ζmi is bijective and so

(fnvmγ)(tn) =

m−1∑
i=0

(vmγ)(ζit) =

m−1∑
i=0

γ(ζmitm) =

m−1∑
i=0

γ(ζitm) = (vmfnγ)(tn).

Finally, we have

(θanfnγ)(tn) = (fnγ)((at)n) =

n−1∑
i=0

γ(ζiat) =

n−1∑
i=0

(θaγ)(ζit) = (fnθaγ)(tn).

This gives fnθa = θanfn and completes the proof. �

Remark 21.7. Suppose that n is invertible in OX . We then find that n.1G : G → G is an isomorphism,
and it follows that multiplication by n is an isomorphism on Curves(G).

Remark 21.8. We can regard Â1 as the colimit of the schemes Dn = spec(Z[t]/tn+1), and this makes
Curves(G) the inverse limit of the groups Map0

X(Dn × X,G). We give these groups the discrete topology,
and then we give Curves(G) the inverse limit topology.

More concretely, we can choose a coordinate x on G. Then, for any curve γ there is a formal power series
g(t) ∈ OX [[t]] such that x(γ(t)) = g(t); this identifies Curves(G) with tOX [[t]], with group operation given by
+F . In this picture the topology on Curves(G) is just the t-adic topology.

We can use this topology to interpret various infinite sums of the operators in Definition 21.3.

Definition 21.9. Let p be a prime number. A curve γ is p-typical if fmγ = 0 for all m > 1 with m 6= 0
(mod p). We write Curvesp(G) for the subgroup of p-typical curves.

Remark 21.10. We also say that a curve γ is additive if it satisfies γ(s+ t) = γ(s) + γ(t). If so, it is easy
to check that fmγ = 0 for all m > 1, so that γ is p-typical for all p.

Until further notice, we will assume that OX is a Z(p)-algebra for some prime p.

Proposition 21.11. The group Curvesp(G) is naturally a summand in Curves(G).

Proof. We define an operator

ε =
∏
q

(1− q−1vqfq) =
∑
n

n−1µ(n)vnfn.

Here the product is indexed by all primes q different from p, and the sum is indexed by all positive integers
n 6= 0 (mod p). The function µ is the Möbius function, so µ(n) = (−1)j if n is a product of j distinct primes,
and µ(n) = 0 if n is not square-free. It makes sense to multiply by q−1 or m−1 because of Remark 21.7.
If we identify curves with power series as in Remark 21.8 then vk is just the operator g(t) 7→ g(tk) = 0
(mod tk); it follows that the sum and the product are both convergent, and a straightforward argument
shows that they are the same. As fqvq = q we see that q−1vqfq is idempotent, and therefore the operator
εq = 1− q−1vqfqq is also idempotent. We also see from Proposition 21.6 that these idempotents commute,
and thus that ε is also idempotent. It is clear that if γ is p-typical then ε(γ) = γ. Conversely, we have
fqεq = 0 and so fqε = 0 for all q 6= p, so ε(γ) is always p-typical. This shows that ε gives a natural retraction
Curves(G)→ Curvesp(G). �

Example 21.12. Consider the case where G = Ĝa ×X and γ corresponds to a series g(t) =
∑
i cit

i. Using
Example 21.5 we see that fqγ = 0 iff cjq = 0 for all j, and thus that γ is p-typical iff ck = 0 whenever k is

not a power of p. In the general case we find that (εg)(t) =
∑
i cpit

pi , so ε is just the most obvious projector
onto Curvesp(G).

Definition 21.13. Consider a coordinate x : G→ Â1. The map (x, π) : G→ Â1×X is then an isomorphism,

with inverse γ : Â1 ×X → G say. We say that x is a p-typical coordinate iff γ is a p-typical curve. We say
that a formal group law F over OX is p-typical iff the tautological coordinate on the formal group GF is
p-typical.

