FORMAL GROUPS

N. P. STRICKLAND

Note: This document is not really finished. In particular, there are no references to the literature, although
almost nothing is original. I have nonetheless put it online, because some people asked me about results in
Section 20.

1. INTRODUCTION

Definition 1.1. A formal group law (FGL) over a ring R is a formal power series F(x,y) = Zi,jzo a;jx'y’ €
R[z,y] that formally satisfies the axioms for a commutative group operation with 0 as the identity element.
More precisely, we must have

(a) F(z,0) =z € R[z]

(b) F(z,y) = F(y,z) € R[z,y]

(C) F(x,F(y,z)) = F(F(x,y),z) € R[[m,y,z]]

(d) There is a power series m(x) € R[z] such that m(0) =0 and F(z,m(x)) = 0.
We also write © +p y for F(z,y) and [—1](x) or [-1]p(z) for m(z). If k > 0 we define [k](z) = [k]p(z) =
x +p ... +F x, with k& terms. We do not need any brackets because of condition (¢). We also define
[—k](z) = [-1]([k](z)) and [0](x) = 0. One checks that [j + k|(z) = [j](x) +F [k](z) and [jk](x) = [j]([k](x))
for all j,k € Z.

Remark 1.2. Here and elsewhere, rings are assumed to be commutative and to have a unit unless otherwise
stated.

Remark 1.3. In conditions (c¢) and (d) we need to substitute one formal power series into another. This
leads to nonsense if the power series involved have nonzero constant terms. For example, if we try to
substitute the constant series 1 for  and y we get ), ; @ij which typically makes no sense because we have
no notion of convergence. However, if the constant terms are zero then there is no problem in expanding
everything out formally.

Remark 1.4. We will later define formal groups, and it will turn out that a formal group law is what you
get from a formal group with a specified coordinate. There are many advantages to the coordinate-free
approach, but it is a bit abstract so we postpone it.

Definition 1.5. We write FGL(R) for the set of all FGL’s over R.

Example 1.6. (1) The simplest example is F(z,y) = x + y; this is called the additive FGL. It can be
defined over any ring R.
(2) If uw € R then we can take F(z,y) = z + y + uzy, so that

L+u(z+ry) = (1+uz)(l+ uy).

In the case u = 1, this is called the multiplicative FGL. It can again be defined over any ring R.
(3) If ¢ is an invertible element of R then we can define F(z,y) = (x +y)/(1 + zy/c*). We call this

the Lorenz FGL; it is the formula for relativistic addition of parallel velocities, where c¢ is the speed

of light. We are implicitly using the fact that (1 + xy/c?) is invertible in R[z,y], with inverse

Zkzo(_my/CQ)k-
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(4) If € and § are elements of R and 2 is invertible in R we can define the Jacobi FGL over R by

_ 2y/Qy) +yvQ(x)

F
(‘/I")y> 1 7€x2y2

)

where Q(z) = 1 — 2022 + ex*. We need to assume that 2 is invertible so we can use the usual power
series expansion of v/1 + ¢ to define 1/Q(z); one can check that the denominators of the coefficients
in this series are all powers of 2. The real reason why F(z,y) is a formal group law involves the
theory of elliptic curves and elliptic integrals. For a more direct proof, one can check that

B 2exy(z? + y?) + (2'y — 20zy) (1 + ex?y?)
B (1 — ex?y?)? ’
where 2’ = \/Q(z) and ¥’ = \/Q(y). Tt follows that
F(F(z,y),2) =(2s3(epa + 6(A+ B+ C — 4) — *52)+
2y 2(A+B—-C)+y'2x(B+C—A)+22'y(C+A—-B))/
(A% + B? + C? 4 2e53(40 — epa) — 2),

Q(F(z,y))

where
A=1—ey?2?
B=1-e%z?
C =1-ex?y?
pr=a"+y° +2°
S3 = xY=Z.

This expression is symmetric in x, y and z, and it follows that F' is associative. The other axioms
are easy.

(5) Let p be a prime, and let f(z) be a monic polynomial over Z such that f(x) = pr (mod z?) and
f(z) = 2" (mod p), for some n > 0. The fundamental result of Lubin-Tate theory is that there is
a unique FGL over the ring Z,, of p-adic integers such that f(F(z,y)) = F(f(x), f(y)), and that for
this FGL we have [p|r(z) = f(x). Equivalently, this gives a compatible system of FGL’s over Z/p*
for all k. These FGL’s are important in algebraic number theory (specifically, in local class field
theory). One can understand the splitting field of f and its Galois theory quite explicitly in terms
of the formal group structure.

(6) In algebraic topology, one can consider a number of complex-orientable generalised cohomology
theories. Such a theory assigns to each space X a graded ring E* X, subject to various axioms. If
L is a complex line bundle over X, one can define an Euler class e(L) € E*X, which is a useful
invariant of L. There is a formal group law F' over E*(point) such that e(L ® M) = F(e(L),e(M)).
In the case of ordinary cohomology, we get the additive FGL. In the case of complex K-theory,
we get the multiplicative FGL. In the case of complex cobordism, we get Lazard’s universal FGL
(Quillen’s theorem). This is the start of a very deep relationship between formal groups and the
algebraic aspects of stable homotopy theory.

Exercise 1.7. Prove that v/1+¢ lies in Z[1][¢t]. In other words, if f(t) = Y, axt® € Q[t] is the unique
power series such that f(t)2 =1+t and f(0) = 1, show that for each k we can write aj in the form b/2™
for some integers b and m. One approach is to use the Newton-Raphson method: define fo(t) = 1 and
frer1(t) = (fu(t)+ (1 4+1t)/fi(t))/2 (checking that this makes sense). One can then show that fi(¢) converges
to f(t) in a suitable sense. Another approach is to show that aj = bx_1 + by, where by = (2F) /(—4)*.
Probably the best approach is to wait for Example 2.9, however.

2. BASIC RESULTS

One way to think of FGL’s is as a recipe for defining honest groups. We now make this precise.
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Definition 2.1. Let R be a ring. We say that an element a € R is nilpotent if a” = 0 for some integer
N > 0. We write A'(R) or Nil(R) for the set of nilpotent elements of R.

Lemma 2.2. Nil(R) is an ideal in R.

Proof. Suppose that a,b € Nil(R), say a®¥ = 0 = b™. Then if a’b’ # 0 we must have i < N and j < M so
i+j <N+ M. It follows that (a + b)N+tM = ZN+M:i+j(i,j)aib7 =0, so a + b € Nil(R). Moreover, if ¢ is
an arbitrary element of R then (ac) = a™ ¢V =0, so ac € Nil(R). This shows that Nil(R) is an ideal. O

Suppose that F(z,y) = Ei’j a;;x'y’ is an FGL over a ring R, and that R’ is an algebra over R, so we
have a specified ring map u: R — R’ say. Let b and ¢ be nilpotent elements of R’. Then b*¢’ = 0 for all but
finitely many pairs (7, j), so we can define b +p ¢ = ZU u(a;;)b'c? as a finite sum without worrying about
any kind of convergence. This defines a group structure on Nil(R’), whose identity element is 0.

Definition 2.3. We write I'(Gp, R') or I'(Gp, R',u) for the group Nil(R’) equipped with the group law +p
described above.

Remark 2.4. In the coordinate-free picture, it will be more natural to consider something a little different.
Fix a ring R, and a FGL F over R. For any ring R’, we let X(R’) denote the set of ring homomorphisms
u: R — R'. We write Gp(R') = Nil(R) x X(R’). There is an evident projection map Gp(R') — X(R’),
sending (a,u) to u, and the preimage of a point u € X(R') is the group I'(Gp, R',u). Thus Gp(R') is a
bundle of groups over X (R’), and everything depends naturally on R’. This is an example of a formal group
over X (or over R).

Remark 2.5. We clearly have Nil(Z) = 0, so we cannot tell the difference between different FGL’s over Z by
just looking at I'(GF,Z). However, we can tell the difference if we look at groups like I'(Gr, Z[s, t]/(sV, t*))
instead.

We now prove some basic lemmas, as practise in the use of formal power series.
Lemma 2.6. If F is an FGL then F(x,y) = v +y (mod zy).

Proof. We have F(x,y) = Zi,jzo a;;x'y’ for some coefficients a;; € R. Condition (a) tells us that a;p = 0
except for a;9 = 1. Using (b) we see that ag; = 0 except for ap; = 1. Thus

Flz,y)=a+y+ay Y agz' 'y,
i,j>0
as required. 0

Lemma 2.7. Condition (d) in Definition 1.1 actually follow from conditions (a) and (b).

Proof. Suppose that F satisfies (a) and (b). As in the previous lemma, we have F(z,y) =2 +y (mod zy).
Define b; = —1 and m;(z) = —z, so F(z,m;(z)) = 0 (mod z?). Suppose that we have defined a polynomial
my(x) of degree k such that F(z,mg(x)) = 0 (mod z**1). There is then a unique element byy; € R such
that F(x,my(z)) = —bpr12¥T! (mod x%+2). Define myy1(x) = my(x) + by x¥T1. It is easy to check that
when i > 0 or ¢ =0 and j > 1 we have

mpyr(z) = 2'my(2)?  (mod zFF2).

Using this and the fact that F(x,y) = x +y (mod zy), and working everywhere modulo 22, we find that
F(2,mps(2) = 2+ mpr (2) + Y agga'my (z)!
4,§>0
= F(z,my(x)) — az® !
=0 (mod z**?),

By an evident recursion, we have now defined by and my, for all k. We put m(z) = >, brz®, so that

m(z) = mg(x) (mod z¥*1) for all k, and thus F(z,m(z)) = 0 (mod z**!) for all k, so F(z,m(z)) = 0

exactly. 0
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We next want to define homomorphisms between formal group laws. It is convenient to give some remarks
about composition of formal power series first.

Lemma 2.8. Let f be a formal power series over a ring R such that f(0) =0 and f'(0) is a unit in R. Then
there is a unique series g(x) € R[z] such that f(g(x)) = x = g(f(x)). Moreover, we have ¢'(0) = 1/f'(0).
(This is just a formal version of the inverse function theorem.) We call this series the reverse of f.

Proof. The proof is similar to that of Lemma 2.7. We define a; = f/(0) and by = 1/ay and g;(x) = byz.
Then f(g1(z)) = = (mod x2). Given a polynomial gx(x) of degree k such that f(gi(z)) = = (mod x**+1),
there is a unique element ¢ € R such that f(gx(z)) = z+cx**! (mod 2¥*2), and we define by 11 = —c/a; and
gri1(w) = gr(z) +bry 125+, One checks that f(gry1(7)) =z (mod 2¥+2). This gives a sequence of elements
by, for k > 0, and we define g(z) = 3, . bpa®. This satisfies f(g(x)) = . By applying the same logic to g,
we get a series h with g(h(z)) = x. Thus f(g(h(z))) = f(x) but also f(g(y)) =y so f(g(h(z))) = h(z) so
f=hsog(f(z)) =z as required. One can also check that g is unique. O

Example 2.9. Take R = Z[1] and f(z) = (1+ )" — 1, so f~}(y) = (1 +y)'/™ — 1. The conclusion is that
the coefficients of the usual Taylor expansion of (1 + y)l/ ™ lie in R. In particular, the coefficients of /1 + y

lie in Z[%], giving another answer to Exercise 1.7.

Definition 2.10. We write RPS(R) for the set of reversible power series over R, in other words the set
of power series f(x) € R[z] such that f(0) = 0 and f/(0) is a unit in R. This is clearly a group under
composition. We write RPS;(R) for the subgroup of those f for which f/(0) = 1.

Definition 2.11. Let Fy and F; be FGL’s over a ring R. A homomorphism from Fy to F} is a formal
power series f(z) € R[z] such that f(0) =0 and f(z +pg, y) = f(x) +r, f(y) € R[z,y]. We say that f is an
isomorphism if there is a homomorphism ¢ from F; to Fy such that f(g(x)) = x. We say that f is a strict
isomorphism if f'(0) = 1.

Remark 2.12. In the notation of Remark 2.4, a homomorphism f as above gives rise to a map Gp,(R’) —
Gp,(R’) of bundles of groups over X (R').

Remark 2.13. It follows from Lemma 2.8 that a homomorphism f is an isomorphism if and only if f/(0)
is a unit.

Example 2.14. In these examples we consider the following FGL’s:
Fo(z,y) =z +y
Fi(z,y) =2z +y+ay
Fy(z,y) = (v +y)/(1 + zy).
All these can be defined over any ring R.
(1) If @ C R then the series f(z) = log(1 +z) = —>_,_o(—2)"/k gives an isomorphism from Fy to Fy.
(2) If 2 is invertible in R then there is an isomorphism from F} to Fy given by
14+2)—(1+2)7!
fle) = El+x§+§1+x§—1'
(3) If 2 =0 in R then f(z) = z/(1 + x?) gives an isomorphism from F; to Fy.

Exercise 2.15. Show that in the last example, we have f~'(y) = >, y?* =1 Hint: (a + b)2 = a? + b2
(mod 2).

3. FGL’S OVER Q-ALGEBRAS

Proposition 3.1. If R is a Q-algebra, and F is an FGL over R, then there is a unique strict isomorphism
f: F — F,, where F, is the additive FGL, given by F,(z,y) =2 + y.

Definition 3.2. This series f(x) is called the logarithm of F, and is written logp(z). Thus, we have
logp(x +Fy) =logpr(z) + logr(y). We also write expp(z) for the inverse of logp(x).
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Proof. Suppose that F(z,y) = Z ~a;jz'y’. We write Fy(x,y) for the partial derivative of F' with respect to
the second variable, in other words Fy(z,y) =32, jaijx iyi=1. Because F(z,y) = v +y (mod zy) we have
F5(0,0) =1 so Fy(t,0) is invertible in R[t]. As R is a Q-algebra we can formally integrate and thus define
vodt

x) = .
f@) t—o Fa(t,0)
More explicitly, if 1/F5(t,0) = >, cxt* then we define f(z) = >, cra®*1/(k +1). (We need not try to
interpret this in terms of Riemann sums or anything like that.) It is clear that f(z) = z (mod z?).

We are given that

F(F(x,y),2) = F(z, F(y,2)).
If we take partial derivatives with respect to z at z = 0 we obtain Fy(F(x,y),0) = Fa(z,y)Fs(y,0),

or equivalently f'(F(z,y))™' = Fa(z,y)f (y)~!, or equivalently f'(F(z,y))Fa(z,y) = f'(y). If we put
h(z,y) = f(F(z,y)) — f(z) — f(y) then we deduce that Oh(z,y)/dy = 0. Thus, if h(z,y) = >, ; di;x'y? then
>iJdiga'y’ =t = 0 in R[z,y], which implies that d;; = 0 when j > 0. On the other hand, it is clear that
h(z,0) =0 so djp = 0 so h = 0. This means that f(F(z,y)) = f(z) + f(y), so f is a homomorphism from F'
to F,. It is a strict isomorphism, because f(x) = x (mod x?)

Now let g be another strict isomorphism, and let g—! denote its reverse. Then the series k(x) = f(g~1(z))
satisfies k(x 4+ y) = k(x) + k(y). We now expand this out and use the fact that all binomial coefficients are
invertible in Q and thus in R. It follows easily that k(xz) = Az for some A € R, but f and g were strict
isomorphisms so A = 1. This shows that f = g. (]

Corollary 3.3. If R is a Q-algebra then there is a bijection ¢: RPS1(R) — FGL(R) given by
o(f)(@,y) = FH(F (@) + f(y))

6 (F) @) = logee) = [ i
Proof. Write ¢(F) = logp, so ¢: FGL(R) — RPS;(R). The proposition shows that
V() (F (z,y)) = »(F) () + (F)(y),

or in other words that F' = ¢y(F), so ¢1p = 1. On the other hand, if F = ¢(f) then f is certainly a
homomorphism F — F, with f/(0) = 1, and we have seen that logy is the unique such homomorphism, so

f=vo(f). 0

Example 3.4. (1) If F(z,y) = x +y is the additive FGL then logp(z) = x.
(2) If F(z,y) =z + y + uxy is a multiplicative FGL then

logp(x) = log(l + uz)/u = Z(—u)kilxk/k‘.

k>0
(3) If F(z,y) = (x +v)/(1 + zy/c?) is the Lorenz FGL then

log(z) = tanh ™! (z/¢) = glog (2_“;) .

(4) Write Q(x) = 1—26x%+ex?, so we have aJacobl formal group law F(z,y) = (2/Q(y)+y/Q
ex?y?). The logarithm is then logy(z) = [, Q(t)~'/2dt. This eXpreSbIOH is called an ellzptzc
integral; such things arise in the theory of planetary motion, for example. The definition of the
logarithm gives the following transformation property of elliptic integrals:

vodt /FW) dt
VA Jo Q)

(5) Let F be an FGL over a p-adically complete ring R. In suitable circumstances make this precise
we have

logp(x) = lim p~"[p"]().
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(6) Let E be a 2-periodic generalised cohomology theory with a complex orientation in degree zero. We
then have a fundamental class [M] € E° for each stably almost complex manifold M. We also have
a canonical formal group law F over E°, and it turns out that logp(z) = ZkZO[CPk]ka/(k +1).

4. AFFINE SCHEMES

Definition 4.1. A functor X from rings to sets is a rule which assigns to each ring R a set X(R), and to
each homomorphism a: R — R’ a map X (a): X(R) — X(R’), such that:

(1) fa: R— R and o/: R' — R” then X(d/a) = X(o/) X (a): X(R) — X(R").

(2) If 1: R — R is the identity map, then X (1): X(R) — X (R) is the identity map.

Example 4.2. (1) Define X (R) = {(a,b) € R? | b* = a® — a} and X(a)(a,b) = (a(a),a(b)). This
clearly gives a scheme. This is our version of the elliptic curve y? = 2% — .

(2) We have a functor FGL, which sends a ring R to the set FGL(R) of formal group laws over R. For
any ring map a: R — R/, we have an associated map FGL(«a): FGL(R) — FGL(R'): If F(z,y) =
250 a;;x'y) € FGL(R), then FGL(a)(F)(z,y) = 2050 a(a;j)z'y?. We normally write aF' rather
than FGL(a)(F).

(3) Similarly, we have a functor RPS;, which sends a ring R to the set RPS;(R) of power series f € R[x]
such that f(z) = 2 (mod z?). The maps RPS(«) are again given by applying « to the coefficients.

(4) We have a functor A™ defined by A"(R) = R™ = R x ... x R. This contains the subfunctor
An (R) = Nil(R)™. We also have a subfunctor G,,, C A! defined by G,,,(R) = R*, the group of units
of R.

(5) We can define a functor T' by T'(R) = R/2R.

(6) If X and Y are functors, then we can define a functor X x Y by (X x Y)(R) = X(R) x Y(R) and
(X xY)(a) = X(a) X Y(a).

Definition 4.3. A natural transformation (or just map) f: X — Y of functors is a rule which assigns to
each ring R a map fr: X(R) — Y(R). We require that for any map o: R — R’ of rings, the following
diagram must commute:

X(R) L x (R

o wl

Y(R) —— Y(R)

Y (@)
Example 4.4. (1) We can define a map f: A% — A% by f(a,b,c) = (a® + be,c3). Tt is easy to see that
this gives a natural transformation. More generally, given any n-tuple of polynomials fy,..., f, in
variables x1,...,x,, over Z, we get a map f: A"™ — A" by

flay, .. am) = (fi(a), - -, fn(@)-

We will see later that these are all the maps from A™ to A”™.

(2) We have a map comp: RPS; x RPS; — RPS; defined by comp(f,g)(z) = f(g(x)). Using the
naturality of this, one can check that the inversion map inv: RPS; — RPS; (sending f to f~1) is
also natural.

(3) We can define ¢r: RPS;1(R) — FGL(R) by ¢r(f) = f~'(f(z) + f(y)), as in Corollary 3.3. This
gives a map ¢: RPS; — FGL.

Definition 4.5. For any ring A, we can define a functor spec(A) from rings to sets by
spec(A)(R) = Rings(A4, R),

where Rings(A, R) denotes the set of ring homomorphisms from A to R. Given a homomorphism a: R — R/,
the associated map a.. = spec(A)(«): Rings(A4, R) — Rings(A, R') is just a.(u) = aou. We say that a
functor X is an affine scheme if it is isomorphic to a functor of the form spec(A) for some A.
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Example 4.6. (1) Recall the functor G,,(R) = R*. Consider the ring A = Z[z,x~!] of Laurent series
over Z in one variable . We claim that spec(A) ~ G,,. Given an element u € spec(A)(R) (in other
words, amap u: A — R) we define ¢(u) = u(z). Given v € G,,,(R) = R*, we define ¥)(v): A — R by
Y () (X, arz®) = 3, apv®. It is easy to check that these constructions give the required bijection.
Thus, G,, is an affine scheme.

(2) Similar arguments show that A™ = spec(Z[z1,...,2,]), so this is a scheme.

(3) Inside A%, we have the affine elliptic curve C defined by C(R) = {(a,b) € R? | b*> = a® — a}. It is
easy to check that C' = spec(Z[x,y]/(y* — 2® + x)).

(4) Let 1 denote any one-point set. We then have

1 if every n > 0 is invertible in R

spec(Q)(R) = {

® otherwise.

Similarly, we have
1 ifp=0inR
(0 otherwise.

spec(lFy)(R) = {

(5) The functor T(R) = R/2R is not an affine scheme. Indeed, if X is an affine scheme then one sees
easily that the inclusion Z C Q gives an injective map X (Z) — X (Q), but clearly there is no injection

7,27 — Q/2Q = {0}.

Definition 4.7. For any functor X, we let Ox be the class of natural transformations from X to A'. In the
cases of interest this will always be a set rather than a proper class. More explicitly, an element f € Ox gives
(for each ring R) a map f: X(R) — R, such that f(X(a)(z)) = a(f(z)) for all z € X(R) and a: R — R'.
We can make Oy into a ring by defining (f + g)(z) = f(z) + g(z) and (fg)(x) = f(z)g(x) in the usual way.
It is called the ring of functions on X.

Proposition 4.8 (The Yoneda Lemma). For any functor X and any ring A, the set of natural transforma-
tions from spec(A) to X bijects with X (A).

Proof. The basic point is that a natural map f: spec(A) — X is freely and uniquely determined by its
“universal example”, which is the element f4(14) € X(A). We proceed to explain this more fully.
Write T for the set of natural transformations from spec(A) to X. If f € T then we have a map
fr: Rings(4, R) = spec(A)(R) — X(R)

for each ring R. In particular, we have a map fa: Rings(A4, A) — X (A), so we can define ¢(f) = fa(la) €
X(A). This gives us a map ¢: T — X (A). Next, suppose we have an element 2z € X(A). For any ring R
and any map u: A — R, we have a map X (u): X(A) - X(R), because X is a functor. We can thus define
gr(u) = X (u)(x). This construction gives a function

gr: spec(A)(R) = Rings(4, R) - X(R).

We claim that these maps give a natural transformation g: spec(A4) — R. If we have another map a: R — R’
of rings, we need to check that X («)(gr(u)) = gr (. (u)). This is clear because

X(@)(gr(u)) = X(a)(X(u)(2)) = X(au)(z) = grr (ax(u)).
Because the definition of g depended on x, it makes sense to write ¢ (z) = ¢g. This gives amap ¢: X(A) — T.
We claim that this is inverse to ¢. Indeed, we have

P((x)) = ga(la) = X(1a)(2) = =,
so ¢1p = 1. In the other direction, suppose that f € T, and define x = ¢(f) = fa(la), so that the map
g defined above is ¥(¢(x)). We need to show that ¢ = f. In other words, given a ring R and an element
u € spec(A)(R) = Rings(4, R), we need to show that fr(u) = gr(u) = X(u)(z) = X(u)(fa(la)). For this,
we notice that u = u.(14), where
u, = spec(A)(u): spec(A)(A) — spec(4)(R).

Because f is natural, we have

fr(u) = fr(u«(14)) = X (u)(fa(14))
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as required. O
Corollary 4.9. If A is any ring then Ogpec(a) = A.