Proposition 21.14. Any formal group G (over a p-local base, by our standing assumption) admits a p-
typical coordinate.
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Proof. Choose any coordinate x, and let γ denote the inverse curve as in Definition 21.13. Put δ = ε(γ), and

note that this agrees with γ to first order, so it is also an isomorphism Â1×X → G. We can invert this and

project to Â1 to get a new coordinate y on G, which is easily seen to be p-typical. �

Proposition 21.15. Let x be a p-typical coordinate on G, and let γ be the inverse curve, and let δ be any
other p-typical curve. Then there is a unique sequence of coefficients ai ∈ OX such that δ =

∑∞
i=0 v

i
pθaiγ,

or equivalently δ(t) =
∑
i≥0 γ(ait

pi).

Proof. Put g(t) = x(δ(t)) ∈ OX [[t]]. Suppose that this has the form g(t) = a td (mod td+1) with a 6= 0. We
claim that d is a power of p. If not, we can choose a prime q 6= p dividing d and apply x to the identity
vqfqδ = 0 to get

0 =

F∑
0≤i<q

x(δ(ζit)) =

F∑
0≤i<q

g(ζit) = qatd (mod td+1),

which contradicts the assumption a 6= 0. We thus have d = pi for some i, and it follows that δ − vpiθaγ
vanishes to order strictly greater than d. The proposition follows by a standard argument of successive
approximation. �

Proposition 21.16. Let G be a formal group over a base X such that OX is an algebra over Z(p), and let
α be a generator for ωG. Then there is a canonical additive curve η on G with η∗α = p d0t. In terms of a
suitable coordinate this is given by x(η(t)) = expF (pt).

Proof. Choose a coordinate x with α = d0x, and let γ be the inverse curve, so γ∗α = d0t. Put δ = ε(γ), so
δ is p-typical and δ∗α = d0t. Put η = (p − vpfp)δ. We claim that this is additive and independent of the
choice of x, and that η∗α = p d0t.

To prove this, let y be the p-typical coordinate inverse to δ, and let F be the corresponding formal group
law. We then have

y(η(t)) = [p]F (y(t))−F y((fpδ)(t
p)) = pt (mod t2),

which gives η∗α = p δ∗α = p d0t.
Now let δ′ be another p-typical curve with (δ′)∗α = d0t. By Proposition 21.15 we have δ′ =

∑∞
i=0 v

i
pθaiδ

for some list of coefficients ai, and the condition on α implies that a0 = 1. As fpvp = p we see that
(p− vpfp)vipθaiδ = 0 and so (p− vpfp)δ′ = (p− vpfp)δ, so η is well-defined.

All that is left is to show that η is additive. If OX is a Q-algebra then (by the theory of logarithms) we
can take x to be an additive coordinate, and we then find that δ = γ and fpδ = fpγ = 0 so η = p γ, which
is certainly additive. For general X we can apply the previous case to see that η becomes additive over
Q ⊗ OX . If OX is torsion-free this implies easily that η itself is additive. In particular, as the Lazard ring
is torsion-free we see that η is additive in the case of the universal FGL, and it follows by base change that
it is additive for any formal group. �

Proposition 21.17. Let γ be any p-typical basic curve on G, inverse to a coordinate x. Let η be the
canonical additive curve such that η∗d0x = p d0t. Then there is a unique series of elements uk ∈ OX (for
k > 0) such that

p γ(t) = η(t) +
∑
k>0

γ(ukt
pk).

Proof. We have a p-typical curve β(t) = p γ(t)− η(t), which satisfies β∗α = 0. We can use Proposition 21.15

to expand β as β(t) =
∑
k γ(ukt

pk), and then by considering the effect on d0x we get u0 = 0, so this

rearranges to give pγ(t) = η(t) +
∑
k>0 γ(ukt

pk) as claimed. �

Remark 21.18. If we let F be the formal group law such that γ(s) + γ(t) = γ(s+F t), and apply x to the
equation displayed above, we get

[p]F (t) = expF (pt) +F

F∑
k>0

ukt
pk ,

which is how things are more commonly written in the literature. The elements uk are called the Hazewinkel
parameters of (G, γ) or of F .
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22. Witt vectors

Let R be a ring, and write N+ for the set of strictly positive integers. It turns out that there is a non-
obvious ring structure on the set Map(N+, R), which has many applications in formal group theory and
related areas. We write WR for

∏
nR with this ring structure, and call this the big ring of Witt vectors for

R.
Now consider a subset U ⊆ N+. We say that U is closed under factorisation if 1 ∈ U , and whenever

nm ∈ U we have n,m ∈ U . It will turn out in this case that the set Map(U,R) inherits a ring structure as
a quotient ring of WR. In particular, we will use the rings

WnR = Map({d | d divides n}, R)

Wp∞R = Map(pN, R).