Proof. By definition, Ogyec(a) is the set of natural transformations from spec(4) to A'. By the Yoneda
lemma, this bijects with Al(A) = A. O

Corollary 4.10. If X is a scheme then X is isomorphic to spec(Ox).

Proof. By the definition of a scheme, X is isomorphic to spec(A) for some A, but the previous corollary tells
us that A ~ Ox, so X ~ spec(Ox). O

Exercise 4.11. Exhibit a map X — spec(Ox) which is defined naturally for all functors X, and is an
isomorphism when X is a scheme. (There are some set-theoretical problems here, but I suggest that you
just ignore them.)

Corollary 4.12. If A and B are rings then there is a canonical bijection between maps spec(A) — spec(B)
of schemes, and ring maps B — A.

Proof. This is the case of Proposition 4.8 in which X = spec(B). |
Example 4.13. (1) We have A™ = spec(Z[z1,...,Tm]), so the Yoneda lemma tells us that maps from
A™ to A™ biject with elements of A"(Z[z1,...,Zm]), or in other words with n-tuples of polynomials

in m variables. This proves that all maps A™ — A™ are of the form considered in Example 4.4.

(2) We have maps 7r,:f: G, = Gy, defined by Wf(a) = +aF. We claim that these are all the maps from
G to itself. To see this, note that Og, = Z[u,u~']. By the Yoneda lemma, we need only check
that the elements +u” are all the units in this ring, which is elementary.

(3) The functor RPS; is a scheme. Indeed, let A be the polynomial ring Z[bs, bs, . . .| in countably many
variables over Z. We have an element u(z) = 2 + > ., byz" € RPS;(A), and by the Yoneda
Lemma this corresponds to a map spec(4) — RPS;. It is easy to see that this is an isomorphism.
Explicitly, for any reversible power series v(z) = = + >, cpx® over any ring R, there is a unique
homomorphism «: A — R sending by, to ¢ for all k, and thus sending u(z) to v(z).

(4) By a similar argument, we have RPS = spec(Z[b1, by, .. .][b]']).

Exercise 4.14. Show that spec(A ® B) = spec(A) x spec(B), and thus that any finite product of schemes
is a scheme.

Exercise 4.15. Let E(R) be the set of 2 x 2-matrices M over R such that M? = M. Show that this defines
an affine scheme, and investigate the structure of Op. You may want to consider the maps eg,es: E — Al
given by eg(M) = det(1 — M) and es(M) = det(M).

Proposition 4.16. The functor FGL is an affine scheme.

Proof. Let Lo = Z[a;j | i,j > 0] be a polynomial algebra over Z on countably many indeterminates a; j, one
for each pair (4, j) of positive integers. Define Fy(z,y) = +y+ Z” a;;x'y?, and define elements b;;, € Lo
by the equation
Fo(Fo(z,y),z) — Fo(z, Fo(y,2)) = Z bigra'yl 2~
i3,k

Let I be the ideal in Ly generated by the elements a;; — a;; (for 4,5 > 0) and the elements b;;;, and put
L = Ly/I. Let F be the image of Fy in Lz,y]. It is clear that this is a formal group law over L. We
thus have a map spec(L)(R) = Rings(L, R) — FGL(R), sending « to aF. We claim that this is a natural
isomorphism. Indeed, let F’ be an FGL over R, say F'(z,y) = x +y + >, ;o aj;z'y’. There is then a
unique homomorphism ag: Ly — R such that ag(a;;) = a;;j, so that agFy = F'. It follows that ag(bijr)
is the coefficient of z'y/z¥ in F'(F'(x,y),2) — F'(x, F'(y,2)), but this series is just zero because F' is a
formal group law. Thus ag(b;jx) = 0, and similarly ag(a;; — a;;) = 0, so there is a unique induced map
a: L =Lo/I — R with aF = F’. Thus, we have FGL = spec(L), as required. O

Definition 4.17. The ring L = Opgy, is called the Lazard ring.
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Remark 4.18. In topology, it turns out that one can naturally identify FGL with spec(MU,) and RPS;
with spec(H,MU), in such a way that the Hurewicz map MU, — H,MU induces the map ¢: RPS; =
spec(H, MU) — spec(MU,) = FGL.

5. BASE SCHEMES AND BASE CHANGE

We will often have a scheme X and want to consider other schemes equipped with a map to X, which we
refer to as schemes over X. Consider two functors V, W equipped with maps p: V. — X and ¢: W — Z. A
map from V to W of schemes over X means a map f: V — W of schemes such that ¢f = p.

Lemma 5.1. Let X = spec(A) be a scheme. Then the following categories are equivalent:

(a) The category of schemes over X
(b) The opposite of the category of A-algebras
(¢) The category of representable functors from A-algebras to sets.

Proof. We have a contravariant equivalence between rings and schemes given by A < spec(A), and this
clearly gives an equivalence between (a) and (b). Yoneda’s Lemma gives an equivalence between (b) and (c).
The resulting equivalence between (a) and (c) is as follows. An A-algebra is just a ring B equipped with
a ring map z*: A — B, or equivalently a point x € X(B). Now suppose we have a scheme Y equipped
with a morphism p: ¥ — X, and an A-algebra (B, x). We then have pg: Y(B) — X(B) and z € X(B) so
pp{r} CY(B). We define Y': Alg, — Sets by
Y'(B, ) = pp' {x}.
In the opposite direction, given a functor Y’: Alg, — Sets we define
Y(B) = {(z,y) |z € X(B) and y € Y'(B, )},
and we let p: Y(B) — X (B) be the evident projection. It is not hard to see that these constructions give
the required equivalence. (|
Example 5.2. Let X = spec(A) be a scheme, and let M be an A-module. We can define a functor
A'(M): Alg, — Sets by
A/(M)(B,z) = B®a+ M.
(In more detail, the right hand side is the tensor product of B and M over A, where we use the algebra
structure map z*: A — B to regard B as an A-module.) The corresponding functor from rings to sets is

AM)(B) ={(x,m) |z € X(B),m € A'(B,z)(M) =B ®a,- M}.
If M is a free A-module of rank d < oo with dual module M*, then we can form the symmetric algebra
AM) = P
n>0
We then have
Alg 4, (A[M*],B) = Homa(M*,B) = B4 M = A'(M)(B).

Using this, we see that A(M) = spec(A[M*]). Also, a choice of basis for M gives an isomorphism A[M*] ~
Alxy,...,x4) of A-algebras, and thus an isomorphism A(M) = X x A<

Definition 5.3. Consider again two functors V, W equipped with maps p: V — X and ¢: W — Z. We
define the pullback of V and W by

(V xx W)(R) = V(R) xx(r) W(R) = {(v,w) € V(R) x W(R) | p(v) = q(w)}.

We also write p*W for V' x x W, considered as a scheme over V' using the projection map (v, w) — v. Given
a ring A and two A-algebras B and C, one can check that

spec(B) Xgpec(4) spec(C) = spec(B @4 C).
It follows that when V', W and X are all affine schemes, the pullback is again an affine scheme, and we have

Ovxxw = Ov ®oy Ow.
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Definition 5.4. Let X be an affine scheme, and Y a functor equipped with a map p: ¥ — X. A system
of formal coordinates on Y is a collection of maps x1,...,z,: Y — Al such that the resulting map a —
(z1(a),...,zn(a),p(a)) gives an isomorphism Y — A" x X. An n-dimensional formal scheme over X is a
functor which admits such a system of coordinates.

Example 5.5. Let M be any free module of rank n over A, and define &(M ): Rings — Sets by
A(M)(B) = {(z,m) | € X(B),m € Nil(B) @4 4~ M}.

Any choice of basis for M gives a system of formal coordinates, showing that &(M ) is an n-dimensional
formal scheme over X.

Let A be a ring, and f(x,y) a power series in Afz,y]. Write X = spec(A). Given a point u € X(R) (in
other words, a homomorphism u: A — R) we define a power series uf over R in the obvious way, and then
define R

Y(R) = {(u,z,y) € X(R) x A*(R) | (uf)(z,y) = 0}.
We would like to know when this is a formal scheme over X. For this, we need a formal version of the
implicit function theorem.

Proposition 5.6. Let fa(x,y) denote the partial derivative of f with respect to the second variable. If
£(0,0) = 0 and f2(0,0) is a unit in A then the map (u,x,y) — (u,z) is an isomorphism Y ~ X x A', and
thus Y is a one-dimensional formal scheme over X.

Proof. We will construct a power series g(z) € A[z] such that g(0) = 0 and f(x,g(x)) = 0, by the usual
process of successive approximation. We start with go(z) = 0. Suppose we have constructed a polynomial
gr. of degree k such that gx(0) = 0 and f(x,gx(z)) = 0 (mod z**1), say f(=z,gr(2)) = az®*! (mod 2++2).
We then have
f(l‘vgk(x) + bmk+1) = f($7gk($)) + bxk+1f2($?gk(x)) (mOd ‘T2k+2)’

but 24+ £y (2, g (2)) = 25+ £5(0, 94(0)) = 241 £(0,0) (mod ##+2) so f(z, ge(a)+bak+1) = (a-+b (0, 0))ah
(mod x**+2). Thus, we must take gry1(z) = gr(z) — az®*1/f2(0,0). If we let g be the formal power series
such that g(x) = gr(z) (mod xz**+1) for all k, then we find that f(z,g(z)) = 0. We can thus define a map
¢: X x Al = Y by d(u,z) = (u,z, (ug)(x)). If we write 7w for the map (u,z,y) — (u,z) then clearly
w¢ = 1. Now consider the series h(z,z) = f(z,g(z) + z) € Az, 2]. We have h(z,0) = f(x,g(z)) =0, so
h(z,z) = z k(x, z) for some series k. Moreover, we have k(0,0) = f2(0,0), which is a unit in A, so k(z, 2) is
a unit in Afz, z]. Now suppose that (u,x,y) € Y(R) for some ring R. Writing z = y — (ug)(x), we find that
(uh)(z, z) = (uf)(x,y) = 0, so z (uk)(x,z) = 0 but k is invertible so (uk)(z, z) is invertible in R so z = 0.
This shows that y = (ug)(z), and thus that (u,z,y) = ¢n(u,z,y), so ¢ = 1. a

Exercise 5.7. Generalise this to cover more variables and more equations.

Example 5.8. Take X = Al, and let Z be the subfunctor of X x A? whose fibre over a point p € X(R) is
the set of pairs (a, b) such that (a? +b%)p = b. This should be thought of as a circle of diameter 1/p which is
tangent to the z-axis at the origin. Where p = 0 this degenerates to a straight line. Let Y/(R) be the subset
where a and b are nilpotent. This should be thought of as an infinitesimal neighbourhood of the origin in Z.
It seems intuitively clear that the vertical projection should give an isomorphism of Y with an infinitesimal
neighbourhood of the origin in the z-axis. The proposition gives us a rigorous formulation and proof of this
(take A = Z[p] and f(z,y) = (2® +y*)p — y).

Example 5.9. Let A be a ring, suppose that a1, as, as, a4, a € A, and consider the standard homogeneous
Weierstrass cubic

g(x,y,2) = y*2 + arzyz + azyz® — 2® — apr?z — agx2® — a2’
This defines an elliptic curve C in the projective plane (provided that a certain expression A(as, as, as, as, ag)
is invertible; otherwise we have a “generalised elliptic curve”). We write X = spec(A). The formal completion

of C is the functor C defined by
C(R) = {(u,z,2) € X(R) x A*(R) | (ug)(x,1,2) = 0}.
If we define f(x,z) = g(z,1, 2) then one checks easily that f(0,0) = 0 and f2(0,0) = 1 so Proposition 5.6

shows that C is a one-dimensional formal scheme over X.
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We now show that all maps between formal schemes over a fixed base are given by formal power series.

Proposition 5.10. Let f: X x A" 5 X x A™ be a map of formal schemes over X = spec(A). Then there
are unique formal power series fi,..., fm € Alx1,...,z,] such that for all rings R and all (u,aq,...,a,) €
X(R) x A"(R) we have

fluyar, ... an) = (u, (ufr)(ar, ..., an), ..., (wfm)(a, ..., an)).

Moreover, the elements f;(0,...,0) € A are nilpotent. Com;ersely, given any m-tuple of series f; whose

constant terms are nilpotent, the above formula defines a map X X A" — X x A™ of formal schemes over
X.

Proof. Write By, = Alx1,...,2z,]/(2F,...,2%). Let uy be the obvious map A — By, considered as an element
of X(By). Let ¢ be the tuple (z1,...,x,), considered as an element of &”(Bk) We thus have an element
flug,tr) € X(By) x A™(By). As f is supposed to be a map of formal schemes over X, the first component of
f(ug, tx) must be u,. The remaining components are elements of 1&1(3;9), in other words nilpotent elements
of Bi. If b is an element of By with constant term by then it is clear that b — by lies in the ideal (1, ..., 2z,)
and each x; is nilpotent so b — by is nilpotent. Thus, b is nilpotent if and only if by is nilpotent. It follows
that there are polynomials fi 1,..., fk,m, of degree less than k in each of the variables z,...,z,, whose
constant terms are nilpotent, such that f(ux,tx) = (uk, fr.1,---, fe,m). Now consider the evident quotient
map 7: Bit1 — Bg. Clearly, the induced map X (By1) X &”(B;Hl) — X (Byg) % &”(Bk) sends (Ug+1,tp+1)
to (ug,tx). As f is natural, we see that m must send f(uk+t1,tx+1) to f(ug,tr), which means that fr41, =

fr,; mod (zF,...2F) for all j. Thus, there are unique power series f; such that f; = f;; mod (z¥,... a%)

for all k.

Now consider an arbitrary ring R and a point (u,a) = (u,a1,...,a,) € X(R) x A"(R). The clements
a; are nilpotent, so there is an integer k such that a? = 0 for all j. Let a: By — R be the unique ring
homomorphism such that a(a) = u(a) for a € A C By and «o(z;) = a; for all j. It is clear that o sends
(ug, tx) € X (By) x A™(By,) to (u,a). As f is natural, we conclude that o sends f(us, tk) = (uk, fras-o, fk m)
to f(u,a). However, a sends f; to (ufy ;)(a1,...,an), which is the same as (uf;)(a1, . . ., a,) because a¥ = 0
for all 4. Thus, we have

f(u,a) = (u, (ufi)(@), ., (ufm)(a))

as claimed. O

Definition 5.11. A formal group over an affine scheme X is a one-dimensional formal scheme G over X
(with projection map 7: G — X say), with a specified Abelian group structure on 7~*{x} for each ring R
and point 2 € X(R). These structures are required to depend naturally on R. More precisely, we require
that addition in G comes from a natural map o: G x x G — G, and that the map ¢: X — G (sending x to
the zero element in 7~!{z}) is also natural.

Example 5.12. Define
Gm(R)={a€R|a=1 (mod Nil(R))}.
One checks that any a € G,,(R) is invertible. Indeed, if (1 — a)* = 0 then a~! = Z] 0(1 —a)’. Tt follows

that G, (R) is a group under multiplication. Moreover, the function z(a) = 1 — a gives an isomorphism
Gm ~ Al which shows that Gm is a formal group over spec(Z).

Example 5.13. We can also define G,(R) = Nil(R), with the usual addition. This is clearly a formal group
over spec(Z).

Example 5.14. If F' is a formal group law over A then we have a formal group G over X = spec(A) defined
by Gp = X x Al If z € X(R) then z gives a map A — R, which we use to regard R as an A-algebra, so
we can define a +p b for a,b € A'(R) = 7~ *{z}. This makes 7~ *{z} into an Abelian group, and thus G
into a formal group, as required. The identity element is just 0. In the case F(z,y) = = + y — zy we have
an isomorphism Gp ~ @m of formal groups, given by a — 1+ a.
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Example 5.15. TheA formal scheme C of Example 5.9 has a natural group structure. More precisely, we
have a map v: C — C' given by
viu,,z) = (u,—2/(1 + u(ar)x + u(az)z), —z/(1 + u(ar)z + u(as)z)).
We will often allow ourselves to abbreviate things like this as
v(z,z) = (—z/(L+ a1z + asz), —z/(1 + a1 + azz)).

The group structure is characterised by the following properties:

(a) The identity element is (0,0) (or in other words, ((u) = (u,0,0)).

(b) The negation map is —(z, z) = v(x, 2).

(¢) If (zo,20) + (x1,21) + (z2,22) = (0,0) then the following determinant vanishes:

Zo 1 Z0
X1 1 zZ1 =0.
X2 1 V)

Informally, this means that the points (zg, 20), (21,21) and (22, 22) are collinear.

Example 5.16. Let E be a 2-periodic complex orientable generalised cohomology theory. Write X =
spec(EY), and let G(R) be the set of ring homomorphisms E°CP*> — R that factor through E°CP* for
some finite k. One can choose an element x such that E°CP> = E°[z] and E°CP* = E°[z]/2**!, and
using this we see that G is a formal group over X.

Definition 5.17. Let G be a formal group over a scheme X, with projection 7: G — X and zero-section
(: X = G. A normalised coordinate on G is a coordinate z such that z(0) = 0.

Proposition 5.18. Let G be a formal group over a scheme X. Then G admits a normalised coordinate x.
Moreover, for any such coordinate, there is a unique formal group law F(z,y) = 3, ; ai;xr'y! € FGL(Ox)
with the following property. For any ring R, any t € X(R), and any u,v € G(R) with w(u) = w(v) = a, we

have
z(u+v) = Z aij(t)z(u) z(v)’.

(We will allow ourselves to write this as x(u + v) = F(x(u),z(v)).)

Proof. First let x¢ be an arbitrary coordinate, and put @ = xo— (xgo o), or less formally © = xg—x0(0). It
is easy to check that z is a normalised coordinate. Consider the function f(u,v) = z(u+v), so f € Ogx G-
We see from Proposition 5.10 that Ogx ¢ = Ox|[z’,2"], where 2'(a,b) = z(a) and z"(a,b) = z(b). It
follows that there is a unique formal power series F' such that z(u + v) = F(x(u),z(v)). As xz(0) = 0, we
find that F(0,z(v)) = x(v). As the group structure of G is commutative and associative, we see that F' is
formally commutative and associative, so it is a formal group law as claimed. O

Definition 5.19. An additive coordinate on G is a coordinate x with the property that z(u+v) = x(u)+x(v)
for all (u,v) € G xx G. Equivalently, if p: G — X is the given projection, then the map u — (p(u),x(u))
must give an isomorphism G — X x G, of formal groups over X.

Proposition 5.20. If Ox is a Q-algebra, then G has an additive coordinate. Moreover, if x and y are two
additive coordinates, then there is an invertible element m € O% such that y = ma.

Proof. Let t be any normalised coordinate, and let F' be the formal group law such that ¢(u + v) =
F(t(u),t(v)). Proposition 3.1 gives us a reversible power series f(t) € Ox[t] such that f(F(s,t)) =
f(s) + f(t). This means that the element z = f(t) is an additive coordinate. Now let y be another
additive coordinate. As z is a coordinate, we must have y = >, m;x® for some sequence of coefficients
m; € Ox. As y is also a coordinate, we see that m; must be invertible. As both x and y are additive, we
must have

Zmi(w(U) +a(v)' = Z mi(2(u+v))" = y(u+v) = y(u) +y(v) = Z mi(z(u)’ + x(v)").

We now expand out the left hand side and note that all the resulting binomial coefficients are invertible in
@ and thus in Ox. We conclude that m; = 0 for ¢ > 1, so y = myx as required. |
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6. THE SYMMETRIC COCYCLE LEMMA
We now start working towards Lazard’s classification of formal group laws.

Definition 6.1. Let L = Opgy, be the Lazard ring, and let a;; € L be the coefficient of 2%y’ in the universal
formal group law over L. Let e: L — Z correspond to the additive formal group law x + y under the
isomorphism Hom(L, Z) = FGL(Z), so that ¢(a;;) = 0 when i + j > 1. Write I = ker(e) < L.

The main work is to determine the structure of the Abelian group I/I%. For this, we need the notion of
a symmetric 2-cocycle.

Definition 6.2. Let A be an Abelian group, and let Az, y] denote the group of formal power series of the
form Zz >0 a;;x'y’ with a;; € A. This is not naturally a ring unless A is a ring, but this will not matter
for our purposes here.

A symmetric 2-cocycle with coeflicients in A is a power series f(z,y) € A[z,y] such that f(z,y) = f(y, z)
and f(z,0) =0 and

f(y,z) —f(x—&-y,z) +f(x,y+z) _f(x’y) =0.

We write Z(A) for the set of such f’s. We also write Z4(A) for the subset consisting of homogeneous
polynomials of degree d, so that Z(A) = [[,-, Za(A). (It is easy to check that Zy(A) = Z1(A) = 0.)

Proposition 6.3. There is a natural isomorphism Z(A) = Hom(I/I%, A), for all Abelian groups A.

Proof. Write R = Z & A, and make this into a ring by defining (n,a).(m,b) = (nm,nb + ma). Then the
projection map 7: R — Z is a ring homomorphism, the kernel is A (which is thus an ideal in R), and
A? = 0. Let Y(A) be the set of formal group laws F over R such that (7F)(z,y) = x + y. This means that
F(z,y) =z +y+ f(x,y) for some f(z,y) € Afx,y]. The conditions F(z,0) = z and F(z,y) = F(y,z) are
equivalent to f(x,0) =0 and f(z,y) = f(y,z). Next, we have

F(F(z,y),z) =z +y+z+ f(z,y) + flz+y+ f(z,9),2).
Because f has coefficients in A and A% = 0, we see that the last term is the same as f(x + ¥, 2). Given this,
the associativity condition F(x, F(y,z)) = F(F(z,y),2) is just f(z,y) + f(x +y,2) = f(y,2) + f(z,y + 2),
which is equivalent to the cocycle condition. Thus, the map F' — f gives a bijection Y (A) = Z(A).

On the other hand, formal group laws F' over R biject with ring maps a: L — R. We clearly have
(nF)(z,y) = x + y if and only if ma(I) = 0, or equivalently a(I) < A. If so, then a(I?) < A% =0, so «
induces a homomorphism /1% — A. One checks easily that this gives a bijection Y (A4) = Hom(I/I?, A), as
required. O

Lemma 6.4. We have (x + y)? = 2P + yP (mod p).

Proof. Suppose that 0 < k < p. Then k! is a product of integers that are strictly less than p, so k! is not
divisible by p. Similarly, (p — k)! is not divisible by p. However, k!(p — k)! (%) = p! is divisible by p, so
the binomial coefficient () must be divisible by p. Thus (z + y)P = 2P + y? + Zi;} (P)akyr=k = 2P 4 yP
(mod p). O

Lemma 6.5. We have (x +y)? = 2% + y¢ (mod p) if and only if d is a power of p.

Proof. If d = p* then we see from Lemma 6.4 and induction on k that (z + 3)? = 2¢ + y? (mod p). If d is
not a power of p then we can write d = p¥e for some k and e, where e > 1 and p does not divide e. We thus
have
(X +Y) =X +eX W+, . +Y 4 X +Y® (mod p).
It follows that
(x+9)" = (@ +y7") # a2 +y* (modp),
as claimed. |

Definition 6.6. Let d be an integer greater than 1. If d is a power of a prime number p, then we define
v(d) = p; otherwise, we define v(d) = 1. We also define
d—1
ba(z,y) = (x+y)* —a? —y? =D () aly?,

=1
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and cq(z,y) = ba(z,y)/v(d). It follows from Lemma 6.5 that cq(x,y) € Z[z,y]. One can check directly that
cq(z,y) is a symmetric cocycle, so ¢qg € Z4(Z). For any A, we define ¢p4: A — Z4(A) by da(a) = acq(z,y).

Exercise 6.7. Show that if ®4(z) is the d’th cyclotomic polynomial (so that 2" —1 = [],,, ®4(z) for all
n > 0) then v(d) = ®4(1). It would be nice to give an alternate approach to the results of this section based
on this fact, but I have not managed to find one.

Proposition 6.8. The map ¢pa: A — Z4(A) is always an isomorphism.
This will be proved at the end of the section.
Lemma 6.9. Ifa =0 (mod p’) (with j > 0) then ar" =pr" (mod p?**) for all k > 0.

Proof. We can reduce by induction to the case k = 1. We have a = b+ p’c for some ¢, so
p—1
b= () pbie +prich,
i=1
All the binomial coefficients are divisible by p (by the proof of Lemma 6.4) and pj > j + 1 so the right hand
side is zero mod p*!, as required. O

Lemma 6.10. If p is prime and k > 0 then
cprii (2,7) = cp(a? ") £0  (mod p).

Proof. We have seen that (z + y)pk =z 4y (mod p), so Lemma 6.9 tells us that (x + y)kar1 = (xpk +
ypk)p (mod p?). The left hand side is a4 y”kJr1 + pepr+1(x,y), and the right hand side is TS
e —i—jr)cp(ycpk,g;pk)7 so we conclude that peyr+i(z,y) = pcp(xpk,ypk) (mod p?), 80 cpr1 (T, y) = cp(xpk7ypk)

(mod p). We have ¢, (X,Y) = > 5_ } k(,p @ 11)6' XFYP=k and the coefficients here are built from numbers strictly

less than p so they are nonzero mod p. It follows that cp(x”k,ypk) # 0 (mod p) as claimed. O
. -1 _

Exercise 6.11. Show that ¢,(z,y) = — > ¢_ (—2)*y?=*/k (mod p).

Corollary 6.12. For each d > 1, the greatest common divisor of the coefficients of cq(x,y) is 1.

Proof. It is equivalent to say that there is no prime p such that ¢4 = 0 (mod p). Suppose that such a prime p
exists. Then clearly by = 0 (mod p), so (z+y)? = 2¢+y¢ (mod p). Thus, Lemma 6.5 tells us that d = p*+1
for some &k > 0, but then Lemma 6.10 tells us that ¢4(x,y) # 0 (mod p), a contradiction. O

Definition 6.13. The corollary implies that we can choose integers \y; for all 0 < ¢ < d such that

d—1
S Aai (4) /vld) =1
=1

for all d > 1. We fix such a system of \’s once and for all. We also define a map 74: Z4(A) — A by

Za .%'Z = Z Z)\diai.
Lemma 6.14. We have maps = 1: A — A for all A and all d > 1. Thus, ¢4 is always a split monomor-
phism.

Proof. This is clear from the definitions and the choice of the \’s. O
Lemma 6.15. Z;(A) is the set of polynomials f(x,y) = Zd 11 a;z'y?=" with a; € A such that a; = aq_; and
(iaj)ai+j = (jvd —1— ])az

whenever i >0 and j >0 and i + j < d. (Here (i,7) = (i + 5)!/ilj!.)

Proof. Just expand everything out. |
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Lemma 6.16. If A is a vector space over Q then the map ¢pa: A — Z4(A) is an isomorphism for all d > 1,
with inverse m4.

Proof. Define 1: Zg(A) — A by ¢(f) = v(d)a1/d (where f(z,y) = >, a;z'y?""). It is easy to check that
Y(cq) = 1, so that Yo = 1. We next claim that 1 is injective. Indeed, suppose that ¥(f) = 0, so that
a; = 0. The case j = 1 in Lemma 6.15 gives a;4+1 = (d — 4)a;/(i + 1), so we see inductively that a; = 0 for
all i so f = 0 as required. We have seen that ¢ = 1 so Y = 1 but ¥ is injective so ¢y = 1. Thus ¢ is
an isomorphism as claimed. We know that m4¢4 = 1, so we must have m4 = ¢ = qb;l. O

Corollary 6.17. If A is a torsion-free Abelian group then the map ¢pa: A — Z4(A) is an isomorphism for
alld > 1.

Proof. Write A’ = Q ® A; because A is torsion-free we have A < A’. It is easy to see that Z4(A4) =
Alz,y] N Z4(A"), and we know that ¢4/ is an isomorphism by the lemma. It thus suffices to check that if
a € A and ¢a/(a) € Alx,y] then a € A. This is clear because a = ma ¢ a/(a) and 74 sends Z4(A) to A by
construction. O

Lemma 6.18. Let A be a vector space over Z/p and suppose that f € Zg(A). Write fo(x,y) for the partial
derivative of f with respect to the second variable and suppose that fao(x,0) = 0. Then f(x,y) = g(aP,y?)
for some g € Zy;,(A), which means that f = 0 if d is not divisible by p.

Proof. We have the cocycle identity

f(yaz) —f(m+y,z)+f(x,y+z) _f(x’y) =0.

If we differentiate with respect to z at z = 0 we obtain f2(y,0) — fo(z 4+ y,0) + fo(z,y) = 0. As fa(x,0) =0,
we conclude that f>(y,0) = fo(z +y,0) = 0 and thus fo(z,y) = 0. If f(z,y) = 32,4 aijz'y’ then
falz,y) = ZHj:djaijxiyj*l so we conclude that a;; = 0 unless p divides j. As a;; = a;; we see that a;; =0
unless p divides both ¢ and j. If p does not divide d, we see that a;; = 0 for all ¢, j and thus that f = 0. If p
does divide d we see that f(z,y) = g(zP, y?) for some homogeneous symmetric polynomial g of degree d/p.
As (z+y)? = 2P + yP (mod p) we see that g(y?, zP) — g(aP 4+ y?, 2P) + g(xP, y? + 2P) — g(zP,y?) = 0, and it
follows that g(Y, Z) —g(X +Y,2) + g(X,Y + Z) —g(X,Y) =0 A[X,Y, Z], s0 g € Z,,(A). O
Lemma 6.19. Let A be a vector space over Z/p. Suppose that p divides d but that d is not a power of p.
Then if f € Z4(A) we have f(x,y) = g(xP,yP) for some g € Zy;,(A).

Proof. Because f is homogeneous of degree d and dA = 0 we have x f1(x,y) + yfo(x,y) = df (x,y) = 0. Write
h(z) = xfa(x,0). As f(x,y) = f(y,x) we also have h(z) = zf1(0,x). If we differentiate the cocycle identity
with respect to z at z = 0 we obtain

fZ(y,O) - fZ(x + yao) + fZ(xvy) =0.

If we exchange x and y and then use the symmetry of f we obtain
f1(0,z) — fo(z +y,0) + fi(z,y) = 0.

We now multiply these two equations by y and x respectively, and add them together using the relation
xf1 +yf2 = 0. This gives h(z +y) = h(z) + h(y). Moreover, it is clear that g is homogeneous of degree d,
say h(z) = az? for some a € A. It follows that (¢)a =0 for 0 < i < d, and d is not a power of p so we must
have a = 0. Thus f2(x,0) = 0, and the conclusion follows from Lemma 6.18. |
Lemma 6.20. Let A be a vector space over Z/p. If d = p* > p and f € Zg(A) then we have f(z,y) =
9(xP, yP) for some g € Zqsp(x,y).

Proof. Write f(z,y) = Zf;ll a;x'y?". If we apply Lemma 6.15 with i = 1 and j = p — 1 we find that

pF-1 a1 = pap = 0. On the other hand, we have

p—1
p—1
(52) =TT
p—1 ) t
t=
d

which is easily seen to be nonzero mod p. It follows that a; = 0, so fa(x,0) = a;2?~! = 0, and the conclusion
again follows from Lemma 6.18. (]
15




Exercise 6.21. Give another proof of Lemma 6.19 along the same lines as that of Lemma 6.20.
Lemma 6.22. The map ¢z/pq: L/p — Z4(Z/p) is an isomorphism for all primes p and all d > 1.

Proof. We have seen that ¢4 is a split monomorphism for all A, so it suffices to show either that ¢z, 4 is
surjective, or that Z;(Z/p) has dimension at most one over Z/p. First suppose that d is not divisible by p.
Then for any f € Z4(Z/p) we have fa(x,0) = a;z?~! for some a; € Z/p and it follows from Lemma 6.18
that the map f + a; gives an injection Zq(Z/p) — Z/p, s0 ¢zp 4 is an isomorphism. Now consider the case
d = p. Again, if a1 = 0 we see that f(z,y) = g(aP,y?) for some g € Z1(Z/p), but Z1(A) = 0 for all A by
easy arguments, so f = 0. It follows as before that ¢/, is an isomorphism.

Now suppose that d > p is divisible by p. We can then write d = p*e for some k > 0 and e > 1 with
either e = p or e # 0 (mod p). By repeatedly applying Lemma 6.19, we find that f(z,y) = g(mpk,ypk) for
some g € Z.(Z/p). It follows that the map g — g(a:pk,ypk) gives a surjection from Z, to Zg, and we know
that Z. ~7Z/p, so Z4 has dimension at most one, so ¢z, 4 is an isomorphism. ]

Lemma 6.23. The map ¢z, Z/p* — Zq(Z/p") is an isomorphism for all k >0 and d > 1.

Proof. We argue by induction, using the previous lemma for the case k = 1. Suppose that f € Z4(Z/p"*1).
By the inductive hypothesis applied to the image of f in Z4(Z/p*), we see that there exists a € Z/p**! such
that f — ¢(a) = 0 (mod p*), say f = é(a) + p*g for some g. The polynomial g is well-defined mod p, and
it is easy to check that it gives an element of Z4(Z/p). Thus, by the case k = 1, we see that g = ¢(b) for
some ¢ € Z/p, and thus f = ¢(a + p*b). This shows that ¢ is surjective, and we have already seen that it is
injective. O

Proof of Proposition 6.8. We know from Corollary 6.17 and Lemma 6.23 that ¢4 is an isomorphism when
A=Zor A=7/p*. Any finitely generated Abelian group can be written as a direct sum of groups of these
types, and it is easy to see that Z3(A® B) = Z4(A) ® Z4(B), so we see that ¢4 is an isomorphism whenever
A is finitely generated. Now let A be a general Abelian group, and suppose that f € Z;(A). Let B be the
subgroup of A generated by the coefficients of f, so that B is finitely generated and f € Z4(B). As ¢p is an
isomorphism, we have some b € B < A such that f = ¢g(b) = ¢a(b). Thus, ¢4 is surjective, and we also
know from Lemma 6.14 that it is injective. O

7. THE STRUCTURE OF THE LAZARD RING

Recall the Lazard ring L = Opgr, constructed in the proof of Proposition 4.16. In this section, we
investigate the structure of L. In principle, this gives a classification of all formal group laws.

Definition 7.1. Fix integers A\y; as in definition 6.13, and write aq = Z?:I AdiGi.d—i € L.

Theorem 7.2. The Lazard ring L is a polynomial algebra over Z on the generators aq for d > 1. In other
words, we have
L= Z[ag, as, a4, - . ]

This will be proved at the end of this section.
It is technically convenient in the proof to regard L as a graded ring, so we pause to explain some basic
ideas about gradings.

Definition 7.3. A grading on a ring R is a sequence of additive subgroups Ry for k € Z such that 1 € Ry
and R;R; C Riy; and R = @, Ri. If a € Ry for some k then we say that a is a homogeneous element of
degree k.

Definition 7.4. Recall that we have an affine scheme G,, defined by G,,(R) = R*. An action of G,, on a
scheme X is a map of schemes a: G,,, x X — X such that a(1,z) = = and a(u, a(v,z)) = a(uv, z) for all
rings R and all z € X(R) and u,v € R*. We will often write u.z rather than a(u, z).

Example 7.5. We have an action of G,,, on RPS; by (u.f)(z) = v~ f(ux). We also have an action of G,
on FGL by (u.F)(x,y) = u= ' F(ur, uy).

Proposition 7.6. An action of G, on an affine scheme X = spec(A) gives a grading of Ox = A.
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Proof. Recall that A = Ox can be seen as the set of natural maps f: X — A'. We let A; be the set of
those maps that satisfy f(u.r) = u”f(x) (for all rings R and all x € X(R) and u € R*). It is clear that A
is an additive subgroup of A, that 1 € Ay and that A;A; < A, ;. Thus, it suffices to check that A = @, Ay.
Suppose that f € A. We then have a map g: G,,, x X — A! given by g(u,z) = f(u.r). This is an element
of the ring
Oa, xx =0qa,, ®@0x =Zu,u™ | ® A= Alu,u™"].

There are thus unique elements f, € A for k € Z such that g = ), u® fy, or in other words f(u.x) =
>k uF fi.(z) for all 2 and u. If f = fi then clearly f € Aj. Conversely, if f € Aj then we can get a
decomposition of the type described by taking fi = f and f; = 0 for all j # k, and by assumption there is
only one such decomposition. Thus, we have f € Ay iff f = fi. Moreover, the associativity of the action
gives

= kvt fule) = f((w) ) = flu(vw)) = Dol fig(a).
k b7

By the same argument that gives the uniqueness of the f;’s, we can conclude that fr = fik, so fr € Ag.
Moreover, we have f(z) = f(l.z) = >, fu(z), so f = >, fi. This shows that A = >°, Ay, and the
uniqueness of the fi’s shows that the sum is direct. Thus, we have a grading on A. O

Example 7.7. Our action of G, on FGL gives a grading of the Lazard ring L. For any formal group
law F' we have F(z,y) = ¢ +y + Zi7j>0 ai;(F)z'yl, so (u.F)(z,y) = x +y + Zi7j>0 u I a (F)a'y?,
so a;j(u.F) = w7 aq;;(F), so a;j € Liyj—1. It follows that a; € Ly_;. Note that L is a quotient of
the polynomial ring generated by the elements a;;. These all have strictly positive degree, and for any
integer d there are only finitely many generators a;; whose degree is less than d. It follows easily that each
homogeneous piece Ly is a finitely generated Abelian group. It is this finiteness property that makes the
grading useful for us.

Lemma 7.8. There are elements by, € Q ® Lg_1 for k > 0 such that by =1 and Q ® L = Q[ba, b3, .. .].

Proof. Let M be the ring Z[b, bs, .. .], so we claim that Q ® L ~ Q ® M. As we saw in Example 4.13, we
can identify RPS; with spec(M). We now want to describe spec(Q ® M). Notice that if every integer n # 0
becomes invertible in R then there is a unique homomorphism Q — R, and in any other case there are no
homomorphisms Q — R. Tt follows that spec(Q ® M)(R) is RPS;(R) if R admits a Q-algebra structure,
and () otherwise. We have a similar description of spec(Q ® L) in terms of spec(L) = FGL, so we conclude
that the map ¢ in Corollary 3.3 induces an isomorphism spec(Q ® M) ~ spec(Q ® L). As maps between
schemes biject with maps between rings in the opposite direction (Corollary 4.12) we conclude that there is
an isomorphism ¢*: Q® L ~ Q ® M. If we let G,,, act on RPS; and FGL as in Example 7.5 then one can
check that ¢(u.f) = u.¢(f) and thus that ¢*(L) < M. One can also see that by, € My_1, so the preimage
of b, in Q ® L lies in Ly_1. This proves the lemma.

We can be a little more explicit if desired: under the various implicit identifications, the element b, € Q® L
is just the coefficient of z* in the logarithm of the universal formal group law F over L. The map ¢*: L — M
is the unique map that sends F to f~!(f(z) + f(y)), where f(z) =z 4+ >, bxa* € M][z]. O

Definition 7.9. Recall that I is the kernel of the map L — Z that sends a;; to 0 when 447 > 1. It is easy
to check that I = @, ., Lx. We also write Q = I/I?, and Qg for the part of @ in degree d, which is just

d—1
Qa="La/ Y LiLa k.

k=1
Lemma 7.10. For each d > 1, the group Qq_1 is freely generated by ag.

Proof. We know from Proposition 6.3 that Z(A) = Hom(Q, A), and one can deduce easily that Z4_1(A4) =
Hom(Qg4-1,A). We also know that the map mg_1: Z4—1(A) — A is an isomorphism. If we identify Z;_1(A)
with Hom(Q4-1, A), then this becomes the map « — «a(ag). As this is an isomorphism, we conclude that
Qg_1 is freely generated by ag. O

Proof of Theorem 7.2. Let L' be the polynomial ring Z[a}, af, . ..], and define a map ¢: L' — L by ¢(a},) =
ag. There is a unique grading on L’ such that aj}, is homogeneous of degree k — 1 for all k, and if we use this
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then ¢(Lj,) < Ly for all k. We now let I’ be the ideal generated by {aj, | k > 1}, so that I' = @, _, L}, and
we put Q' = I'/(I')%. This is the direct sum of its homogeneous pieces Q’;, and it is easy to see that @/ is
isomorphic to Z, freely generated by a;, . It follows easily that the induced map ¢: I'/(I')> — I/I* is an
isomorphism, and thus that I = ¢(I’) + I?. We now claim that ¢: L/, — Lg is surjective for all d. Indeed,
this is clear for d = 0. Suppose that it holds for degrees less than d, where d > 0. If a € L; then a € I so
we have a = ¢(b) + ¢ for some b € I’ and c € I = E?:_ll L;L4—;. By induction we know that ¢: L; — L; is
surjective for 0 < ¢ < d and it follows that c is in the image of ¢, and thus that a is in the image of ¢. This
shows that ¢ is surjective. Next, consider the induced map Q ® L' — Q ® L. It follows from the above that
this is again surjective. On the other hand, we know from Lemma 7.8 that Q ® L ~ Q[bs, b3, ...], with by
homogeneous of degree k — 1. It follows that Q ® L, and Q ® Ly have the same, finite, dimension as vector
spaces over Q. As ¢: Q® L, — Q® Ly is surjective, we conclude easily that it must be an isomorphism. On
the other hand, L/, is a free Abelian group, so the evident map L, - Q ® L/, is injective. If a € L/, satisfies

¢(a) =0 € Lg then the image under the composite L/, - Q ® L/, 2, Q ® Lg is also zero, but this composite
is injective so a = 0. It follows that ¢: L' — L is injective. We have already seen that it is surjective, so it
is an isomorphism as required. (|

8. THE FUNCTIONAL EQUATION LEMMA

The functional equation lemma gives sufficient conditions under which a formal group law defined over a
ring of the form Q ® R is actually defined over R. We shall not formally state the lemma, but we will prove
two results that implicitly use it.

Proposition 8.1. Let p be a prime, and let n > 0 be an integer. Define l(x) = Zkzo xpnk/pk and F(x,y) =
17 (U(x) + U(y)). Then F is a formal group law over Z.

Proof. 1t is clear that F' is a formal group law over Q, so it will be enough to show that it is integral, in
other words that the coefficients lie in Z. This is true mod (x,y)?, because F(z,y) = x +y (mod (x,y)?).
Suppose that F is integral mod (z,y)?; it will be enough to deduce that it is integral mod (x,y)4+. Write
Ry = Z[z,y]/(z,y) and R = Q ® Ry = Q[z,y]/(x,y)*. Write ¢ = p™ and let ¥ be the unique ring
map from R to itself that sends x to ¢ and y to y¢. From now on we work in R. Because F' is integral mod
(x,7)?%, we can write F' = A+ B where A € Ry and B is homogeneous of degree d. Moreover, A actually lies
in the ideal generated by x and ¥y, so AB = B = yB = B2 = 0. We make the following claims:

(a) I(z) +1(y) =1(A+ B) =1(A) + B.
(b) U(z) = = +1(x7)/p.
(c) ¥(U(A)) = U(z) +I(y7).
(d) If u,v € Ry and u — v € pRy then I(u) — (v) € pRy (although usually i(u),(v) € Ro).

(e) ¥(A) — A? € pRy.

() w(U(A))/p — (A7) /p € Ro.
For claim (a), we note that F = A+ B and l(x) + I(y) = I(F) by the definition of F. If we expand out
I(A+ B) ublng the fact that AB = B? = 0, we get [(A) + B as claimed. For claim (b), we recall that I(z) =
D orso /pk; the k = 0 term is just z, and the sum of the remaining terms is [(z?)/p. We next note that
¥(B) = 0 (because B is homogeneous of degree d). Thus, if we apply the homomorphism 1) to equation (a)
we get claim (c). For claim (d), we use Lemma 6.9 to deduce that wr" =™ (mod p™**1Ry) and the result
follows easily. For (e), we observe that ¢ induces an endomorphism v of Ry = Ro/pRo = Fp[z,y]/(z,y)¢ .
We also have an iterated Frobenius endomorphism ¢": Ry — Ry, and these two endomorphisms have the
same effect on the generators x and y, so they must be the same. By applying them to A we see that
P(A) = A? (mod pRy) as claimed. Claim (f) follows immediately from (d) and (e).

We now have

= 1(z) +1(y) - 1(A)

= (z+y—A)+ (U7 +U(y7) - UI(A7))/p
(fv+y A) + (9 (U(A) = I(AT)) /p
O
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Indeed, the four lines above come from claims (a), (b), (c¢) and (f) respectively. This proves that B is integral,
so F is integral mod (z,y)%*!, as required. O

‘We now use similar methods to construct a more complicated formal group law that is p-locally universal,
in a sense that we will not make precise here.

Definition 8.2. Let B be the ring Z[vy,vs,...], and let ¢: B — B be the ring map that sends vy, to v} for
all k. There is a unique way to extend this to an endomorphism of B[z, y] sending x to zP and y to yP; we
again write ¢ for the extended map.

Now consider a sequence I = (i1,...,4,) of strictly positive integers. We write |I| = r and ||I|| =
i1+ ... +1i,. We also write m; =[], , p's and vy = [[_, v;*. We define
l(z) = Zv;x””ln /1.

I

Here the sum runs over all such sequences, including the empty sequence, with ||}]] = || = 0 and vy = 1.
Finally, we write

F(a,y) =17 ((x) +(y) € (Q B)[z,y].
Proposition 8.3. The series F' defined above is a formal group law over B.

Proof. Every nonempty sequence I can be written in the form iJ for some 7 > 0 and some possibly empty
sequence J. One checks that [I| = 1+ |J| and ||I|| = ¢+ ||J| and vy = vw?l = v (vy). It follows easily

that . _
W) =2+ vi(@'l)")/p.
i>0
The rest of the proof is much the same as that of Proposition 8.1, except that we use the above equation in
place of the equation I(z) = = + I(z?)/p. O

9. THE FROBENIUS MAP

In the next section, we will study formal group laws over Fj-algebras, or equivalently rings R in which
p = 0. As preparation for this, we need some generalities about schemes of the form spec(R) for such rings
R. These are of course just the schemes over spec(Fp).

Definition 9.1. If R is an [F-algebra, then we have a ring map ¢ = ¢r: a — a® from R to itself, called the
algebraic Frobenius map. It is clear that if f: R — R’ is a map of rings, then f(a?) = f(a)?, so for = dor f,
so the following diagram commutes:

R&R

I

R/ ? R/
R/

This means that ¢ is a natural transformation from the identity functor to itself.

Definition 9.2. Let X be a functor with a map X — spec(F,), which just means that X(R) =0 if p # 0
in R. We then define a map Fx: X — X by (Fx)r = X(¢r): X(R) — X(R). We call this the geometric
Frobenius map. If f: X — Y is a map of functors over spec(F,), we check easily (using the naturality of fr
with respect to maps of R) that the following diagram commutes:

x> x

)

Y —Y.
Fy

Proposition 9.3. Let X be a functor over spec(F)).
(1) If x € X(R) and f € Ox then f(Fx(x)) = f(x)P.
(2) If X = spec(A), then Fx = spec(da).
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Proof. The first claim follows by regarding f as a map X — A! and using the naturality of F. For the second
claim, let u: A — R be a point of X(R). Then Fx(u) = X(¢r)(u) = ¢r ou and spec(¢da)(u) = uo ¢y, but
these are the same because ¢ is natural. O

Definition 9.4. Let f: X’ — X be a map of affine schemes over spec(F,), and let ¥ be a formal scheme
over X. Let ¢: Y — X be the given projection map. We define a functor Y’ = f*Y from rings to sets by
Y'(R) = {(a’,b) € X'(R) xY(R) | f(a') = q(b)}. If {y1,...,yn} is a system of formal coordinates on Y and
yi(a’,b) = y;(b) then one can easily check that {yi,...,y,} is a system of formal coordinates on Y’ so Y is
a formal scheme over X'.