Lemma 22.1. There is a bijection e : WR→ (1 + tR[[t]]) given by e(a) =
∏
n(1− a(n)tn). Moreover, if we

define wn(a) =
∑
d|n d a(d)n/d then we have

−t e(a)′/e(a) =
∑
n

wn(a)tn.

Proof. The product is clearly t-adically convergent, and thus well-defined. Suppose that e(a) = e(b). We
must show that a(n) = b(n), and we may assume inductively that a(m) = b(m) for all m < n. This means
that

∏
k≥n(1− a(k)tk) =

∏
k≥n(1− b(k))tk, and by considering the coefficient of tn we see that a(n) = b(n).

Thus, the map e is injective.
Now suppose we have an arbitrary element f(t) ∈ 1 + tR[[t]]. We put f1 = f and then define a(n) and fn

recursively by

a(n) = coefficient of tn in −fn(t)

fn+1(t) = fn(t)(1− a(n)tn)−1.

We find that fn(t) = 1 (mod tn) and f(t) = fn(t)
∏
m<n(1− a(m)tm) so in the limit we get f = e(a). This

proves that e is a bijection. Next, the construction f 7→ −t f ′/f is easily seen to convert products to sums,
and it sends 1− a(d)td to the series

−t−d a(d)td−1

1− a(d)td
= d

a(d)td

1− a(d)td
=
∑
i>0

da(d)itdi.

The general case follows easily from this. �

Definition 22.2. For a, b ∈WR we define a+ b = e−1(e(a)e(b)) and ab = e−1(f(a, b)), where

f(a, b) =
∏
j

∏
(r,s)=1

(1− a(jr)sb(js)rtjrs)j .

Theorem 22.3. The above operations give a ring structure on WR. Moreover, the functions wn together
give a ring map w : WR→

∏
nR, which is an isomorphism when R is a Q-algebra, and injective when R is

torsion-free.

Proof. It is clear that 1 + tR[[t]] is a group under multiplication, so WR is a group under addition (with the
zero function as the additive identity). The remaining properties are less easy to see directly, but we can
check them using the map w.

We first check that w is bijective when R is a Q-algebra. For each n > 0 we can define a polynomial fn
(with rational coefficients) in the variables {ud | d|n} by the recursive rule

fn(u) =
1

n

un − ∑
d<n, d|n

d fd(u)n/d

 .
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If R is a Q-algebra we can then define f :
∏
n>0R → WR by f(u)(n) = fn(u). This is easily seen to be

inverse to w. Now suppose only that R is torsion-free. By considering the square

WR
w //

��

��

∏
nR
��

��
W (Q⊗R)

'
w
// ∏

n(Q⊗R)

we see that w is still injective.
Next, we have e(a+ b) = e(a)e(b), so

−te(a+ b)′

e(a+ b)
= −te(a)′

e(a)
− te(b)

′

e(b)
,

and we can combine this with Lemma 22.1 to see that wn(a+ b) = wn(a) + wn(b). Similarly, we have

−tf(a, b)′

f(a, b)
=
∑
j,k

∑
(r,s)=1

j2rs a(jr)ksb(js)krtjkrs.

Now define a map

{(j, k, r, s) ∈ (N+)4 | (r, s) = 1} → {(n, d, e) ∈ (N+)3 | d and e divide n}
by (j, k, r, s) 7→ (jkrs, jr, js). One can check that this is a bijection, and it follows that

−tf(a, b)′

f(a, b)
=
∑
n

∑
d|n

∑
e|n

de a(d)n/d b(e)n/e tn =
∑
n

wn(a)wn(b)tn,

so wn(ab) = wn(a)wn(b). It follows that w : WR→
∏
nR respects addition and multiplication, if we define

these pointwise on
∏
nR. It follows, for example, that

w((ab)c− a(bc)) = (w(a)w(b))w(c)− w(a)(w(b)w(c)) = 0.