Remark 9.5. Let G be a formal group over an affine scheme X over spec(F,), and let f: X’ — X be a map
of affine schemes. We can then make G’ = f*G into a formal group over X’ by defining o((a’, bo), (¢’,b1)) =
(a’,o(bo,b1)) and ¢(a’) = (a’,((f(a’))). Here we have used the fact that if (a’, ) and (a’, b1) lie in G'(R) then
q(bo) = f(a’') = q(b1), so o(bo,b1) is defined. In a different notation, we could just write (a’,bo) + (a’,b1) =
(a’,bg + b1) and ¢(d’) = (d/,0).

Remark 9.6. Now suppose that X = spec(A) and X’ = spec(A’), so that f: X’ — X comes from a map
u: A — A’. Suppose also that G = G for some formal group law F over A. We then have a formal group
law uF over A’, and one can then identify G’ with G, F.

Definition 9.7. Let X be an affine scheme over spec(F,), and Y a formal scheme over X, with projection
map ¢: Y — X. We then have a map Fx: X — X and thus a formal scheme F5%Y over X. We define the
relative Frobenius map Fy,x: Y — F%Y by Fy,x(b) = (¢(b),Fy(b)). (This lies in %Y (R) because of the
naturality equation qo Fy = Fx ogq). If y1,...,y, are coordinates on Y, and y;,...,y,, are coordinates on
F%Y as in Definition 9.4, then we see that y;(Fy,x(a)) = yi(a)P.

Lemma 9.8. If G is a formal group over X then the relative Frobenius map Fg/x: G — FxG is a homo-
morphism.

Proof. Consider the addition map o: G Xxx G — G, which is a map of schemes over X. As the relative
Frobenius map is natural, we have Fg, xyoo = 0oF ¢y , ¢/ x , and one sees from the definitions that Fgy q/x =
Fo/x xx Fg/x. Thus, we have Fg/x(a +b) = Fg/x(a) + Fg/x (b) whenever a 4 b is defined (ie, whenever
a and b lie over the same point of X'). Thus, Fg,x is a homomorphism. (]

‘We next introduce a formal version of differential forms.

Definition 9.9. Let X be an arbitrary affine scheme, and let Y be a formal scheme of dimension n over X.
Then Y xx Y is a formal scheme of dimension 2n over X. As usual, we let Oy« v denote the ring of maps
Y xx Y — Al and we let J denote the ideal of functions g € Oy« .y such that g(a,a) = 0 for all points a
of Y. We define Qy,/x = J/J2.

Remark 9.10. The analogy to think of is as follows. Let ¢: ¥ — X be a smooth map of smooth manifolds.
Suppose this has the property that for each point x € X, the preimage Y, = ¢~ '{x} is a submanifold of Y,
diffeomorphic to R™. For any point y € Y, let V;, be the cotangent space of the manifold Y,,) at y. These
vector spaces form a vector bundle of dimension n over Y, and we can define Qy,x to be the space of global
sections of this bundle. The proof of the next proposition will give some justification of why this is analogous
to our definition for formal schemes.

Proposition 9.11. Qy,x is a free module of rank n over Oy .

Proof. First, suppose that g € J and that h € Oy. We then have two functions kq(a,b) = h(a)g(a,b) and
k1(a,b) = h(b)g(a,b), giving two different elements of .J. However, the map (a,b) — h(a) — h(b) lies in J, so
ko — k1 € J2, so ko and k; have the same image in J/J? = Q%,/X. We can thus make Qy,x into a module
over Oy by defining hg = ko = k;. We can also define a function d: Oy — Qy,x by d(h)(a,b) = h(a) —h(b).
We then have
A1) (a,5) = h(a) d(E) e, b) + (b) d(R)(a,D),

so d(hk) = hd(k) + kd(h).

Now choose coordinates x1,...,z, on Y. Then each xz; isamap Y — Al A, and thus can be thought of
as an element of Oy. We claim that the elements d(z1), ..., d(z,) form a basis for Qy/x over Oy. To see this,
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define z,2/: Y xx Y — Al by 2/(a,b) = z;(a) and z/(a,b) = z;(b). We then have Oy vy = Ox[z}, /],
and this is the same as Ox [z}, y;], where y; = 2} — /. The diagonal inclusion Y — Y x x Y gives rise to a
map Oy vy — Oy, which sends z} and 2/ to x; and thus y; to 0. The ideal .J is by definition the kernel
of this map, which is easily seen to be generated by the elements y;. It follows that J? is generated by the
elements y;y;, and thus that J/J 2 is a free module over Oy generated by the elements y;. However, the

image of y; in Qy,x = J/J? is just d(z;), by examining the definitions. a

Remark 9.12. Let s: Y — Z be a map of formal schemes over X. We then have an induced map
Ozxxz — Oyxyy, sending g to go (s xx s). This in turn induces a map s*: Qz,x — Qy/x. One checks
that this satisfies s*d(g) = d(g o s) for g € Oz, and s*(ga) = (g o 5) s¥*() for a € Q) x.

Remark 9.13. Now suppose we choose coordinates 41,...,y, on Y and z1,...,2, on Z. There are
then power series g1,...,gm over Ox such that z;(s(a)) = ¢i(y1(a),...,yn(a)), and we have s*d(z;) =
Zj 09:/9y; d(y;). Thus, the map s*: Qz,x — Qy/x gives a coordinate-free encoding of the partial deriva-
tives of the series g;.

Proposition 9.14. Let s: Y — Z be a map of formal schemes over an affine scheme X, with projection
maps q: Y — X and r: Z — X. Suppose that the induced map s*: Qz/x — Qy/x is zero.

(a) If X is a scheme over spec(Q), then there is a unique map s': X — Z such that ros’" =1 and
s=5"0q (so s is constant along the fibres of Y ).

(b) If X is a scheme over spec(F,) for some prime p then there is a unique map s': F5xY — Z of
schemes over X such that s = s’ o Fy,x

Proof. Choose coordinates, as in Remark 9.13. As s* = 0 we have dg;/0y; = 0 for all ¢ and j. For the rest of
the argument, we assume that Y and Z have dimension one; the general case is essentially the same, but with
more elaborate notation. We thus have a single series g(y) over Ox with ¢'(y) = 0. If g(y) = 3,50 cxy” then
we have Y, o kcpy® ™! = 0 and thus ke, = 0 for all k > 0. If X lies over spec(Q) then Ox is a Q-algebra
so ¢, = 0 for all k. The analysis of proposition 5.10 shows that ¢q is nilpotent, or in other words that it is a
map X — Al. We know that z is a coordinate on Z so there is a unique map s’: X — Z over X such that
z(s'(a)) = co(a). We then have z(s'(¢(b))) = co(g(b)) but by the definition of g this is the same as z(s(b)) so
s'(q(b)) = s(b) as required.

Now suppose instead that X lies over spec(FF,). As ke = 0 for all k, we see that ¢ = 0 unless p divides k,
so g(y) = h(yP) for some series h, which gives a map X x Al = X x A! as in Proposition 5.10. We identify
the second copy of X x Al with Z using the coordinate z, and the first one with F;}Y" using the coordinate
y" as in Definition 9.4. This gives a map s': FxY — Z such that z(s'(b)) = h(y'(b)). We also know that
Y (Fy x(a)) = y(a)?, so z(s'(Fy/x(a))) = h(y(a)?’) = g(y(a)) = z(s(a)). This shows that s = s o Fy,x as
claimed. ]

Definition 9.15. Let G be a formal group over an affine scheme X. Let I be the ideal in Og of functions
g: X — A such that g o ¢ = 0 (or more informally, g(0) = 0).
Define wg = wgyx = I1/1?, and let dy(g) denote the image of g in wg,x. We also define

Prim(Qq/x) = {a € Qq/x | 0"a = ma+mia € Qax ca/x }-
Here 7, m1: G Xxx G — G are the two projections.

We now give a formal version of the fact that left-invariant differential forms on a Lie group biject with
elements of the cotangent space at the identity element.

Proposition 9.16. wq/x is a free module on one generator over Ox . Moreover, there are natural isomor-
phisms wg/x ~ Prim(Qq,x) and Qg x = Og ®oy wa)x -

Proof. Let x be a normalised coordinate on G. We see from Proposition 5.10 that Og = Ox[z], and it is
casy to check that I = () so I? = (2?) so wgx is freely generated over Ox by do(x).

Now let K be the ideal in Ogx ¢ of functions k such that k£(0,0) = 0. In terms of the usual description
Ocxxa = Ox[a’,2"], this is just the ideal generated by 2’ and z”. Given g € I, we define §(g)(u,v) =
g(u+v) — g(u) — g(v). We claim that §(g) € K2. Indeed, we clearly have 6(g)(0,v) = 0, so §(g) is divisible
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by a’. We also have §(g)(u,0) = 0, so §(g) is divisible by x”. Tt follows easily that §(g) is divisible by a’z"”
and thus that it lies in K2 as claimed.

Next, let J be as in Definition 9.9. For any function g € I we define A(g) € J by A(g)(u,v) = g(u—wv). As
g(0) = 0 we see that A\(g) € J, so A induces a map wg,/x — Qg/x. We claim that A(g) € Prim(Q¢,x). To
make this more explicit, let L be the ideal of functions I on G x x G xx G X x G such that (s, s,u,u) = 0.
The claim is that o*\(g) — 75 A(g) — 7iA(g) = 0 in L/L?, or equivalently that the function

ki (st u,0) = Ag)(s +u, b +v) = Ag)(s,t) — AMg)(u, v)

lies in L2. To see this, note that k = d(g) o 0, where 0(s,t,u,v) = (s —t,u —v). It is clear that §*K C L
and thus that 0* K2 C L?, and we have seen that §(g) € K2 so k € L? as claimed. Thus, we have a map
A wg/x — Prim(Qg/X).

Next, given a function h(u,v) in J, we have a function u(h)(u) = h(u,0) in I. Tt is clear that p induces
a map Qg/x — wg/x with o X = 1. Now suppose that h gives an element of Prim(Q¢,x) and that
u(h) € I%. Define k(s,t,u,v) = h(s + u,t +v) — h(s,t) — h(u,v). The primitivity of h means that k € L?.
Define ¢: G xx G = G xx G xx G xx G by ¢(s,t) = (t,t,s —t,0). One checks that ¢*L C J and that

h(s,t) = k(t,t,s —t,0) + h(t,t) + h(s — t,0).

Noting that h(t,t) = 0, we see that h = ¢*k + ¥*u(h), where 1 (u,v) = u —v. As u(h) € I? and k € L? we
conclude that h € J2. This means that y is injective on Prim(Q¢q,/x). As pA = 1, we conclude that A and p
are isomorphisms.

Finally, we need to show that the map f ® a — fA(«) gives an isomorphism Og ®o, wa/x — Qg x-
As Qg x is freely generated over Og by d(x), we must have A(do(z)) = u(x)d(z) for some power series u.
As wg)x is freely generated over Ox by do(z), it will suffice to check that u is invertible, or equivalently
that «(0) is a unit in Ox. To see this, observe that u(fd(g)) = f(0)do(g), so that do(z) = pA(do(x)) =
w(u(z)d(z)) = u(0)do(x), so u(0) = 1. O

Proposition 9.17. Let G and H be formal groups over an affine scheme X, and let s: G — H be a
homomorphism. Suppose that the induced map s*: wy — wqg is zero.

(a) If X is a scheme over spec(Q), then s = 0.
(b) If X is a scheme over spec(F,) for some prime p then there is a unique homomorphism s': F5xG — H
of formal groups over X such that s = s’ o F/x.

Proof. It follows from the definitions that our identification of wq,x with Prim(Q2¢,x) is natural for homo-
morphisms. Thus, if o € Prim(Qp,x) then s*a = 0. We also know that Qp/x = Oy ®oy wh/x, so any
element of Qp7/x can be written as fo with f € Oy. Thus s*(fa) = (fos).s*a = 0. Thus, Proposition 9.14
applies to s. If X lies over spec(Q) then we conclude that s is constant on each fibre. As it is a homomor-
phism, it must be the zero map. Suppose instead that X lies over spec(IF,). In that case we know that there
is a unique map s': G’ = F5G — H such that s = s’ o F,x, and we need only check that this is a homo-
morphism. In other words, we need to check that the map t'(u,v) = §'(u+v) —s'(u) — §'(v) (from G’ xx G’
to H) is zero. Because s and Fg/x are homomorphisms, we see that t' o Faxya/x =0:Gxx G — H.
Applying the uniqueness clause in Proposition 9.14 to the map 0: G x x G — H, we conclude that ¢ = 0 as
required. ([l

Corollary 9.18. Let G and H be formal groups over an affine scheme X, which lies over spec(F,). Let
s: G — H be a homomorphism. Then either s = 0 or there is an integer n > 0 and a homomorphism
st (F%)*G — H such that s = s oFg x and (s")* is monzero on wy/x .

Before proving this, we reformulate it.

Corollary 9.19. Let s: G — H be as above, and let x and y be normalised coordinates on G and H
respectively. Let f be the unique series f(t) € Ox|[t] such that y(s(a)) = f(z(a)) for all points a of G. Then
either f = 0, or there is an integer n and a power series g such that f(t) = g(t*") and ¢'(0) # 0 (So we
cannot have f(t) =tP +tP*1 for example).

Proof of Corollary 9.18. Suppose that there is a largest integer n (possibly 0) such that s can be factored in
the form s = s o x- Write G' = (F'%)*G, so that s": G' — H. If (s')* = 0 on wg,x then the proposition
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gives a factorisation s’ = s” o Fg//x and thus s = s” o IF?;/F;( contradicting maximality. Thus (s")* # 0 as

claimed. On the other hand, suppose that there is no largest n. Let f(t) be as in Corollary 9.19. Then
f(0) =0 and f is a function of t?" for arbitrarily large n. It follows that f = 0, as required. |

Corollary 9.20. Let G and H be formal groups over an affine scheme X, and let s: G — H be a ho-
momorphism. Suppose that the induced map s*: wyg — wqg is zero, and that Ox is torsion-free. Then
s=0.

Proof. After introducing a coordinate, the claim is that a certain power series f(z) € Ox[x] is zero. As
Ox is torsion-free, the map Ox — Q ® Ox is injective, so it will suffice to check that f(x) becomes zero in
(Q ® Ox)[z]. This is clear from Proposition 9.17(a). O

Definition 9.21. Let G and H be formal groups over an affine scheme X, which lies over spec(F,). Let
s: G — H be a homomorphism. If s = 0, we say that s has infinite height. Otherwise, the height of s is
defined to be the integer n occurring in Corollary 9.18. The height of the group G is defined to be the height
of the endomorphism pg: G — G (which is just p times the identity map).

Definition 9.22. Let R be an F,-algebra, and F' a formal group law over R. The height of F' is the height
of the formal group G over spec(R). Equivalently, if [p]r(2) = 0 then F has infinite height. Otherwise,
there is a unique integer n > 0 such that [p]p(x) = g(zP") for some series g with ¢’(0) # 0, and then the
height of F' is n.

Lemma 9.23. Let G be a formal group over X. For m € Z we let mg: G — G be the map a — ma. Then
we have mga = ma for all o € Prim(Qg,/x).

Proof. We leave it to the reader to reduce to the case m > 1. Let 6: G — G'¢ be the diagonal map, let

om: G'% — G be the addition map, and let 7y, ..., 7, G — G be the projection maps. By the definition
of Prim(Q¢/, x ) we have o5 = mfa+mja. It follows inductively that of,a = )" | mra. We have 04,0 = mg
and m,0 = 1 so m&a = §*cf,a = >/ a = ma, as claimed. O

Corollary 9.24. If G is a formal group over a scheme X over spec(F,), then pi, =p =0 on wg, so G has
height at least one.

Example 9.25. (1) Take G = Gy x spec(FF,), which is a formal group over spec(F,). With the usual
coordinate we have F(z,y) = x + y so [p](z) = pz = 0, so G has infinite height.

(2) Take G = G % spec(IF,). We then have pg(u) = u? = Fg(u), so pg = Fg, so clearly G has height
one.

(3) Take F(x,y) = (z+y)/(1+xy), considered as an FGL over F,,. If p = 2 then this has infinite height,
otherwise it has height one. This follows from the isomorphisms given in Example 2.14.

(4) Let C be an elliptic curve over a scheme X over spec(F,), and let C be its formal completion. Then
it turns out that C has height one or two. In the case where Ox is a field, the curve is said to be
supersingular if C has height two, and ordinary if C has height one.

(5) Let F be the formal group law over Z with logarithm ), ., 2" /P, as considered in Proposition 8.1.
We shall show in a minute that the reduction of this formal group law mod p has height n.

(6) Let f(z) be a monic polynomial over Z such that f(x) = pz (mod z?) and f(z) = z?" (mod p), for
some n > 0. We will see later that there is a unique FGL over the ring Z, of p-adic integers such
that f(F(x,y)) = F(f(x), f(y)), and that for this FGL we have [p]r(z) = f(z). If we write F for
the resulting FGL over Z,/pZ, = Z/pZ = F, then we see that [p]z(z) = 7", so that F has height
n.

Proposition 9.26. Let F be the formal group law over Z such that logp(x) = Y, xpnk/pk (as considered
in Proposition 8.1), and let F' be the resulting formal group law over F,,. Then [plz(z) = zP" | so that F has
height n.

Proof. Write ¢ = p™. We observe from the definition that plogp(x) = px + logg(2?), and by applying expp
we find that [p](z) = expp(pz) +F 9. Write

f(@) = logp(pr)/p = 3 p" T a?™
k>0
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One checks that f(z) € Z[z] and f(z) = z (mod z?) so f is reversible in Z[z]. The reverse is easily seen to
be the series g(z) = expp(px)/p, so we conclude that this series is integral, and thus that expp(pz) € pZ[z].
We can thus reduce the equation [p](x) = expp(pzr) +r 27 mod p to obtain [p|z(x) = 29, as claimed. O

10. FORMAL GROUPS OF HEIGHT AT LEAST n

Definition 10.1. Fix a prime p. For any formal group law F and k > 0, we let ux(F) be the coefficient of
z% in [p]p(z), so ux € Opgr, = L and u; = p. If we define (w.F)(z,y) = w1 F(wx,wy) then [p, r(z) =
wplp(wx), so up(w.F) = w1 uy,(F), so ug is a homogeneous element of degree k — 1 with respect to

the grading introduced in Examples 7.5 and 7.7. We also write vy = u,» (so that vy = p and vy has degree
k
pr—1).

Definition 10.2. Now fix an integer n > 0, and let FGL,, ,,(R) be the set of formal group laws of height at
least n over R. Write I,, for the ideal in L generated by the elements uy for which & is not divisible by p™.
It is clear that a formal group law F has height at least n if and only if ui(F) = 0 for all such k, and thus
that FGL, ,, = spec(L/1L,).

Lemma 10.3. The ideal I,, is generated by {vo,...,vn_1}.
Proof. Let F be a FGL of height m > 0. Then [p|r(z) = g(zP") for some series g with ¢'(0) # 0,

say ¢'(0) = a. This means that [p]r(z) = az?” (mod zP"*1), so vo(F) = ... = v,_1(F) = 0 and
vm(F) = a # 0. Tt follows easily that F' has height at least n if and only if vo(F) = ... = v,_1(F) = 0,
which means that FGL, ,, = spec(L/(vg | K < n)) and thus that I, = (vx | kK < n). O

Proposition 10.4. We have
L/p=TFplv; |i> 0] @Fpar | k is not a power of p,

and thus
Orcr,, = L/I, =Fplvs | i > n] @ Fplax | k is not a power of p].

The proof will be given after two lemmas.

Lemma 10.5. Let A be an Abelian group, and f(x,y) = Y4~ aqca(z,y) a symmetric cocycle over A. Make
R =7Z® A into a ring as in the proof of Proposition 6.3, and let F(z,y) =z +y + f(x,y) be the resulting
FGL over R. Then for m > 0 we have

[l (@) = ma + 3" (m? —m)/v(d) aga’,
d>1

and the numbers (m? —m)/v(d) are integers.

Proof. Using the fact that m? = m (mod p) for all primes p, we see that (m? —m)/v(d) is an integer.

Suppose that A is torsion-free. In this case it is clearly sufficient to work in A’ = Q®A. Write a), = aq/v(d)
and g(z) = >, alx? so that f(z,y) = g(z+y) — g(z) — g(y). As g has coefficients in A’ and z+py =z +y
(mod A) and A% = 0, this is the same as g(x +r y) — g(z) — g(y). After feeding this into the definition
F(z,y) =x+y+ f(x,y) we find that z+rpy—g(z+ry) = 2 —g(x) +y—9g(y), so the series h(z) = x —g(x) is
a homomorphism from F' to the additive FGL. This implies that h([m]r(x)) = mh(zx). Using A% = 0 again
we see that g([m]r(x)) = g(mz) so

mli(2) = mh(a) + g(ma) = ma + g(ma) — mo(x) = ma + 3" (m" —m)/v(d) ag’,
d>1
as claimed.
Now let A be an arbitrary Abelian group. Write A" = @ ;. Z, and let a}; be the evident basis vector
in A’, and define f' = 3", alcq € Z(A’). Let m: A” — A be the map that sends a); to ag. The previous
paragraph gives the conclusion for f’, and by applying m we can deduce the conclusion for f. O

Lemma 10.6. When k > 0 we have vy = —a,. (mod I? + (p)), where I = @, .o Ly < L as usual.
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Proof. We reuse the ideas in the proof of Proposition 6.3. It will be enough to show that if F' is an
FGL of the type considered there, over a ring R = F, ® A in which pA = 0, then vy (F) = —ayx (F). If
F(z,y) = 2 +y + > 4o aqca(z,y) then ay(F) is just aye. On the other hand, Lemma 10.5 tells us that
[plr(x) = px+ > 400 (p* — p)/v(d) agz. It is clear that (p? — p)/v(d) =0 (mod p) unless d is a power of p,
in which case (p? — p)/v(d) = p*~' —1 = —1 (mod p). Thus [p]r(z) = =3 o, a/kapk and vg(F) = —ayx,
as required. O

Proof of Proposition 10.4. Define

L' =F,v; | i > 0] ®@Fplay, | k is not a power of p|.
We can make this into a graded ring with v/ in degree p* — 1 and aj, in dimension k — 1. We can define
a map ¢: L' — L/p of graded rings by ¢(v]) = v; and ¢(a},) = ar. Let I’ be the ideal in L’ generated
by the elements v} and a}, and let I be the image of I in L/p. It is easy to see from Lemma 10.6 that ¢
induces an isomorphism I'/(I')? =~ T/T". Tt follows as in the proof of Theorem 7.2 that ¢ is surjective. On
the other hand, L and L’ are polynomial rings with generators in the same degrees, so we see that L} and

Ly, are vector spaces over ), with the same finite dimension, and ¢: Ly — Lj, is surjective so it must be an
isomorphism. O

Corollary 10.7. For each n > 1, there is a formal group law over Fy, of height n.

Proof. Using the proposition, we can define a map «,: L/p — F,, sending v,, to 1 and all other generators
to 0. If F,, is the FGL that corresponds to «, under the bijection FGL(F,) = Hom(L,F,), then it is clear
that F;, has height n. O

11. FORMAL GROUPS IN POSITIVE CHARACTERISTIC

Let X = spec(R) be an affine scheme over spec(FF,,). In this section, we attempt to classify formal groups
over X up to isomorphism. We will succeed completely in the case where R is an algebraically closed field.

It is convenient to reformulate the problem slightly. We can let RPS(R) act on FGL(R) by F7(x,y) =
fYF(f(x), f(v)) (so that f is an isomorphism F/ — F).

Exercise 11.1. The set of isomorphism classes of formal groups over spec(R) bijects naturally with FGL(R)/ RPS(R).
We first observe that the answer does not have as simple a form as one might hope for.
Proposition 11.2. The functor T(R) = FGL(R)/RPS(R) is not a scheme.

Proof. Corollary 10.7 tells us that T'(F,) is infinite. As L is a polynomial ring, it is easy to see that the map
FGL(Z) — FGL(F,) is surjective, and thus the map T'(Z) — T'(F,) is surjective, so T'(Z) is infinite. On the
other hand, it follows from Proposition 3.1 that T'(Q) has only one element. Thus, the map T(Z) — T'(Q)
cannot be injective. However, if X is a scheme then it is clear that the map X (Z) — X(Q) is injective,
because the map Z — Q is. O

Despite this, we can obtain some interesting results. We now start working towards this.

Definition 11.3. If f,g € R[z,y, 2] we write f = g+ O(k) if f = g (mod (x,y, 2)*), and similarly for other
sets of variables. A formal group law F' is additive to order k if we have F(z,y) =z +y+ O(k+ 1).

Lemma 11.4. Let F and F’ be two FGL’s over a ring R, and suppose that F(x,y) = F'(x,y) + O(k) for
some k > 0. Then there is a unique element u € R such that

F'(z,y) = F(x,y) + uck(z,y) + O(k + 1).

Proof. Clearly there is a unique homogeneous polynomial f(x,y) of degree k such that F'(z,y) = F(z,y) +
f(z,y) + O(k + 1), and by Proposition 6.8 it suffices to check that f € Zy(R). As F(x,y) = F(y,z) we have
f(x,y) = f(y,r). To check the cocycle condition, it suffices to work modulo (z,y, 2z)**!. To this accuracy,
we have zf(z,y) = yf(z,y) = 0 and thus F'(z,y) =x +ry +r f(z,y). It follows that

F/(l‘vF/(sz)) = F/(x7y+F z+F f(y,z)) =T+FY+Fr2z+F f(yaz) +F f(ac,F'(y,z)).
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On the other hand, because F'(y,z) = y + z (mod yz) and f is homogeneous of degree k we see that
f(z, F'(y,2)) = f(z,y + 2) to our accuracy. It follows that

Fla, F'(y,2)) —r 2 —py—rz=[fy,2) +r fl@,y+2) = [(y,2) + fx,y + 2).

As F' is commutative and associative, the right hand side is invariant when we exchange x and z. We thus
have

As f is symmetric, this gives the cocycle condition. |

Corollary 11.5. If F € FGL(R) is additive to order k — 1 then there is a unique element u € R such that
F(z,y) =2 +y+uck(z,y) + O(k +1). -

Lemma 11.6. If F(z,y) =z +y + ack(z,y) + O(k + 1) and m € Z then n = (m* —m)/v(k) is an integer
and [m]p(z) = mx + naz® + O(k + 1).

Proof. This is essentially the same as Lemma 10.5. ]

Corollary 11.7. Let F' be a formal group law over an Fy-algebra R. If F' is additive to order p” — 1 and
r < height(F') then F is additive to degree p".

Proof. We know from Corollary 11.5 that there is some element v € R such that F(x,y) = z+y—+ucy (z,y)+
O(p" + 1). Lemma 11.6 tells us that [p]r(z) = —ua? + O(p” + 1). On the other hand, if F' has height n
then [p](z) = 04 O(p™). If n > r we conclude that u = 0, so that F' is additive to order p”. O

Lemma 11.8. If f(z) = z+az" then F¥(z,y) = F(x,y) —aby(z,y) + O(k+1), where by (z,y) = (z+1y)* —
2% — gk = v(k)ex(x,y).

Proof. Exercise. O

Lemma 11.9. Suppose that F(z,y) = x + y + acg(z,y) + O(k + 1) and f(x) = vz for some unit v € R*.
Then Ff(z,y) =z +y+ av*tep(z,y) + O(k +1).

Proof. Exercise. U

Lemma 11.10. Suppose that F(z,y) = x +y + cpn(x,y) + O(p™" + 1), and k > n and f(z) =z +p vzP" "
Then

Ff(l‘,y) = F(JE,y) + (Upn - ’U)Cp’“ ($,y) + O(pk + 1)

Proof. Let F be a formal group law over an [Fp-algebra R. We work everywhere modulo (ac,y)pk‘H. Note
that to this accuracy, if w € (z,y) and z € (z, y)pk then wz = 0 so w +p z = w + z; we shall repeatedly use
this without explicit mention. We put ¢ = ¢« (z,y) € (=, y)pk. The right hand side of the displayed equation
can be rewritten as x +p y +p vP" ¢ —p ve. We thus need to check that

f@) +r fy) = f@+ry+r " c—pve),

or equivalently

k—n

ctpytrva? " dpoy " =atpytp o c—puetpu(etpy)?
Here we have used the fact that k > n, so applying the p*~"’th power map kills the terms involving c¢. We
now cancel the terms = +p y and use the approximation F'(X,Y) = X +Y +¢p»(X,Y) mod (X, Y)P"+1 and
the fact that ¢ = ¢pn (2, y)”k_n (Lemma 6.10). We find that we need to check that

k—n k—n n n k—n k—n
v +oy? P e=0P c—puvct+po(E?  +yP +o).

Finally, we observe that the formal sums can be rewritten as ordinary sums, and this makes the claim
clear. 0

Theorem 11.11. Let F be a formal group law over an Fy-algebra R. If F' has finite height n, then F is
isomorphic to a formal group law F' that is additive to order p™ — 1. If F has infinite height then F 1is
isomorphic to the additive formal group law Fy(x,y) = x +y.
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Proof. We start with the finite height case. We will recursively define formal group laws Fj for 2 < k < p™
such that F} is additive to order kK — 1. We start with F, = F', which clearly has the required form. Given
Fy., we know from Corollary 11.5 that Fi(x,y) = 2+ vy +uck(z,y) + O(k+1) for some u € R. If k is a power
of p and k < p™ then Corollary 11.7 tells us that w = 0. In that case, we put Fy11 = Fy and fip(z) =z. If k
is not a power of p then v(k) is a unit in F,. We define fi(z) = z +uz®/v(k) and Fy1q = F,{’C Lemma 11.8
tells us that Fj; is additive to order k. At the end of this process we have a formal group law F’ = Fj,n of
the required form, and isomorphisms fy: Fx11 — Fx so F' ~ Fy = F.

In the case where F' has infinite height, we can define F} and fi for all k, by the same procedure as that
given above. We then define gx(x) = fo(fs(... fx(x))), so that gp: Fxy1 — Fo = F, so that F9% = Fjq.
We have fi(x) =z + O(k) for all k, so g = gi—1 + O(k), so there is a unique series g(x) € R[x] such that
g(x) = gr—1(x)+O(k) for all k. We thus have F'9 = F}, = x+y+O(k) for all k, so F9(z,y) = x4y = Fy(x,y).
Thus g gives an isomorphism F, ~ F', as claimed. |

Theorem 11.12. Let K be an algebraically closed field of characteristic p > 0. Then any two formal group
laws over K are isomorphic if and only if they have the same height.

Proof. Let F and F’ be two formal group laws over K. If they both have infinite height then they are both
isomorphic to the additive FGL and thus to each other (by Theorem 11.11). We may thus assume that they
have the same finite height n. Using Theorem 11.11 again, we may replace F' and F’ by isomorphic formal
group laws that are additive to order p™ — 1. We thus have F(z,y) = x + y + ucyn (z,y) + O(p™ + 1) for some
u € K. Tt follows that [p]p(z) = —ux?” + O(p" + 1) and we know that F' has height n so u # 0. As K is
algebraically closed, we can choose v € K such that v?" ~'u = 1. Using Lemma 11.9, we can replace F by an
isomorphic formal group law for which u = 1, or in other words F(z,y) = x+y+cyn (z,y) mod (z,y)?" 1. We
may also replace F’ by an isomorphic formal group law of the same type. We now define recursively a sequence
of formal group laws Fy, (for k > p™) and isomorphisms fi: Fyy1 — Fj such that Fi(x,y) = F'(x,y) + O(k).
We start with Fjn 1 = F. Suppose we have defined Fj,. We know from Lemma 11.4 that there is a unique
element v € R such that F'(z,y) = F(z,y) + uck(z,y) + O(k + 1). If k is not a power of p then v(k) is
a unit in F, so we can define fx(r) = x + uz®/v(k) and Fyyq = Fg’“. It then follows from Lemma 11.8
that Fyyi(z,y) = F'(z,y) + O(k + 1) as required. On the other hand, suppose that k¥ = p” for some
r > n. As K is algebraically closed, there is an element v € K such that v?" — v = u. We can thus define
fr(@) =2 +p, veP" " and Fjyy = Fl*. Tt follows from Lemma 11.10 that Fyy1(z,y) = F'(z,y) + O(k + 1).

Now define gpn(z) = z and gr41(x) = gr(fr+1(x)) for all £ > p™. It is easy to see that the series gy (z)
converges to a unique limit g(z), in the sense that for any N we have g(z) = gx(x) + O(N) for k > 0.
Moreover, we find that F9 = F’, so g is the required isomorphism from F’ to F. a

12. FORMAL GROUP LAWS OF INFINITE HEIGHT

Let FGL,, oo (R) be the set of formal group laws of infinite height over R. This is an affine scheme over
spec(FF,), and we see from Proposition 10.4 that the corresponding ring of functions is

L/Ioo=L/(vx | k> 0)=Fpla | k is not a power of p].

This is a reasonably satisfactory picture, except that the generators ay are not very explicit or easy to work
with. In this section we give a different description of the scheme FGL,, o, due to Steve Mitchell.

Definition 12.1. Write C' = RPS; x spec(F,), which is a group scheme under composition over spec(F,).
Let A be the subgroup scheme consisting of formal power series f(x) such that f(z) = x (mod 22) and
flz+vy) = f(z) + f(y). Using Lemma 6.5, we see that this is just the group of series of the form f(x) =
T+ iso arz?" . We write A(R)\ C(R) for the set of right cosets of A(R) in C(R).

Let Y C C be the scheme of series of the form Y, _, bxz" such that b,. = 0 for all k > 0. Given a series
f € C we define ¢(f)(x,y) = f~1(f(x) + f(y)). This is a formal group law, and f gives an isomorphism
from ¢(f) to the formal group law F,(z,y) = x + y, so ¢(f) has infinite height.

Theorem 12.2. The map (f,g) — f o g gives an isomorphism A x Y — C. The inclusion Y — C and
the map ¢: C — FGL, o induce isomorphisms Y (R) — A(R) \ C(R) — FGL, «o(R). Thus, the functor
A\ C: R~ A(R)\ C(R) is a scheme, and we have isomorphisms Y — A\ C — FGL,, .
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Proof. We may assume that R is an F,-algebra (otherwise the theorem merely claims a bijection between
empty sets). We know from Theorem 11.11 that if F € FGL, oo(R) then there exists an isomorphism
f: F = F,. If f/(0) =« € R* then we can compose with the automorphism z/u of F, and thus assume
that f'(0) = 1, so that f € C(R). By assumption we have f(F(z,y)) = f(z) + f(y), so F' = ¢(f). This
shows that ¢: C(R) — FGL, o (R) is surjective. It is easy to see that if g € A(R) then ¢(g o f) = ¢(f), so
we get an induced map A(R) \ C(R) = FGL, o (R), which is again surjective. If ¢(f) = ¢(g) = F' then f
and g give maps F — F, so h(z) = g(f~!(z)) defines a map F, — F,, in other words an element of A(R).
As g = ho f we see that f and g give the same element of A(R) \ C(R), so our map ¢: A\ C — FGL,, o, is
an isomorphism.

We now define a map 7: C' — A by 7(3,.obxz®) = >, bpkacpk. Note that 7(g)(z) = « if and only if
geY. If f(x) =3, aja?’ € A(R) and g(z) = 3, bka® € C(R) then we have f(g(z)) = Dok ajszxkpj
S0

i it
T(fog) =) atha?" = for(g).
,J

Now define o(h) = 7(h)~! o h, so that h = 7(h) o o(h). By applying the above with f = 7(h)~! and g = h,
we see that 7(o(h))(z) = 7(h)~*(7(h)(x)) = z, so o(h) € Y. We thus have a map (7,0): C — A x Y, which
is easily seen to be inverse to the map (f,g) — fog. |

Remark 12.3. In topology, the group scheme A is naturally identified with spec(Py), where P, is the
polynomial part of the dual Steenrod algebra. If X is a space then the Steenrod algebra acts on H*(X;F,).
If X is a finite CW complex and H*(X;F,) is concentrated in even degrees then this gives rise to an action
of the group scheme A on the scheme Xy = spec(H*(X;F,)). In the case p = 2, a similar construction
gives an action of A on spec(H.(MO;F53)), where MO is the spectrum representing unoriented bordism.
This scheme can be identified with our scheme C, in a manner compatible with the action of A. Our A-
equivariant isomorphism C' ~ A x Y implies that the Adams spectral sequence for m,(MO) collapses and
thus that spec(m.(MO)) =Y = FGLg «. This tells us the structure of the ring 7, (MO). On the other hand,
a theorem of René Thom tells us that 7, (MO) is the ring of cobordism classes of compact closed manifolds.
(Two manifolds M and N are said to be cobordant if M IT N is the boundary of some manifold W; addition
is defined by disjoint union and multiplication by Cartesian product; this gives an algebra over Fy because
O(M x I) = M II M.) Thus, the procedure outlined above contributes to a rather striking theorem in
topology. If MU is the complex bordism spectrum then spec(m,(MU)) = FGL and spec(H.(MU;F,)) =C
and if R denotes the image of the Hurewicz map 7, (MU) — H,(MU;F,) then spec(R) = FGL, .

13. THE p-ADIC INTEGERS

In this section we define and study the ring Z, of p-adic integers, and various extensions of Z,. These
rings will be useful for several different reasons. In Section 14 we will develop the method of Lubin and
Tate for studying formal group laws over Z,. This will in turn give formal group laws over Z,/pZ, = F,. In

Section 16 we will study the endomophism rings of certain formal groups, and we will find that they contain
Z

D+

Definition 13.1. Let py: Z/p* — Z/p*~! be the evident projection map. Let 7, be the set of sequences
a € [lrso 7Z/p* such that py(ay) = ax_; for all k > 1. This is a ring under the obvious pointwise operations.

Definition 13.2. Let a be an integer. If a = 0 then we define v,(a) = oo, otherwise there is a largest
number k > 0 such that p* divides a and we define v,(a) = k. Similarly, if a € Z, we let v,(a) be the largest
k such that ay = 0 € Z/p*, or v,(a) = oo if @ = 0. These definitions are clearly compatible if we think of Z
as a subring of Z,. We also define |a|, = p~"»(%), and d,(a,b) = |a — b|,. One can check that this gives a
metric on Z, and thus on Z C Z,.

Theorem 13.3. The topology on Z, induced by our metric d(a,b) = |a — b|, is the same as its topology as
a subspace of the product of the discrete spaces Z./p*. It is a compact Hausdorff space, and can be identified
with the completion of Z with respect to d. Every element a € Zy, has a unique expression as a convergent
infinite sum a =, < bpp® with b, € {0,1,...,p—1}.
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Proof. Let a be an element of Z,, and suppose that € > 0, so p~* < € for some k. As Z/p" is discrete, the set
{ay} is open in Z/p* so U = {b € Z,, | by, = ay} is open in the product topology. If b € U then one sees from
the definition of Z, that b; = a; for j < kso vp(b—a) > k so |[b—a|, < €. Thus, U is contained in the ball of
radius € round a, and it follows that every open set in the metric topology is open in the product topology.
On the other hand, the basic neighbourhoods of A in the product topology are of the form V' = Z, N[], Vi,
where ap € Vi, C Z/p* and V}, = Z/p* for all but finitely many k. If V}, = Z/p* for all k > m then one checks
easily that the ball of radius p~™ round a is contained in V. It follows easily that the metric topology is the
same as the product topology.

Now let (a1, as,...) be a Cauchy sequence in Z,. Then for any k there exists m such that |a; —a;|, < p~
for 4,5 > m. This means that a;; = am,; for all i > m. If we define by = a,, ; then one can check that
b € Z, and the sequence converges to b. Thus, Z, is complete under the metric. It is clear that any point
a € Z, has distance at most p~* from some integer b € {0,...,p* — 1}. It follows both that Z, is totally
bounded, and that Z is dense in Z,. Any complete, totally bounded metric space is compact Hausdorff,
and is the completion of any dense subspace. This shows that Z, is a compact Hausdorff space, and is the
completion of Z.

Now let a be an element of Z,. One can easily prove by induction that there is a unique sequence of
elements by € {0,...,p— 1} for k > 0 such that a; = Zj<k bjp? € Z/p*, and it follows that a = Zj bip’ €
L. |

k

Corollary 13.4. For any k > 0 we have Z,/p*Z, = Z/p".

Proof. Define p: Z, — Z/p* by p(a) = ax. The restriction of p to Z C Z, is clearly surjective, so p is
surjective. If we write a = >_, b;p’ as in the theorem then p(a) = Zf;é bjp?. If p(a) = 0 it is easy to see
that bp = ... = by_1 = 0. As Z, is complete, the series ijk bjpk_j converges to an element ¢ € Z, and
a=phce kap. Thus, p induces the claimed isomorphism. O

Proposition 13.5. An element a € Z,, is invertible if and only if a # 0 (mod p).

Proof. The corollary above shows that p is not invertible, so if a = 0 (mod p) then a is not invertible. Next,
suppose that @ = 1 (mod p), say a = 1 — pb for some b € Z,. The series >, -, p"b" then converges to an
inverse for a. Finally, suppose merely that a # 0 (mod p), so a has nontrivial image in Z,/pZ, = Z/p. As
Z/p is a field, there is an integer b such that ab = 1 (mod p), so ab is a unit in Z,, so a must also be a
unit. ]

Corollary 13.6. Every nonzero element of Z, is a unit multiple of p* for some k > 0; so Z,, is a principal
ideal domain, with pZ, as the only mazimal ideal. O

Definition 13.7. Let A be an abelian group. We say that A is a p-torsion group if for each a € A there
exists k£ > 0 with pka =0.

Note that k is allowed to vary with a, so € j Z/p’ counts as a p-torsion group, for example.
Proposition 13.8. Let A be a p-torsion group. Then A has a natural structure as a module over Z,.

Proof. Let n be an element of Z,, corresponding to a sequence of elements n; € Z/p’. We use the same
notation n; for the unique representative lying in {0,1,...,p" — 1}. Given a € A we choose k with p*a = 0,
and then define na = nia. It is clear that this does not depend on the choice of k. Given a,b € A we can
choose k large enough that p¥a = p*b = 0 and then n(a + b) = ny(a + b) = nra + nkb = na + nb. All the
other module axioms can be checked by similar arguments. O

Proposition 13.9. Let F' be a formal group law over a ring k, and fix i,j > 0. Then for sufficiently large
m be have

[p"]F(@) =0 (mod p',).
Proof. We can replace k by k/p' and so assume that p’ = 0 in k. This means that [p’]p(z) € k[z].2%. In
general, if f(z) € k[z].2" and g(z) € k[z].2* then f(g(z)) € k[z].2"*. Tt follows that [p""]p(z) is divisible
by #2", and so is divisible by z7 for large n. |
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Proposition 13.10. Let G be a formal group over a scheme S = spec(k), and suppose that p* = 0 in k.
Recall that G gives a functor G' from k-algebras to abelian groups, as in Section 5. Then G'(R) is always a
p-torsion group, and thus a Zy-module.

Proof. Choose a coordinate on GG. This allows us to identify G(R) with Nil(R), with the group structure
given by a formal group law I’ over k. The claim now follows easily from Proposition 13.9. g

Definition 13.11. Let F be a formal group law over a ring k in which p = 0. Fix n € Z,,. Proposition 13.10
tells us that multiplication by n gives a well-defined endomorphism of the groups (Nil(R), F'), and Propo-
sition 5.10 tells us that this corresponds to a formal power series over k. We write [n]g(z) for this power
series.

Similarly, if F' is a formal group law over Z, then the previous paragraph gives compatible power series
[n]r(z) € [(Z/p")]x for all i, and these fit together to give [n]r(z) € Z,[x].

Remark 13.12. More concretely, we can calculate [n]r(x) modulo (p%,27) as follows: we find m such that
[p™r(x) € (p',27), then we find ng € N such that n = ng (mod p™), then we define [ng]r(x) to be the
formal sum of ng copies of z in the usual way, and we find that [n]g () is the same as [ng](z) modulo (p*, z7).

Remark 13.13. Using the correspondence between power series and natural transformations, it is easy to
check that

(a) [n]r(x) is as in Definition 1.1 whenever n € Z C Z,,.
(b) [n]rp(F(z,y)) = F([n]r(z), [n]r(y)), so [n]F is an endomorphism of F.
(¢) [nm]p(z) = [nlp(lm]r(x)) and [0 +m]p(z) = F(ln]r (), [m]r(2)).

We next want to understand various finite extensions of Z,.

Definition 13.14. We say that a ring R is reduced if the only nilpotent element is zero. We let JV be the
category of finite, reduced Fj-algebras. We also let W be the category of Z,-algebras R such that

(a) R is finitely generated and free as a Z,-module;
(b) R/pR is reduced.

Theorem 13.15. The functor R+ R/pR gives an equivalence W — W.

__The proof will be given after a number of preliminary results. First, however, we explain the structure of

W:

Proposition 13.16. Let R be a finite F,-algebra, and let ¢: R — R be the Frobenius map, defined by
¢(a) = aP. Then the following are equivalent:

(a) R is reduced
(b) R is a finite product of fields
(¢) o™ =1 for some m > 0.

Proof. First suppose that R is reduced. If R = Ry X Ry with Ry, R; # 0 then we can argue by induction on
|R| that R is a product of fields. So suppose that R cannot be split in this way, or in other words that the
only idempotent elements of R are 0 and 1. Let a be an arbitrary element of R. As R is finite, the powers
of a cannot all be distinct, so we can choose 4, j with j > 0 and a* = a'*7, so a’(1 — a’) = 0. From this it
follows that a’(1 — a®) = 0 and then that a’/(1 — a¥) = 0 so the element a* is idempotent. If a” = 0 then
(as R is reduced) we have a = 0. If a® = 1 then a is invertible. It follows that R is a field. This shows
that (a) implies (b).

If R is a field of dimension m over F,, it is standard that ¢ =1 on R. If ¢™ =1 on R; for i = 0,1,
then we find that ¢"°™ =1 on Ry x R;. From this it follows easily that (b) implies (c).

Finally, suppose that ¢"™ = 1 in R, so ¢™" =1 for all n. If a € R is nilpotent then ¢™"(a) = 0 for n
sufficiently large, so a = 0. This shows that (c) implies (a). O

Corollary 13.17. If we put U, = Zp[ﬂ/(tpm —t) then U, /p is reduced, and is a finite product of fields.

Proof. The map ¢": U,,/p — Up/p is a ring homomorphism that acts as the identity on the generator u,
so it acts as the identity on the whole ring. |
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Definition 13.18. For R € W we define ¢: R — R by ¢g(a) = a? (so ¢ preserves multiplication but not
addition). We put
T(R) ={a € R| ¢5'(a) = a for some m > 0}.

Proposition 13.19. We have 0,1 € T(R), and T(R) is closed under multiplication, and T(Rg X Ry) =
T(Ro) X T(Rl)

Proof. It is clear that 0,1 € T(R). If ¢f*(a) = a and ¢ (b) = b then ¢ (ab) = ab, so T(R) is closed
under multiplication. If a; € R; with ¢3' (a;) = a; then ¢3°"*(ag,a1) = (ag,a1), so T(Ry X R1) =
T(Ro) x T(Ry). O

Proposition 13.20. Let R be a ring in W. Then
(a) The reduction map 7: R — R/pR gives a bijection T(R) — R/pR.
(We will write T for the inverse map R/p — T(R).)
(b) Every element a € R can be expressed uniquely as >~ 7(a;)p' with a; € R/p.
(c) If BC R/p is a basis for R/p over F,, then 7(B) is a basis for R over Z,.