If R is torsion-free then w is injective, so (ab)c = a(bc). The other ring axioms can be verified the same way,
so WR is a ring. Finally, even if R has torsion, we can always find a torsion-free ring R′ with a surjective
map π : R′ → R. (Indeed, we can just take R′ to be a polynomial ring over Z with one generator xr for each
element r ∈ R, and define π(xr) = r.) Now WR′ is a ring and π induces a surjective map WR′ →WR that
preserves addition and multiplication, and it follows easily that WR also satisfies the ring axioms. �

Lemma 22.4. If a(n)b(n) = 0 for all n, then the Witt sum of a and b is just the ordinary sum, so
(a+ b)(n) = a(n) + b(n).

Proof. Put c(n) = a(n) + b(n). We must show that c is the Witt sum of a and b, or in other words
e(c) = e(a)e(b). As a(n)b(n) = 0 we have

(1 + a(n)tn)(1 + b(n)tn) = 1 + a(n)tn + b(n)tn + a(n)b(n)t2n = 1 + c(n)tn,

and we can take the product over all n to prove the claim. �

Definition 22.5. Let U ⊆ N+ be closed under factorisation, and put

IUR = {a : N+ → R | a(U) = 0}
WUR = {a : N+ → R | a(U c) = 0}.

We will identify IUR with Map(U c, R) and WUR with Map(U,R) where convenient. Given a ∈ WR we
define an element a|U ∈ WUR by (a|U )(n) = a(n) for n ∈ U , and (a|U )(n) = 0 for n 6∈ U . We define
a|Uc ∈ IUR in a similar way.

Proposition 22.6. There is a unique ring structure on WUR for which the map a 7→ a|U gives a ring
homomorphism WR→WUR. The kernel of this homomorphism is IUR, so we get an induced isomorphism
WR/IUR → WUR. For n ∈ U the ring map wn : WR → R factors through WUR. These maps taken
together give a ring map w : WUR →

∏
U R which is an isomorphism when R is a Q-algebra, and injective

when R is torsion-free.
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The proof will follow after some preliminaries.

Lemma 22.7. If a ∈ IUR then wn(a) = 0 for all n ∈ U . Conversely, if R is torsion-free and wn(a) = 0 for
all n ∈ U , then a ∈ IUR.

Proof. First suppose that a ∈ IUR. For n ∈ U we observe that a(d) = 0 whenever d|n, and thus that
wn(a) = 0. Now suppose that R is torsion-free, and that for all n ∈ U we have wn(a) = 0. We must show
that a(n) = 0, and we may assume inductively that a(d) = 0 for all proper divisors d of n. With that
assumption the equation wn(a) = 0 reduces to na(n) = 0 and the claim follows. �

Corollary 22.8. IUR is an ideal in WR.

Proof. This is clear from the lemma in the torsion-free case, and we can recover the general case by writing
R as a quotient of a torsion-free ring. �

Proof of Proposition 22.6. We have seen that IUR is an ideal. For a ∈ WR we see using Lemma 22.4 that
a = (a|U ) + (a|Uc) = (a|U ) (mod IUR). Thus, if a|U = b|U we find that a = b (mod IUR). We next claim
that the converse also holds. Indeed, suppose that a, b ∈WR with a = b (mod IUR). We also have a = a|U
(mod IUR) and b = b|U (mod IUR) so a|U = b|U + c for some c ∈ IUR. Lemma 22.4 tellus us that the sum
bU + c is just the ordinary pointwise sum, so it commutes with restriction. In particular we can restrict to
U c to see that c = 0, so a|U = b|U as claimed. We can thus define addition and multiplication on WUR by

a+U b = (a+ b)|U = the unique c ∈WUR such that a+ b = c (mod IUR)

a.Ub = (ab)|U = the unique d ∈WUR such that ab = d (mod IUR) .

It is straightforward to check that this gives a ring structure for which the restriction map is a homomorphism
with kernel IUR. If n ∈ U it is immediate from the definitions that wn(a) depends only on a(d) for d ∈ U ,
so wn(a) = wn(a|U ). The rest is now easy. �
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