Proof. (a) By Proposition 13.16, there exists m such that ¢™ = 1 on R/pR. Thus, for a € R we have
¢ (a) = a (mod p). Define a; = ¢§**(a). Using Lemma 6.9 we can show by induction that a;1; = a;
(mod p'™™%). Also, as R is a finitely generated free module over Z,, we see that R is the inverse limit
of the quotients R/p'R. Tt follows that there is a unique element a,, € R with as = a; (mod pl+tm?)
for all i. By uniqueness, we see that ¢ (doo) = @oo, SO o € T(R). By construction we have a, = a
(mod p), and it follows from this that the map 7: T(R) — R/p is surjective.

Now suppose we have a,b € T(R) with w(a) = 7(b). We can choose n > 0 such that ¢f(a) = a and
¢n(b) = b. As w(a) = m(b) we see that a = b (mod p). It follows by Lemma 6.9 that ¢7 (a) = ¢ (b)
(mod p'*t™9) so a = b (mod p**™). As j was arbitrary, this gives a = b. Thus, we see that 7 is also
injective.
(b) Given a € R we put by = a and ag = 7(bg) € R/p. Then 7(by — 7(ap)) = 0, so by — 7(ag) = pby for
some by. Similarly, we put a; = 7(b;) and b;1 = (b; — 7(a;))/p for all 4, so a = p'b; + di<i 7(a;)p’.
In the limit we get a = >_,<, 7(a;)p".
(c) First, we have assumed that R is a free module over Z, of finite rank, so we can choose a basis
Uy, - ..,Uy,. For any other list of elements vy,...,v,, we can write v; = Ej m;ju; for some matrix
m € M, (Zyp), and v is a basis iff det(m) € Z,'. However, an element of Z,, is invertible iff its image
in F, is invertible, so we see that v is a basis for R over Z, iff 7(v) is a basis for R/p over F,. The
claim is clear from this.
(]

Corollary 13.21. If we put
E(R) = {e € R|e® = e} = { idempotents in R}
then m gives a bijection E(R) — E(R/p).

Proof. Tt is clear that 7(E(R)) C E(R/p). It is also clear that E(R) C T(R) and w: T'(R) — R/p is injective
som: E(R) — E(R/p) is injective. Finally, if € € E(R/p), then there is a unique e € T(R) with w(e) =&. We
then have e? € T(R) with 7(e?) =% =€, so €2 = ¢, so e € E(R). This proves that we have a bijection. [

Corollary 13.22. Suppose that R € W. Then the following are equivalent:
(a) E(R)={0,1} (with0#1)
(b) E(R/p) ={0,1} (with 0 # 1)
(¢) R/p is a field.
)

(d) R is an integral domain.

Proof. Tt is clear from Corollary 13.21 that (a) and (b) are equivalent. We know that S/p is a finite product
of fields, so (b) and (c) are equivalent. As every idempotent e € E(R) satisfies e(1 — e) = 0, we see that (d)
implies (a).
We next show that that (c) implies (d). Suppose that R/p is a field, and consider nonzero elements
a,b € R. We then have a = p‘ag and b = p’by for some 7,57 > 0 and ag, by € R with 7(ag), 7(by) # 0 in R/p.
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As R/p is a field it follows that mw(agbo) # 0 and so agby # 0. As R is a free module over Z, it follows that
the element ab = p%agbg is also nonzero, as required. O

Proposition 13.23. If F is any field of order p?, then there is an idempotent e € E(Uq) such that the ring
R=Uy/e €W has R/p ~ F. Moreover, if S is any other ring in W with S/p ~ F, then S ~ R.

Proof. It is well known that F'* is cyclic of order p® — 1; let u be a generator, and let a: Uy — F be
the map that sends ¢t to u. Let ¢(¢) be the minimal polynomial of u, so 't = d(t)(t) for some ¥(t).
By differentiating this relation, we get ¢'(t)y(t) + ¢(t)1)'(t) = —1. From this it follows that the element
€= —¢(t)Y(t) gives an idempotent in the ring Uy/p =T, [t]/(tpd —t). By Corollary 13.21, there is a unique
idempotent lifting e € E(Uy). If we put R = Uy/e, we find that R € W and that « induces an isomorphism
R/p— F.

Now suppose we have another ring S € W, and an isomorphism §: S/p — F. Let v € T(S) be the element
with 7(v) = 87 1(u). Then A= T(S) with W(vpd) = 7(v), so vP" = v, so there is a unique homomorphism
~v: Uy — S with 4(t) = v. The diagram

Uj—~g
F%S/p

commutes when evaluated on ¢t € Uy, but t is a generator, so it commutes on all elements. It follows that
my(e) =0, but 7: E(S) — E(S/p) is bijective, so y(e) = 0, so we have an induced map 7: R = Ug/e — S.
Using the above diagram we see that the induced map R/p — S/p is an isomorphism, and both R and S
are finitely generated free modules over Z,, so it follows that v is an isomorphism. O

Proof of Theorem 13.15. First, Proposition 13.23 shows that the essential image of p contains all fields in
W. 1t is also clear that the essential image is closed under products, so p is essentially surjective.

Next, suppose we have two morphisms f,g € W(R,S) with p(f) = p(g9): R/pR — S/pS. We have a
natural bijection T'(R) — R/p, so we see that f = g on T'(R). However, T(R) generates R as a Z,-module,
so f = g. This proves that p is faithful.

We now want to prove that p is full, or in other words that the map

prs: W(R,S) — W(R/p,S/p)

is surjective. If we know that this holds for Sy and S7, then it also holds for Sy x S7. We can thus reduce
to the case where S does not split as a nontrivial product, or equivalently E(S) = {0,1}. Corollary 13.21
then tells us that S/p must be a field, and S is an integral domain. Now fix S with this property, and let
V be the class of rings R € W such that prg is a bijection. As S is an integral domain, it is not hard to
identify W(Ry x Ry, S) with W(Ro, S) I W(Ry, S), and W(R/p, S/p) with W(Ry/p, S/p) I W(Ry/p, S/p).
It follows that Ry x Ry € V iff Ry and R; both lie in V. Using this in one direction, we reduce to the case
where R/p is also a field. Using the opposite direction in combination with Proposition 13.23, we reduce
to the case where R = Uy for some d. In this case we can identify W(R,S) with {b € S | b*" = b}, and it
follows from Proposition 13.20 that pgrg is a bijection, as required. (]

Corollary 13.24. For R € W, there is a ring homomorphism ¢: R — R given by
oY raip’) =) r(a)p'.
(We call this the lifted Frobenius map.)

Proof. We temporarily write ¢, for the Frobenius map a — a? on R/p. By the proposition, there is a unique
ring homomorphism ¢: R — R with p(¢) = ¢1. As 7 gives a natural bijection R/p — T(R), we see that
d(1(a)) = 7(é1(a)) = 7(aP). As ¢ is a ring homomorphism it must also satisfy ¢(p) = p, and so must be
continuous with respect to the p-adic topology. It therefore preserves the relevant infinite sums, and we find

that ‘ ‘
o> rlap’) = 3 r(ad)p

% %
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Remark 13.25. In Section 22 we will develop the theory of Witt vectors, which is useful for a number of
reasons. One application is that it gives a more explicit functor W — W that is inverse to p. However, this
turns out to be less useful than one might imagine. Instead, we can proceed as follows. Given a finite field
F, we can choose a generator u € F, and let f(t) € Fp[t] be the minimal polynomial, so F ~ F,[u]/f(u).
We can then choose a monic polynomial f(t) € Zy[t] lifting f(t), and put R = Zy[u]/ f(u); then R € W with
p(R)~ F.

14. LUBIN-TATE THEORY

Fix a prime p and an integer n > 0. Let R be a Zy-algebra such that
(a) R is finitely generated and free as a Z,-module;
(b) R/p is a field of order p™ for some m dividing n, so that a?” = a for all a € R/p.
(This means that R lies in the category W from Definition 13.14.)

Our results will already be interesting for R = Z,,, and the reader may wish to focus on that case. However,
the more general case is important in number theory (specifically, the local class field theory of finite field
extensions with abelian Galois group).

Let F be the set of formal power series f(z) € R[x] such that

(a) f(z)=pz (mod z?)

(b) f(z) =2 (mod p).
For each such f, we will define a formal group law Fy over R. It will turn out that given another series
g € F, there is a canonical isomorphism uy ,: Fy — F,, and we can use these to define a formal group that
is independent of any choices.

All our arguments will rest on the following lemma:

Lemma 14.1. Suppose that f,g € F and that \1 is a linear form in k variables over R, say

Az, .. x8) = Zaiaﬁi
i

with a; € R for all i. Then there is a unique power series A € R[x1,...,xx] such that
A = )\ mod (xl,...,xk)z
and
A(f(@r)s - faw) = g(M (@1, - - p)).-
Proof. Write I = (x1,...,2%) < R[x1,..., 2], and write Ao f¥ for the series A(f(x1),..., f(xx)) and so on.
We will construct recursively polynomials \,, of degree at most m such that
Amo f¥=goln+0(m+1).
We are given \q, which has the required property because f(x) = px = g(x) + O(2). Suppose we have
constructed \,,,—1. We next claim that
Am_10 fF=goAm_1 (mod p).

To see this, we work mod p until further notice. We thus have g(x) = 2" and thus g(z + y) = g(z) + g(y)
and g(xy) = g(x)g(y) and g(a) = a for all a € R/p. Because of this, applying g to the power series
Am—1(x1,...,x) is just the same as raising the variables x; to the p™’th power, or equivalently applying
f to them. This gives the congruence as claimed. Working integrally again and discarding terms of total
degree greater than m, we see that there is a unique homogeneous polynomial v, of degree m such that

Am—1 Ofk =goAn-1+p¥m +O(m+ 1)
Define ¢!, = 1,,/(1 — p™~!) (noting that 1 — p™~1 is a unit in Z,) and A\, = A1 + ¢),. Because
g(x) = px + O(2) we have

GO Am =goAm_1+pY, +O0(m+1).
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On the other hand, we have f(z) = pz + O(2) and v, is homogeneous of degree m so
Wy o £ = (per, . pay) = P, + O(m + 1).
Thus, working modulo 1™, we have
A o f* = A1 o f5 +p™y,
= g0 Am—1+ (p = p")r, + ™Y,
=90 Am

as required. Tt follows that there is a unique power series A such that A = A\, + O(m + 1) for all m. This
series satisfies Ao f¥ = go A4 O(m) for all m, so Ao f*¥ = go X. One can check by induction that X is unique
modulo I for all m, and thus is unique. O

Proposition 14.2. If f € F then there is a unique formal group law Fy(x,y) over R such that f o Fy =
Fy o f2, and moreover we have [p]r, (z) = f(x).

Proof. We start by applying Lemma 14.1 with ¢ = f and A(z,y) = x + y. This gives a unique series
Fy =\ with Fyo f2 = foFy and Fy(z,y) = x + y mod (x,y)%. We claim that this is a formal group law.
Indeed, the series F'f(y,x) has the defining property of F¢(z,y) so F¢(x,y) = F¢(y,x). Similarly, the series
F¢(F¢(z,y), 2) and Fg(x, Ff(y,z)) are both equal to x +y + 2z mod (z,y,2)? and they both commute with
f so the uniqueness clause in Lemma 14.1 implies that Fy is associative. Thus F} is an FGL, so we can
define [p]r, (x). Both this and f(x) are power series in one variable that commute with f and agree with px
modulo z2. By the same kind of uniqueness argument, we have [p] = f ([l

Proposition 14.3. Given two series f,g € F there is a unique strict isomorphism uy q: Fy — Fy. Given a
third such series h € F, we have uysp = ugp o uf g, and ug ¢(x) = x.

Proof. We start by applying Lemma 14.1 with £ = 1 and A (z) = x. This gives a unique power series
u=1usy withuo f =gowuand u(z) =z (mod z?). We claim that this is a homomorphism of formal group
laws, or in other words that wo Fy = F, 0 u?. Indeed, Lemma 14.1 implies that there is a unique series
G(z,y) such that G(z,y) = z + y mod (z,y)? and G o f? = go G, so it suffices to check that u o Fy and
F, o u? both have these properties. As u(z) =z (mod z?) and Fy(z,y) = Fy(z,y) = z + y mod (z,y)?, we
see that u(Fy(z,y)) = Fy(u(z),u(y)) = z +ymod (x,y)*>. As Fro f> = fo Fy and F,o0g¢*> = go F, and
uwo f = gou, we see that
qufof2 =uofoFr=gouolkFy
and
Fyou’of* = Fyoq?ou? = go Fyou?,

as required. Thus, u is a homomorphism of FGL’s. As u(x) =  (mod 2?), it is even a strict isomorphism.
If v is any other strict isomorphism Fy — Fjy then we must have v o [p]p, = [p]F, © v, or in other words
vo f=gowv. We must also have v(r) = z (mod z?), so v = u.

Now suppose we have a third series h € F. It is clear that ug , o uys 4 is a strict isomorphism Fy — Fj, so
by uniqueness we must have ug 5 o uyg = usp. A similar argument shows that uy f(z) = . |

An important feature of the formal group laws F} is that they allow us to define series [r]s(x) € R[] for
r € R, extending the definition for r € Z,, that was given in Definition 13.11.

Definition 14.4. For r € R we define [r]¢(z) € R[z] to be the unique series such that [r];(z) = rz (mod z?)
and f([r]¢(z)) = [r]#(f(x)). (This is obtained by applying Lemma 14.1 to Ai(z) = rz with f =g.)

Proposition 14.5. The series [r]s(x) have the following properties.
(3) [0]() = 0 and [1](2) = z. | |
(b) [rlg(Fy(z,y)) = Fy([r]g(2), [r]f(y)), so [r]y is an endomorphism of Fy.
(c) [rslg(z) = [r]p([s]f(2)) and [r+ s]f(x) = Fy([r]f(z), [s]f (). o
(d) For anyi,j > 0 there exists m > 0 such that [r]f(x) = [s]f(z) (mod p*,z7) whenever r = s mod p™.
(In other words, the construction r — [r]y(x) is continuous with respect to the p-adic topology on R
and the (p, z)-adic topology on R[x].)
(It follows from (a) and (c) that [r]s(x) is as in Definition 1.1 when r € Z.)
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Proof. Claims (a) to (c) involve various equations. In each case, both sides have the same linear term and
commute with f in an appropriate sense, so they are the same by the uniqueness clause in Lemma 14.1.

If we fix i and j, we know from Proposition 13.9 that [p™]¢(x) = 0 (mod p’,z7) for large m. Using (c)
it follows that [r];(z) = 0 (mod p’,z?) whenever r € p™R, and thus that [r];(z) = [s]f(z) (mod p’,z7)
whenever r = s (mod p™R). O

Definition 14.6. Given any R-algebra A, we define
G(A) = (F x Nil(A))/ ~,
where (f,a) ~ (g,b) if and only if uy 4(a) = b. We define a binary operation on G(A) by
[f;al + 19, 6] = [g, Fy(us,g(a), b)),

so in particular we have
[f;al +[f, 6] = [f, Fy(a,b)].
For r € R and [f,a] € G(A) we also define r.[f, a] = [f, [r]f(a)].

Proposition 14.7. G is a formal group over spec(R), and the endomorphism ring of G is R.

Proof. Fix h € F and define z: G — Al by z[f,a] = us p(a). It is easy to check that this is well-defined and
is an isomorphism. This proves that G is a formal group.

Now let E be the endomorphism ring of G. For any m € E, we have an induced map m*: wg — wg of
R-modules, and wg is free of rank one over R, so this is multiplication by an element 6(m) € R. This defines
a homomorphism §: £ — R, which is injective by Corollary 9.20. On the other hand, it is easy to see that
our definition r.[f,a] = [f, [r]f(a)] gives a map u: R — E, with d o u = 1. As J is injective, it follows that ¢
and g are mutually inverse isomorphisms. O

15. MODULI SCHEMES OF MORPHISMS

Suppose we have two formal groups, say Gy and 1, over the same scheme S. As discussed previously,
a homomorphism from Gy to G; means a map f: G — H of formal schemes that is compatible with the
projections to S and with the group structures. Thus, for any ring R we have a set S(R), and bundles G(R)
and H(R) of groups over S(R), and a natural map fr: G(R) — H(R) of bundles of groups. We will write
hom(Gy, G1) for the set of homomorphisms in this sense. This is easily seen to be an abelian group under
pointwise addition. Also, if we have a third formal group G2 over S then the composition map

hOHl(Gl, Gg) X hOHl(GQ, Gl) — hOIl’l(Go7 Gg)

is additive in both variables.

Now suppose we have coordinates g and x; on Gg and G, giving rise to formal group laws Fy and Fy
over Og, so x;(a +b) = F;(xi(a),z;(b)) . There is then a unique power series mys(t) = >, a;t" € Oglt]
such that z1(f(a)) = my(zo(a)), and this is a homomorphism of formal group laws from Fy to Fj.

Rather than just considering the set hom(Gp, G1), it is often natural to consider an analogous scheme.
Specifically, suppose we have a ring R and a point a € S(R). This gives formal groups G;, = spec(R) xs G;
over spec(R) for i = 0,1. We put

Hom(Go, G1)(R) = {(a, f) | a € S(R), f € hom(Goa, G1a)}-
This defines a functor from rings to sets.

Proposition 15.1. The functor Hom(Gy, G1) is a scheme, as is the subscheme Iso(Go, G1) of isomorphisms.
Proof. For ¢ = 0,1 we choose a coordinate x; on G;, and let F; denote the associated formal group law. Put
Ao = Oglay, aq,...],
and define m(t) = Y, a;t* € Ap[t]. Let J be the ideal in Ay generated by the coefficients of the series

m(Fo(s,t)) — Fi(m(s), m(t)) € Ao[s, t].

Put A = Ag/J. Then it is not hard to identify Hom(Gp, G1) with spec(A), so it is a scheme as claimed.
Similarly, we have Iso(Go, G1) = spec(Afa;']). O
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Example 15.2. Put

G = spec(F),) x Go = spf (F,,[x]),
and consider this as a formal group over F,,. Then Hom(G, G) is the scheme A from Definition 12.1. Explicitly,
for any [F,-algebra R, the set A(R) is the set of power series f(t) € R[t] of the form f(t) =>",<, agt?”.

Definition 15.3. In the above context, we note that wg, and wg, are both free modules of rank one over
Og, as is Hom(wg, ,wa, ), so we have a scheme A(Hom(wg,,wa,)) over S as in Example 5.2. Given a point
(a, f) € Hom(Go, G1)(R) we have a map

[frwe, = wa,,
and thus a point (a, f*) € A(Hom(wg,,wa,))(R). This construction gives a map
d: Hom(Gy, G1) = A(Hom(wg, ,wa,))-
Proposition 15.4. If Og is a Q-algebra, then the above map d is an isomorphism.

Proof. This is essentially a reformulation of Proposition 9.17(a), but we will give an independent argument.

Using Proposition 5.20 we can choose additive coordinates xy and x; on Gy and G;. We note that dz; is
a generator for wg,, so there is a unique element u of Hom(wg, ,wg,) such that u(dx;) = dxo.

Now Hom(Go,G1) corresponds to the functor Alg, — Sets that sends B to the set of power series
() =3 ,o0mitt with f(s+¢t) = f(s) + f(t). As Og is a Q-algebra we know that all binomial coefficients
are invertible in Og, and it follows that m; must vanish for ¢ > 1, so f(¢) = mt. We also see that d(f) = mqu,
and it is clear from this that d is an isomorphism. ([l

Now suppose we have formal groups Gy and G over different base schemes Sy and S;. We then define
Hom(GmGl)(R) = {(ao,al,f) | ag € SO(R),a1 c Sl(R),f S hom(Go,amGLal)}.

(In principle this could cause some ambiguity in cases where S; happens to be the same as Sy, but we will
add clarifying remarks where necessary.) It is easy to see that this is again a scheme, as is the subfunctor

ISO(GO7G1)(R) = {(ao,al,f) | ag € SO(R),a1 S Sl(R),fI G()’a(] i Gl,a1}~

Remark 15.5. In topology, these schemes arise as follows. Suppose we have even periodic cohomology
theories represented by spectra Ey and Fj, giving rise to formal groups G; = spf(EY(CP>)) over S; =
spec(mo(F;)). There is then a natural map

spec(mo(Fo A E1)) — Iso(Go, G1),

which is an isomorphism under certain natural conditions that are often satisfied. Next, the object mo(Ep A
(Q*°FE7)4+) has two different products, and the second product induces a ring structure on the group of
indecomposables with respect to the first one. It turns out that there is a natural map

spec(Ind(mo(Eg A (2°E1)+))) — Hom(Gy, G1)

which is again often an isomorphism.

16. THE MORAVA STABILISER GROUP

In Example 15.2, we considered the moduli scheme of automorphisms of a formal group of infinite height,
and mentioned its importance in algebraic topology. This scheme has natural geometric structure, and so
does not behave like an ordinary discrete group.

By contrast, if we have formal groups G; of height n over base schemes S; over spec(F),), then the scheme
Hom(Gg, G1) behaves much more like a discrete set, at least if the rings Og, are sufficiently close to being
algebraically closed. Moreover, the relevant discrete set does not depend very strongly on the choice of G
and G;. We will postpone any justification of this claim, but we will use it to motivate our approach in this
section: we will pick a specific formal group of height n, and investigate its endomorphisms.

Definition 16.1. In this section, we fix a prime p, an integer n > 0, and a field k of order p™. We let I}
be the formal group law over Z,, with logarithm logp(z) = S aP"" /p, as in Proposition 8.1, and we let F'
denote the resulting FGL over F,, C k. We put S = spec(k) and G = S x A\l, with the formal group structure
determined by F. We put D = end(G) and T' = D* = aut(G). We call T the Morava stabiliser group.
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Remark 16.2. We will show that I' is a p-adic analytic Lie group of dimension n2. It turns out that various
cohomology groups of I' are of great importance in chromatic homotopy theory. These cohomology groups
are hard to calculate. However, it turns out that there are certain open subgroups of finite index whose
cohomology is very simple, and this is a good way to start the calculations.

Definition 16.3. For any f € D, we let [f](¢) € k[t] be the power series such that z(f(a)) = my(z(a)) for
all a € G. We note that

[f + 9l(t) = F([f1(2), [9](%))
[f o gl(t) = [f1([g](2))
[p)(t) = [plr(t) =t
We also define
Jm = {f € D | [fI(t) € " k[t]}.
It is easy to see that this is a two-sided ideal in D, with J,,J; < Jpyj and D = {ilnm D/Jp.

Proposition 16.4. (a) There is an element s € D with [s](t) = tP. This satisfies s = p in D.
(b) For each a € k there is an element 7(a) € D with [7(a)](t) = at. These satisfy 7(ab) = 7(a)7(b) and
7(0) =0 and 7(1) = 1 and s7(a) = 7(aP)s.

Proof. (a) The formal group law Fy has the form Fy(tg,t1) = Zm. aijtf)t{ with a;; € Z(p), which means
that af; = a;; (mod pZy,)). From this it follows that over ), C k we have F(to,t1)? = F(tg,t}), so
the series [s](t) = t? gives an endomorphism of G, as required. From [s](t) = t? we get [s*](t) = "
for all k and so [s"](t) = t*" = [p](t), so 8" = p in D.

(b) Consider the ring U = Z,[u]/(uP" — u), and note that in U we have w"™ = for all k > 0. In
(Q® U)[t] we therefore have
nk

upnktpnk utp
logF(ut):Z :Z p: = u logp(t).

k
k p k

By taking t = F(to,t1) and applying long;1 we get uF'(to + t1) = F(uto, ut1), so the series ut gives
an endomorphism of F, defined over U. For any a € k we have a?" = a, so there is a unique ring
homomorphism U — k sending u to a. By applying this to the above endomorphism, we conclude
that there is an element 7(a) € D with [7(a)](s) = as as claimed. Clearly [7(a)]([7()](t)) = abt =
[T(ab)](t) so T(ab) = 7(a)7(b). The identities 7(0) = 0 and 7(1) = 1 are also clear. Moreover, we
have
[s]([m(a)](£)) = [s](at) = a?t” = [ (a”)]([s](t))

so s7(a) = 7(aP)s.

|

Proposition 16.5. Every element f € D has a unique expansion f = Y = o 7(ay)s™ with am, € k.
Moreover, f is invertible iff ag is nonzero.

Proof. For any f € D, put ag = m}(()) € kand fo = f — 7(ap). Then f;(0) = 0, so Proposition 9.17 tells
us that fy factors uniquely through the relative Frobenius map, which is called s in our current notation.
In other words, there is a unique f; € D with f = 7(ap) + f1s. An evident induction based on this gives a
sequence of elements a; € k and f; € D with f = ZJQ 7(aj)s? + fis' and f; = 7(a;) + fi+15. In the limit
we get f =, 7(a;)s" as required. It is clear that the map f m’s(0) gives a ring homomorphism from
D to k, so if f is invertible then ag # 0. Conversely, if ag # 0 then we can write f as 7(ag)(1 — g) with
g € Ds = J; , and it follows that the sum >, 7(ag)g’ converges in D to an inverse for f. O

Corollary 16.6. D is a free module of rank n® over Z,.

Proof. Let X be the set of sums an;lo T(am)s™ with a,,, € k, so | X| = p"2 < 00. As p = s", the proposition
tells us that every element of D has a unique representation Zj xjpj with z; € X. It follows that D is
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generated by X, so in particular it is finitely generated. It also follows that the map X — D/p is bijective,
so |D/p| = p™*, so the rank of D must be nZ. O

Definition 16.7. We let IV denote the subset of D consisting of sums 3, 7(a;)p? with a; € k.

Proposition 16.8. (a) An element f € D lies in W iff it commutes with 7(a) for all a € k.
(b) W is a commutative subring of D. It is a free module of rank n over Z, with W/p =k, so it is an
object of the category W described in Section 13.
(¢) D is free as a left module over W, with basis {s' | 0 <i < n}. It is also free as a right module, with
the same basis.
(d) Fora € W we have sa = ¢(a)s, where ¢: W — W is the lifted Frobenius map, as in Corollary 15.24.
(e) The centre of D is Zy.

Proof. (a) If f =3, 7(a;)s® then
7(u) " fr(u) = Zr(upi_lai)si

i

for all u € k*. If u is a generator of k* then it has order p™ — 1, so uP' 1 s only equal to 1 if ¢

is divisible by n. It follows that f commutes with 7(u) iff a; = 0 whenever ¢ is not divisible by n,
which means that f = 7, an;s™ = 32 an;p’ € W.

(b) From (a) it is clear that W is a subring. Every element of W can be written uniquely as ), 7(a;)p
with a; € k, so by the method of Corollary 16.6 we see that W is free of rank n over Z,. We also
see that W/p maps isomorphically to k, so W € W.

(c) We can define g: W™ — D by B(w) = Z?;Ol w;s'. From what we have said already it is clear that
this gives an isomorphism W™ /p — D/p, and both W™ and D are free of rank n? over Z,, so 3 is
an isomorphism. Essentially the same argument shows that we also have a right module basis.

(d) This is clear from the formula s7(a) = 7(a?)s.

(e) If f € D and f commutes with 7(u) for all u then we have f =", 7(a;)p’ for some a; € k. If f also
commutes with s then we find that a? = a; for all i, so a; € F,,. From this we see that f € Z,,.

)

O

Definition 16.9. For w € W \ {0}, we define v,(w) to be the largest k such that w € p*W. We also define
vp(0) = o0.

Definition 16.10. For f € D, we define u(f) € M, (W) to be the matrix such that
n—1
fs' =2 s ulf)ji
§=0

for 0 < i < n. We also define
MD ={m e M, (W) | m;; € pW when j < i}
= {m € M, (W) | m is lower triangular mod p}.

Proposition 16.11. The map p gives an injective ring homomorphism D — MD. Moreover, for any
f € D, the characteristic polynomial of u(f) lies in Z,t].

Proof. First, if f = Z’;L;lo ams™ with a; € W we find that
n—1 n—1
fSl _ Z amsm-‘rz _ Z sm+’¢_m_’(am).
m=0 m=0
In cases where m + i > n, we can write s™% as p.s™*+i~"_ After reindexing the terms, and noting that

¢" = 1, we obtain
77 (aji if i<
:U‘(f)ji: _gj ) o7
po 7 (aj—ivn) if j <.
38



This shows that u(f) € MD. As u(f)jo = ¢ (a;), it is easy to see that u is injective. We also have
fags' = f5u(g)ji = D " u(f)mjir(9)si
J m,j

=™ () (9))mi

so u(fg) = u(f)u(g), so p is a ring homomorphism. Next, a straightforward calculation gives det(u(s)) =
(—=1)"p, so in particular det(u(s)) # 0.

Now let x(t) be the characteristic polynomial of u(f). Let ¢(u(f)) be the matrix obtained by applying ¢
to each entry in p(f). We then find that p(s)u(f) = ¢(u(f))u(s). After taking determinants and cancelling
det(p(s)) we get det(u(f)) = ¢(det(u(f))), so det(u(f)) € Z,. After replacing f by t — f with ¢ € Z,, we see
that x(t) € Z,, whenever t € Z,,. From this it follows easily that the coefficients of x(t) lie in Z,,. O

Example 16.12. If n =4 and f = ag + a1 5 + ass® + ass® then

ag bas baz bay
u(f) = ¢:1(al) ¢:1(ao) P¢__1(a3) p¢:1(a2)
¢~2(a2) ¢ *(a1) ¢ ~*(a0) po*(as)
¢ az) ¢7%(az) ¢ *(ar) & *(ao)
Definition 16.13. For f € D we define trace(f) and norm(f) to be the trace and determinant of the matrix
wu(f). (These lie in Z,, by the proposition above.) We call them the reduced trace and determinant of f.
We put
ST =ker(det: I' = D™ — Z,').
For m >0 we also put I';, =1+ ™D =14 Ds™ < I and ST, =T, N ST. All these subgroups are easily
seen to be normal. The notation z = y + O(m) will mean that x —y € s™D; if x and y are in T this is
equivalent to 2Ty, = yI'y,,. We also write o(m) for O(m + 1).
1

Definition 16.14. For x,y € D we write [z,y], = 2y — yx. If 2,y € D* we also write [x,y],, = ryz 1y~
Lemma 16.15. Suppose that x =1-+a andy =1+ b with a € s'D and b € s’D and i,j > 0. Then
[z,y]a = [a,b], € 57D
ry=1+a+b+0(i+j) =1+ O(min(i,))
zyz~' =y 4+ [a,b], + O(2i + §)
[,ylm = 1+ [a,b]a + O(i + j + min(i, j))
wp:{l—&-ap—&—o(pi) ifi<n/(p—1)
l+pa+o(i+n) ifi>n/(p—1).
Note that we have said nothing about z? in the case where i(p — 1) = n; this case will be discussed later.
Proof. The following identities can be verified by substituting x = 1 4+ a and y = 1 + b and expanding out:
vy —(1+a+b)=abesD
[2,Y]a = [a,b]a € sV D
(zyz™' —y — [a,bla)z = —[a,blea € s* VD
([, Y)m — 1 — [a,b]a)yx = [a,b]a(—a — b — ba) € sHI+minGi) p,

As z and y are invertible, our first four claims follow from this. For the last claim, note that
P
a’—1=Y (h)a™

m=1
For m < p, the binomial coefficient is divisible by s™ = p, so the m’th term is divisible by s™*". On the
other hand, the p’th term is divisible by sP*. If i < n/(p — 1) then mi +n > pi for 0 < m < p and so
2P —1 = aP + o(pi). On the other hand, if i > n/(p—1) then pi > i+n and alsomi+n >i+nforl <i<p
so 2P — 1 = pa + o(i + n). O
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Corollary 16.16. (a) T'/Ty is isomorphic to k™
(b) Fori > 0 the quotient T';/T;11 is isomorphic to k, considered as a group under addition.
(©) [T Tjlm < STy
(d) The centre of T is Zy
(e) If n is not divisible by p then 'y is isomorphic to (1 + pZ,) x ST'y.
(f) The map x — aP gives an isomorphism T;/Ti11 — Tiyn/Tivnt1 provided that t > n/(p — 1).
Proof. (a) Follows from the ring isomorphism D/sD = k
(b) The map a + 1+ 7(a)s’ (mod I';;1) gives the required isomorphism.
(c) As ST is the kernel of a homomorphism to the abelian group Z,', we see that all commutators are
contained in ST'. From the relation for [z, y],, in the lemma, we see that [[';,I';] <T'y;.
(d) We saw in Proposition 16.8 that the centre of D is Z,, and the claim is clear from that.
(e) If n is not divisible by p then the map w — u” is bijective on 1 + pZ,, so we can define a map
w: (14 pZ,) x STy — Ty by p(u,r) = u'/"x. We find that norm(u(u,z)) = u, and using this it is
not hard to see that u is an isomorphism.
(f) This follows easily from the last part of the lemma.
O

Lemma 16.17. Consider an element v = 1 + ap’s? € Ty with i,7 > 0 and j < n, so norm(x) € Zy.
(a) If j > 0 then norm(x) =1 (mod p**1).
(b) If j = 0 then norm(z) = 1 + p'r(b) (mod p**t) where

b = traceyr, (a Z o' (a

Proof. We can write a as 3 1—¢ ans" with a;, € W. This gives as’ = 3", a} s for certain elements aj, € W.
If j > 0 we find that a{, = pa,_; € pW, and it follows that the matrix y(as?) is divisible by p on the diagonal
as well as above it. This means that () is one mod p'*! on the diagonal, and zero mod p‘*! above the
diagonal, so det(u(z)) =1 (mod pi*t!) as claimed.

Now consider the case where j = 0. Let ag be the image of a in k, and put y = 1+ 7(ag)p’ and z = y~'a
so z = yz. Then z € 1+ p'sD, so norm(z) = 1 (mod p**!) by the previous case, so norm(z) = norm(y)
(mod p*1). Now pu(y) is just the diagonal matrix with entries 1 4+ 7(¢~"(ag))p’, so norm(y) is just the
product of these entries, which is easily seen to be 1+ pir(b) (mod p‘*!) as claimed. a

We have mentioned that the cohomology of the group I' is important for applications in stable homotopy
theory. In order to calculate the cohomology, one needs to know whether I' has any finite p-subgroups. The
following result will help with this.

Lemma 16.18. Put R = Z,[v]/(v?~* + p) and

p(t) = (7 — 1)/(t - 1) th

Then R contains an element u with u = v (mod v?) and p(1 +u) = 0, and R can also be described as
Zplul/p(1 + u). Moreover, for any m € F) there is an automorphism ¢¥™: R — R with Y™ (v) = 7(m)v,
and this satisfies Y™ (1 +u) = (L +u)™

Proof. Note that R freely generated as a Z,-module by {1,v,...,vP72}, and has R/v = F,. From this it
follows that every element of R is a unit multiple of v? for some i, and that R is an integral domain.
Put up = v, and note that

p p—1 p—1
(14 up)? Z v(p + P~ I)JrZ(];)vi:Z(f)viER.pvzzR.varl.
=1 i=2 =2

Suppose more generally that we have found w,, with u,, =v (mod v?) and (1 + u,,)? — 1 € RwPT1T™, Let
a be such that
(14 up)? — 1 = aP™HH™ = —pay™ 2
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m+2

and put up41 = Uy, + av , which is again equal to v mod v2. We then have

p
(I+up1)? —1=-1+ Z (f)v(m+2)¢ai(1 )P
i=0

We claim that this is zero mod vP+2+™ = —py™+3, Indeed, the term for i = 0, together with the —1, gives
—pav™*2. The term for i = 1 is pav™*?(1 + u,,)?~!, and u,, = v (mod v?), so this all cancels modulo
pu™+3, just leaving the terms for 1 < i < p. Each of these is divisible by pv?("+2) and 2(m +2) > m + 3, so
the claim follows. AS ;41 = Uy, (mod vm+2) we see that the elements u,, converge p-adically to an element
u with (1+u)? = 1, or equivalently up(1+u) = 0. As u = v (mod v?) we find that u is a unit multiple of v
and so uP~! is a unit multiple of vP~! = —p so u is not a zero divisor so ¢(1+u) = 0. Note also that p(1+u)
is a monic polynomial of degree p — 1 in u. Also, as u = v (mod v?) we find that {u’ | 0 < i < p— 1} is
another basis for R/p over F,, and thus also for R over Z,. Using this we can identify R with Z,[u]/¢(1+u).

Next, as ¢(1 +u) = 0 we have (1 4+ u)? = 1 so it is meaningful to write (14 )™ for m € F). We put
Um = (1 +u)™ — 1. This has u,, = mv (mod v?), so the elements u,, are distinct and nonzero. We also
have (1 4+ um)? = (1 4+ u)™ =1 s0 (1 + uy,) = 0. We thus have p — 1 distinct roots of ¢(t), so this must
be a complete list of roots.

Next, recall that the map 7: F, — Z, is injective and multiplicative, so 7(m)P~! =1 for all m € Fx. It
is clear from this that there is an automorphism ¥™ sending v to 7(m)v. This must send u to some root of
¢(1 +1t), and thus to u; for some j. As u =v (mod v?) and u; = jv (mod v?) we find that j = m. O

Lemma 16.19. Let H be a finite subgroup of T'. Then the subgroup N = H N (1 + sD) is a p-group and
is normal in H, and H/N is a cyclic subgroup of order dividing p™ — 1 (and thus coprime to p). Moreover,
there is a section of the projection H — H/N, so H is a semidirect product of H/N with N.

Proof. We have seen that 1+ sD is normal in I' with I'/(1 + sD) = k* ~ Cpn_;. From this it is clear that
N is normal and that H/N has the claimed structure. Consider a nontrivial element x € N, so x = 1 + as’
for some i > 0 and some a € D\ sD. It follows that ™ = 1+ mas’ (mod s'™!) for all m € Z, and thus that
™ # 1 if p does not divide m. This implies that N must be a p-group.

Now choose an element h € H that projects to a generator of H/N. Then h generates a cyclic group,
which we can split as the product of a p-part and a p’-part. It is then easy to see that the p’-part maps
isomorphically to H/N, so H is a semidirect product. O

We now want to understand something about the finite p-sugroups of I', which are contained in 1+ sD
by the lemma. For p = 2, it is easy to see that the only element of order p in D* is —1. For odd primes we
have the following:

Proposition 16.20. Suppose that p > 2. If n is not divisible by p — 1, then the only finite p-subgroup of T’
is the trivial group. If n is divisible by p — 1 then I' contains a copy of C,, but does not contain a copy of
C2.

P

Proof. We are looking for elements x € D with 2P = 1 but « # 1. In other words, the element u = z — 1
should satisfy ¢(1 4 u) = 0, so we have a ring map from Z,[u]/¢(1+ ) to D. In view of Lemma 16.18, it is
equivalent to look for elements v € D with vP~1 + p = 0. Note that v cannot be zero, so we have v = 7(a)s
(mod st1) for some i > 0 and some a € k*. This means that v?~! is a unit multiple of s??=1)? whereas
p = s", so we can only have vP~! + p =0 if n = (p — 1)i. This proves the first claim.

Now suppose that n = (p — 1)i. Choose a generator a € k* ~ Cpn_1. We have assumed that p > 2 so
(p"—1)/2 € N and a®" ~1/2 is a primitive square root of 1 so it must be equal to —1. Put b = 7(aP’ ~1)/2)s?,
One can check by induction that v/ = 7(a®”~1/2)s% and thus that v?~! = 7(a?"~1/2)s" = —p. Thus, we
have a copy of C, in I'.

Now suppose we have two commuting elements ug,u; # 1 with u? = 1. These give two commuting
elements vy, v1 € D with v? = —p. By our earlier analysis, both vy and v; must be invertible multiples
of s*, so v1 = zvy for some z € D*. As vy and v; commute, we see that zP~! = 1. It follows that the
image of z in D/s = k* must actually lie in F)f. Thus, we have z = 7(c)(1 + d) for some ¢ € F) and
d € sD. As 7(c) is central and has 7(c)?~! = 1, we see that (1 + d)?~! = 1. However, we also have
(1+dP~t =1+ (p—1)d (mod d?) and it follows that we must have d = 0. This means that v; = 7(c)vo,
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and it follows that 1 4+ u; = (1 + ug)®. The, the subgroup generated by u¢ and u; is just a C, and not a
C2. a
P

Proposition 16.21. There is a finite set A C T' such that the subgroup generated by A is dense in T'. In
other words, T is finitely topologically generated.

Proof. Put N = np/(p —1) = n+n/(p — 1) (which may or may not be an integer). Let A consist of the
elements 7(a) for a € kX, together with the elements 1 + 7(a)s’ with @ € k and j < N. Let H be the
subgroup generated by A. We need to show that H is dense, or equivalently that HI'; =T for all j > 0,
which we will prove by induction. The claim is clear for j = 1, because I'/T';y = k™ and 7(k*) C A. For the
induction step, it will suffice to show that for all j > 0 and all « € I'; there exists y € H with xy~te T
If j < N then it is clear that we can even take y € A. Suppose instead that j > N, and that z = 1 4+ a with
a € $7D. This means that x = 1 + pb with b € /"D, and j —n > n/(p — 1). By induction there exists
z € H with z=1+b (mod s/~"*1). Now z? € H, and the last part of Lemma 16.15 tells us that z” = 1+a
(mod s7T1), as required. O

17. DIVISORS

Definition 17.1. A Weierstrass series or W-series of degree n over a ring R is a power series f(x) =
>, axz® € R[x] such that a, is a unit and ay, is nilpotent for k < n. A Weierstrass polynomial or W-
polynomial is a W-series that is also a monic polynomial of degree n.

Proposition 17.2. Let f(x) be a W-series of degree n > 0 over a ring R. Then there is a unique map
a: Rly] — R[z] of R-algebras such that a(y) = f(x), and this makes R[z] into a free module over R[y]
with basis {1,x,...,a" 1}

Proof. Write f(z) = >, axz® and I = (ay | k < n), so I is a nilpotent ideal. After replacing f(z) by
f(z)/a, we may assume that a,, = 1. As I is nilpotent it is easy to see that f(x) is nilpotent modulo zV for
any N. Thus, given any series g(z) = Y, bpy* € R[y] the series g(f(z)) = >, br.f(z)* converges in R[z].
We can thus define a(g) = g(f(z)) to get the required map a.

We claim that {1,z,...,2" 1} is a basis for R[z] over R[y]. To see this, we define elements z,, for m > 0
as follows. There is a unique way to write m = nk +j with 0 < j < n and k > 0, and we put z,, = f(z)*27.
Our claim is easily equivalent to the statement that any element of R]x] can be written uniquely in the form
> bmzm for some sequence of elements b, € R.

To prove this, it is convenient to consider a more general statement. For any R-module M we define a
map

Or: [ M — Mla]
m>0
by 0(b) =, bmzm. Thus, our claim is that fr is an isomorphism.

Suppose that IM = 0, and consider a series ¢ = ), cxz® € M[z]. For any b, € M we have Ib,, = 0
so f(z)*b,, = 2™%b,, (mod 1) 50 2,0, = 2™by, (mod ™). Given this, an easy induction shows that
there is a unique sequence of b,,’s such that ¢ =" bjz; (mod x™) for all m. This proves that 6y is an
isomorphism when IM = 0.

Now suppose we have a short exact sequence L ~— M —» N of R-modules, and that 0y and 6y are
isomorphisms. We then have a diagram

IL, LI, M —=1IL,. N

GL\L: OMi :\LQN

L[z] >—— M[z] —— N][z]

j<m

It is trivial to check that the rows are exact and a diagram chase shows that 0, is also an isomorphism. We
can now use that short exact sequences I*/I**+1 »— R/I**1 — R/I* to show that Or/r+ is an isomorphism
for all k. For k> 0 we have I* = 0 and we conclude that @ is an isomorphism as claimed. O

Corollary 17.3. If f(x) € R[z] is a W-series of degree n then f(x) is not a zero-divisor in R[z], and
R[z]/f(z) is a free module over R with basis {1,x,..., " 1}. O
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Corollary 17.4. If f(x) € R[x] is a W-series of degree n then there is a unique factorisation of the form
f(x) =u(x)g(x) where u(z) € R[z]* and g(x) is a W-polynomial of degree n.

Proof. The previous corollary tells us that there are unique elements b; € R such that —2" = Z;Zol bjxj

(mod f(x)), and it is clear that g(x) = 2™+ Z;L;OI bjz’ is the unique monic polynomial of degree n such that
f(x) divides g(x), say g(z) = f(x)v(x). As f(x) is not a zero-divisor, the series v(z) is uniquely characterised
by this. Modulo I we know that =™ divides f(z) and thus g(z), but g(z) is a monic polynomial of degree n
so g(z) = 2™ (mod I) (which implies that g is a W-polynomial). As f(z) is a unit multiple of ™ modulo I,
we see that v(0) € R* and thus v(z) € R[z]* so we can take u(z) = 1/v(x). O

Lemma 17.5. Let f and g be monic polynomials of degree n and m over a ring R, such that f(z)g(z) =
"™ Then f and g are W-polynomials.

Proof. Write f(x) = 3, aix’ and g(z) = > j<m bjzl, so a, = by, = 1. Fix k with 0 < k < n; we may
assume inductively that a; is nilpotent for j < k. It will suffice to show that some power of aj lies in the
nilpotent ideal I = (ao,...,ax—1), so we can work modulo I and thus assume that a; = 0 for j < k. By
considering the coefficient of 2% in the equation f(z)g(z) = 2" ™™ we see that agbo = 0. We claim that more
generally we have ai'b; = 0 for i = 0,...,m. Indeed, if this holds for i < j then a].g(z) = alb;jz? +O(j+1),
so it also holds for i = j by considering the coefficient of 2+ in the equation aj,g(z)f(z) = ajz"™™. The
case j = m gives a)' = 0, as required. O

Definition 17.6. A formal curve over a scheme X is a formal scheme C' over X of dimension one, so that
C ~ X x A'. Of course, a formal group is a formal curve, but in this section we will not need the group
structure.

Definition 17.7. Let C be a formal curve over a scheme X.
(a) We define
N={f:C—>A}Y<{f:C—A}=0c.
This is clearly an ideal in O¢.
(b) Given an ideal J < O¢, we define a functor V(J) C C by

V(J)(R) = {ce C(R) | f(c) =0 for all f € J}.

We also define
VJ={feOc| ¥ eJfor some K}.

(¢c) We put
D (C)={J < O¢ | N <VJand Og/J is free of rank n over Ox }.

(d) We define W, (C) to be the set of functions f € O¢ such that the ideal (f) is an element of D, (C).
Note that OF acts on W, (C) by multiplication and we have a map W, (C)/Of — D;} (C) sending

fto (f).

Proposition 17.8. Take C = X X 1&1, write R = Ox, and identify Oc with R[z] in the usual way.
Then N is the set of series f(x) € R[x] such that f(0) is nilpotent. Moreover, W, (C) is the set of W-
series of degree n over R. Thus, if P,(R) denotes the set of W-polynomials of degree n over R, we have

W, (C) ~ P,(R) x Of and D} (C) =W (C)/Of ~ P,(R).

Proof. The first statement follows from Proposition 5.10, and it follows in turn that N < v/.J if and only if
HAS \ﬁ .

Next, let f be a W-series of degree n. We claim that J = (f) € D} (C), so that f € W,/ (C). In view of
Corollary 17.4, we may assume that f is a W-polynomial. As the lower coefficients of f are nilpotent, it is
clear that 2" is nilpotent mod .J, and thus that x is nilpotent mod J, and thus that N < v/J. We also know
from Corollary 17.3 that R[z]/f(x) is free of rank n over R, and the claim follows.

Next, suppose that J € D, (R). We claim that .J is generated by a W-polynomial of degree n. To see this,
A = R[z]/J. By assumption, this is a free module of rank n over R. Moreover, z € N < +/J so 2% =0 in
A for some K.
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For any element z € R[z] we define p,: A — A by p,(a) = za. If p(t) is a polynomial over R then clearly
Hp(z) = P(fhz)-

The map p,, is an R-linear endomorphism of the free module A, so it has a characteristic polynomial f(t),
which is a monic polynomial of degree n over R. The Cayley—Hamilton theorem tells us that jiy,) = f (pz) =
0, 50 f(x) = pp)(1) =0in A, so f(z) € J. Next, recall that 2 € J for some K. Write s = ZK 01 Itk =7
so that (t — x)s = t& € A[t]. We can regard iy, s and p; as R[t]-linear endomorphisms of A[t]. If we
let g(t) be the determinant of i, then we find that f(t)g(t) = t"£. It follows from Lemma 17.5 that f(t)
is a W-polynomial of degree n, so that R[z]/f(x) is free of rank n over R. Moreover, A is a quotient of
R[z]/f(z) and A is also free of rank n, so A = R[z]/f(x) and J = (f) (by Lemma 17.9 below). Thus J is
generated by a W-polynomial, as claimed.

Now suppose that g € W, (C). Our previous claim shows that there is a W-polynomial f such that
(9) = (f), say f = ug and g = vf. Then f = uvf but f is not a zero-divisor so uv = 1 so u and v are
units. It is not hard to see that any unit multiple of a W-polynomial is a W-series, and we conclude that
W (C) is precisely the set of W-series of degree n. We have also seen that every ideal in D} (C') is generated
by a W-polynomial, so the map W,F(C)/OF — D;f(C) is surjective. As Weierstrass series are not zero
divisors, we see easily that any two of them generate the same ideal iff they differ by a unit, so the map
W, H(C)/OF — D;f(C) is actually a bijection. Moreover, Corollary 17.4 tells us that W,/ (C') = P,(R) x Of,
and thus that D} (C) = P,(R). O

Lemma 17.9. Let M and N be free modules of finite rank n over a ring R, and let a: M — N be a
surjective homomorphism. Then « is an isomorphism.

Proof. We may assume that M = N = R", and write e; for the i’th basis vector. As « is surjective we
can choose a; with a(a;) = e;, and then define §: R™ — R"™ by S(e;) = a;. We then have aff = 1 so
det() det(8) = 1 so det(«) is a unit in R, so « is an isomorphism. O

Corollary 17.10. Let C be a formal curve over a scheme X.

(a) IfJ € D+(C’) then J is a free module of rank one over Oc¢.

(b) D7 (C) = Wi(C)/O¢.

(¢) If also K € D}, (C) then JK € D, (C).

(d) If also L € D (C) and JK = JL then K = L.

(e) If f € W,F(C) and g € W, (C) then fg € W, (C).

Proof. We may assume that C' = X x Al and this makes everything fairly clear. Some points to note are as

follows. Firstly, if f € W,F(C) and g € W} (C) then we have a short exact sequence O /(f) =% Oc/(fg) —
Oc¢/(g), which shows that O¢/(fg) is free of rank n +m over Ox. Moreover, if h € N then for large r we
have h™ € (f) and h” € (g) so h*" € (fg). This shows that fg € W, (C), as claimed in (e). Also, for
any J and K as above one can check that K = {f | fJ C JK}, so that J and JK determine K, which
proves (d). O

Remark 17.11. We can summarise this corollary by saying that D*(C) = [[,5o Dt (C) and WH(C) =
[1,50 Wi (C) are commutative monoids under multiplication, in which cancellation is valid.

Proposition 17.12. Let C be a formal curve over X, with projection map w: C — X say. Write I'(X, C)
for the set of sections of C, in other words the set of maps o: X — C such that o = 1. Then there is a
natural isomorphism T'(X,C) ~ DI (C).

Proof. Given a section o, we define J, = {f: C — A' | f oo = 0}, which is an ideal in Oc. We claim

that this lies in Dfr(C)7 and that the map ¢ — J, is the required bijection. For this, we may assume that

C = X x Al. The sections are then the maps of the form o(a) = (a,u(a)) where u: X — A, in other words

u € Nil(Ox). We also have J, = {f(z) € Ox[z] | f(u) = 0}. It is easy to see that this is generated by

the W-polynomial z — u. We also know from Proposition 17.8 that every ideal in D (C) is generated by a

unique W-polynomial of degree one, and these clearly all have the form = — u. The proposition follows. [
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Definition 17.13. Let C be a formal curve over a scheme X. Given a ring R and a point a € X(R) we
have a formal curve C, = spec(R) x x C over spec(R), and we define

Div," (C)(R) = {(a, D) | a € X(R) and D € D} (C,)}.
This defines a functor Div, (C) from rings to sets.

Remark 17.14. It follows from Proposition 17.12 that Div] (C) = C. Also, Corollary 17.10 gives product
maps Div; (C) x x Div}} (C) — Divyf,,..(C). A choice of coordinate on C gives a natural bijection D;} (C,) ~

P,(R) ~ Nil(R)", and thus an isomorphism Div, (C) ~ A" x X, showing that Div;’ (C) is a formal scheme
of dimension n over X.

18. MEROMORPHIC FUNCTIONS

Definition 18.1. Let C be a formal curve over a scheme X. We define M to be the ring obtained from
Oc by inverting all the elements of W, I (C') for all n. (We shall see shortly that it is equivalent to choose a
coordinate z and just invert z.) We write Wy (C) for the subgroup of M/ consisting of elements f/g where
f,g € W,F(C) for some n (the same n for f and g). We also write Do(C) = Wp(C)/Of. Tt is clear that
Wo(C) and Dy(C) are groups under multiplication.

Remark 18.2. You should think of the elements of M as meromorphic functions on C' whose poles are
infinitesimally close to the origin.

Definition 18.3. A Weierstrass Laurent series or WL-series of degree n over a ring R is a series f(z) =
> pez k™ such that

(1) ar =0for k<0

(2) ay, is nilpotent for k < n

(3) ay, is invertible.
Clearly f(x) is a WL-series of degree n if and only if 2™ f(z) is a W-series of degree m + n for m > 0.

We write P(R) for the set of WL-series of degree 0 such that

(1) ar =0for k>0

(2) ag = 1.
Clearly f(x) € P(R) if and only if 2™ f(x) is a W-polynomial of degree m for m > 0.

Remark 18.4. You should again think of f(x) as having poles infinitesimally close to the origin. Recall
that a genuine meromorphic function of a complex variable has different Laurent expansions in different
annuli, depending on where the poles are. Our formal Laurent series should be thought of as expansions
valid outside a small disc that contains all the poles.

Proposition 18.5. Take C' = X x 1&1, write R = Ox, and identify Oc with R[x] in the usual way. Then
M = R[z][1/z], and Wo(C) is the set of WL-series of degree 0. We also have Wo(C) = OF x P(R) and
thus Do(C) ~ P(R).

Proof. Write K = R[z][1/x]. We have P(R) C K and if f(x) € P(R) then 1 — f(x) is nilpotent, so f(x) is
invertible. Thus P(R) < K*. If g(z) is a W-polynomial of degree n then g(z)/2"™ € P(R) so g(z) € K*. It
now follows from Corollary 17.4 that every W-series becomes invertible in K. In view of Proposition 17.8,
this means that W,F(C) C K*, and it follows easily that K = M¢. Let V be the set of WL-series of
degree 0. If f(x) € V then for some m we have 2 f(z) € W,}(C), so Corollary 17.4 gives a factorisation
f(z) = u(x)g(z)/z™ with u(z) € OF and g(x)/z™ € P(R). Note that P(R) and O are groups with
trivial intersection, and that P(R).Of5 C V. It follows that V is a group and that V = P(R) x Of. If
f(z),g(x) € W,F(C) then it is clear that f/z" and g/x" lie in V, so f/g = (f/z")/(g/x™) lies in V. This
implies that Wy (C) =V = OF x P(R) as claimed. O

Definition 18.6. Let C be a formal curve over a scheme X. Given a ring R and a point a € X (R) we have
a formal curve C, = spec(R) x x C over spec(R), and we define
Divo(C)(R) = {(a,D) | a € X(R) and D € Dy(C,)}.

This defines a functor Divy(C) from rings to Abelian groups.
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Remark 18.7. A choice of coordinate on C' gives a natural bijection

Dy(Ca) ~ P(R) ~ P Nil(R),

k<0

and thus an isomorphism Divo(C) ~ X x P, Al. This is not a formal scheme according to our definitions,
but one can set up a more general theory of formal schemes which does include Divy(C).

19. ELLIPTIC CURVES

Definition 19.1. A Weierstrass cubic over a ring R is a homogeneous polynomial f(z,y,z) of degree
three such that f = y?2 (mod z,22) and f = —23 (mod y,z). This means that there are elements
a1, a9, a3, a4, g € R such that

3 3

f(z,y,2) = v*2 + aroyz + azyz? — 2° — awa’z — agwz? — ap2®.

Remark 19.2. If R is an algebraically closed field then every nonzero irreducible homogeneous cubic can
be put in this form by a suitable change of coordinates. For more general rings there is a more complicated
statement which again essentially reduces the study of all cubics to that of Weierstrass cubics. Such a cubic
defines a subscheme C' of the projective plane, and there is a coordinate-free description of the schemes that
can arise in this way. These are non-affine schemes, but with suitable definitions they can still be regarded
as functors from rings to sets. We shall not give details here, however.

As in example 5.9, we can use a Weierstrass cubic f(x,y, z) over Ox to define a formal curve C over X
by

C(R) = {(u,a,¢) € X(R) x Nil(R)? | f(a,1,c) = 0}.
Our main task in this section is to show that C has a canonical group structure.

Remark 19.3. The analytic analogy is as follows. If f is a Weierstrass cubic over C and we write C =
{[v:y:2] € CP?| f(x,y,2) = 0} then the classical analytic theory of elliptic curves gives an isomorphism
C ~ C/A for some lattice A < C, with the zero element in C/A corresponding to [0 : 1 : 0]. This shows
that C has a natural group structure. We next explain a purely algebraic characterisation of this structure,
which we can use to generalise the theory to rings other than C. Let Z{C} be the free Abelian group on the
points of C, and let [c] denote the basis element corresponding to a point ¢ € C. Any nonzero meromorphic
function f on C has zeros {a;} with multiplicities {n;}, where poles count as zeros of negative multiplicity.
This gives an element div(f) = >, n;[a;] € Z{C}, called the divisor of f. A fundamental result (which can
be proved by contour integration, for example) says that an element ), n;[a;] arises in this way if and only
if we have > ,;n; =0 € Z and ) ,n;a; = 0 € C. On the other hand, if we allow functions that are only
meromorphic on an open subset of C, we get all elements of Z{C}, and we only get the zero element if f
is an invertible holomorphic function. Thus Z{C} can be thought of as something like the group of local
invertible meromorphic functions modulo local invertible holomorphic functions. We can define Dy(C) to be
the subgroup of elements ), n;[a;] with ). n; = 0 and Q(C) to be the quotient by the group of divisors
of global meromorphic functions. It is then easy to check that the map ¢ — [¢] — [0] gives an isomorphism
C ~ Q(C) of groups, and this gives the required characterisation of the group structure on C.

We write
A= 0g = R[z,2]/f(x,1,2) = R[x].
Note that
flz,1,2) = 2+ aqez + az2® — 2% — apr?z — auz2® — ap2®,
so that f(z,1,23) =0 (mod 2*). It follows from Proposition 5.6 and its proof that there is a unique power

series £(z) € R[z] such that z = £(z) in A, and moreover we have £(z) = 3 (mod z*). We may thus write
£(x) =2 >3 &xa®, with €3 = 1. We also have

C(R) = {(u,a,£(a)) | u € X(R) and a € Nil(R)}.
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Next, we write

A'=R[z] < A
B = R[X,Y]/f(X,Y,1)
B' = R[Y]

U={u€ B|u=1modNil(R)B} < B*

Up=1+Nil(R)=R*NU<U

K =All/z] = Al/z] = Mg

K =A1/z] < K.
We know that z is a unit multiple of 2% in A, which is why A[1/z] = A[1/z]. We see from Proposition 17.2
that A is a free module over A’ with basis {1, 2,22}, and thus that K is a free module over K’ with the
same basis. One can also check that f(X,Y,1) can be regarded as a monic polynomial of degree three in X
over B’, and thus that B is a free module over B’ with basis {1, X, X?}.
Remark 19.4. The relevant analogies for elliptic curves over the complex numbers are as follows. The ring
A is the ring of functions on an formal neighbourhood of the origin. The ring K consists of meromorphic
functions on a formal neighbourhood, whose poles are concentrated in an infinitesimal neighbourhood (where
“infinitesimal” is smaller than “formal”). The ring B consists of meromorphic functions on the whole curve,
whose poles (if any) are concentrated in an infinitesimal neighbourhood of the origin. The group U consists
of functions on the whole curve that are very close to 1 away from an infinitesimal neighbourhood of the
origin, so all the zeros and poles are contained in such a neighbourhood.
Definition 19.5. We define a map a: B — K by a(X) = 2/z and a(Y) = 1/2.
Lemma 19.6. The map « is injective.

Proof. Note that a(B’) < K', that B is freely generated over B’ by {1, X, X2}, and that K is freely generated
over K’ by {a(1), a(X),a(X?)}. It will thus be enough to show that « is injective on B’, which is trivial. [J

From now on we will allow ourseleves to think of B as a subring of K, and thus of B* and U as subgroups
of K*.
Definition 19.7. We write Q = Q(C) = Do(C)/U = Wy(C)/A*.U. We also define a map ¢: I'(X,C) —
Q(C) by é(c) = J./Jy, where J. is as in Proposition 17.12. If we use z as a coordinate to identify I'(X, C)
with Nil(Ox) then we have (1 — ¢/x) € Wy(C) and our map becomes ¢(c) = [1 — ¢/x].
Theorem 19.8. The map ¢: T'(X,C) = Q(C) is a bijection. As Q(C) is a group, this gives a natural group
structure on T'(X, C).

Lemma 19.9. Suppose that h € W;m,l(@) for some m > 0. Then there exists u € U such that z™u € Ah,
and u is unique modulo Uy .

Proof. We know that B ha_\s basis {X%Y7 |i>0,3>4>0}over R. Let U be the subset of U consisting
of elements u =}, ;u;; X'Y7 where ugo = 1 (and necessarily u;; € Nil(R) for (4, j) # (0,0)). This need not
be a subgroup but we do have U = Uy x U’ so it will suffice to show that there is a unique choice of u lying
in U’.

Write
T={(,5)|m—-1>i>0,3>;>0}U{(m—1,0),(m—1,1)}
= {(i,j)]i20,3>7>0,3i+j<3m—1}
={(,7)|m>i>0,3>7>0,i+j5<m}.
For each k € {0,...,3m — 2} there is a unique element (i,j) € T such that 2’2/ = 2 (mod z**1), and it

follows by the method of Proposition 17.2 that {z'z7 | (i,j) € T} is a basis for A/hA over R. Thus, there
are unique elements a;; € R such that —z™ = >, a;;2'27 (mod Ah). We define

u=1+ Zaijzifml,j — 1+ Zainimeifj € B,
T T
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so that z™u € Ah. If h is a unit multiple of 23™~! then clearly 2™ € Ah and so a;; = 0 for all (i,j). We
can always put ourselves in this situation by working modulo the nilpotent ideal generated by the lower
coefficients of h, so we conclude that the elements a;; are always nilpotent. Thus v € U’.

Now suppose we have some other v € U’ such that z™v € Ah. We can then write w = v —u =
Zi,j winjYi where j runs from 0 to 2 and wgy = 0, and z™w € Ah. Note that z™w = Z” wijzm*i*jxj.
As K is freely generated over K’ by {1,z,z?} one can check that w;; = 0 when i + j > m. We also have
woo = 0, in other words w;; = 0 when ¢ + j = 0. If we write kK = m — i — j then we find that w;; = 0 unless
0<k<mand 0<j<3andj+k=m—1i<m. Using our third description of T, we see that z™w lies in
the span of {227 | (i,5) € T} but this set is a basis for A/Ah and 2™w € Ah so z™w = 0 s0 u = v. O

Proof of Theorem 19.8. Define Y;, = {g € Wy(C) | z712mg~! € A}. If g € Y,, then 2~ '2™g € Wg’;n_l(é)
so the lemma gives an element v € U such that z™u € 2™z~ 1g ' A. Thus u = 2~ '¢g~ 'k for some k € A. As
u,g € Wo(C) one can check that k € Wf(a), so Corollary 17.4 gives a unique factorisation k = (z — ¢)v
with ¢ € Nil(R) and v € A*. We define v,,,(g) = ¢ (it is easy to see that this is well-defined even though u
can be multiplied by an element of Uy). It is easy to check that the restriction of 1,41 to Yy, is ¢, and
the union of the sets Y, is Wy(C), so we get a map 1: Wy(C) — Nil(R).

Now suppose that g € Y,,, as above and w € U and t € A*. Choose n large enough that z"w=! € A. We
then have uw™! € U and vt € A* and

2T (™) = 2" (twg) T H (@ — o) (vt),
which implies that 1, (twg) = c¢. Thus ¥(twg) = 1(g), so ¥ induces a map ¥: Q(C) = Wo(a)/UAX —
Nil(R).
Now identify Nil(R) with I'(X,C), so that ¢ becomes the map ¢ — [1 — ¢/]. If we take g(z) = 1 — ¢/
then for m > 0 we have z™g~! € W;m_l(é) and z™.1 = 2™z~ lg7(x — ¢) so ¥(g) = c. Thus ¢ = 1.
On the other hand, if we start with g € Y;,, and define u, v and ¢ as above we find that g = (1—c/x)u"1v €
(1—c/z)UA%, so [g] = é(c) in Q(C). Thus ¢¢p = 1. O

We now consider another characterisation of the group structure on an elliptic curve. The statement is
simplest when X = spec(k) for some algebraically closed field k. We then have a set

C={lz:y:2] € P’(k) | f(z,y.2) = O}.
The group structure on this is characterised by the facts that

(a) The identity element is [0: 1 : 0].
(b) If P, =[x; :y; : zi) € Cfori=0,1,2 and Py+ P; + P> = 0 then the P;’s are collinear, or equivalently

we have
o X1 X2
det | wo w1 w2 | =0.
20 z1 z9

In our context we need to do something a little more delicate, as many of our elements are nilpotent so
we cannot divide by them. A key point is the following lemma:

Lemma 19.10. Define
X(wo,1,@2) = Y &iyjiriomhaiah,
4,k
where as usual §(x) = ;o3 &xak is the series such that f(x,1,6(x)) = 0. Then we have
Lo T1 T2
det 1 1 1 = (x1 — o) (x2 — x1)(zo — x2) X (T0, T1, T2),

£(xo) &(x1) &(w2)
and x(xg, x1,22) = o + 1 + 22 + O(2).

Proof. Define ((xg,x1) = Z” §i+j+1x6x{. One can check directly that
(z1 — 20)((w0, 71) = (1) — &(w0)

(w2 — 1) Xx(w0, 21, 72) = ((20, 72) — ((20,71).
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Of course we also have similar identities with the variables permuted. If we subtract the first column of
our matrix from the second and third columns and then divide those columns by (z1 — zo) and (29 — x2)
respectively, we get the matrix

Xo 1 -1

1 0 0

§(wo)  C(wo,71)  —C(w0, 72)

We can now expand with respect to the first column to get the claimed factorisation. As & = 0 for k < 3
and &3 = 1 it is immediate from the definitions that x(xg,x1,x2) = zg + 21 + 22 + O(2). O

Proposition 19.11. Ifag,a1,as € T'(X, 6) satisfy ap + a1 +az = 0 (using the group structure coming from
Theorem 19.8) then x(ao, a1,a2) = 0 and thus

i) T1 T2
det 1 1 1 =0.
§(zo) &(z1) &(a2)

Proof. We need to show that ¢(ag)p(a1)p(az) =1 in Q(C), or equivalently that (1 — ag/x)(1 — a1 /x)(1 —
asz/z) € UA*. Consider the series h(z) = x(ag,a1,2z) € A. As x(xo,21,%2) = To + 21 + 22 + O(2), we see
that h is a W-series of degree one, and h(az) = 0 so h(z) = v(z)(x — az) for some v € A*. Now consider

g(z) = (x — ap)(z — a1)(z — az)v(x) = (x — ao)(x — a1)x(ao, a1, x).
On the other hand, if {(zo, 1) is as in the proof of Lemma 19.10 we have
(z — ao)(x — ar)x(ao, a1, ) = (x — ao)(¢(ao, ) — ((ao, a1))
=z —&(ao) — ¢(ao, a1)z + ao((ao, a1).
This implies easily that u(z) = g(x)/z € U and of course w(x) = z/z* lies in AX, and so
(1 —ao/2)(1 = a1/2)(1 - az/x) = g(z)/(z"v(x)) = u(@)w(z)/v(z) € UAX,

as required. O

Proposition 19.12. If a € T(X,C) then the inverse of a is —a/(1 + ara + asé(a)), where the coefficients
«; come from the defining Weierstrass cubic
flz,y,2) = y°2 + arzyz + azyz® — 23 — aor?z — agrz? — ag2’.

Proof. The basic point is that if o’ is the inverse of a then (a’,£(a’)) must lie on the line through the origin
containing (a,&(a)), and it is easy to verify that

fta,1,t€(a)) = &(a)t(1 —t)(1 + (1 + ana + azé(a))t).
If we could divide by &(a) and (1 — t) we could deduce the result, but these quantities are nilpotent so we

need a more delicate argument.
We define 0(z) = >, &a*~1, so that &(x) = 26(x). We also define g(z,t) = f(z,1,tz)/z € R[z,t]. It is
easy to check that g(z,0(z)) = 0 € R[z]. Define

b=0(a)

d= a1+ asb

v=14ad =14 aja+ asé(a)

uw=14 ash+ asb® + agh®

c=bdu"' —a
Note that u and v are invertible in R. Clearly g(a,b) = 0 and by writing this out we find that vb = a?u.
Given this it is easy to verify that g(z,b) = (z — a)(bd — u(x + a)) and thus that

fz,1,b2) = zg(x,b) = —uz(x — a)(z — ¢).

Of course we also have f(x,1,z) = 0 so modulo z — bz we have f(x,1,bx) =0 so

z(x —a)(x —c) = (z — bx)w
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for some w € A. Modulo nilpotents we have z° = zw and it follows easily that w € A*. We also have

zz=3 € AX and
(1—a/z)(1—c/z) =1 —bX)w(zz™3) c UA*.
This shows that ¢ is the inverse of a in I'(X, (?) On the other hand we have vb = a2 so vbd = au.ad =

au(v—1) = auv—auso bdu™' = a—av~ ' soc=bdu~! —a = —av~! = —a/(1+aja+azé(a)) as claimed. O

20. ADDITIVE EXTENSIONS

Definition 20.1. Let C' and D be formal curves over a scheme X. Recall that O¢ is the ring of maps
C — A'! and let N be the ideal of maps C' — Al. We say that a map q: C — D is an isogeny of degree d
if the resulting map ¢*: Op — O¢ makes O¢ a free module of rank d over Op, and N¢ < v/¢*Np.

Lemma 20.2. Let q: C — D be a map of formal curves over X, and let x and y be coordinates on C and D
respectively. Let f be the unique power series over Ox such that ¢*y = f(x). Then q is an isogeny of degree
d if and only if f is a W-series of degree d. If this holds then {1,x,...,z% '} is a basis for Oc over Op.

Proof. First note that No = Nil(Ox )+ xOx [x] so the condition No < /¢* Np is equivalent to the condition
that 2V = 0 (mod f(z)) for N > 0. It is clear from Proposition 17.2 that if f is a W-series then ¢ is an

isogeny, and that {1,z,...,297 '} is a basis. Conversely, if ¢ is an isogeny then O¢ is free of rank d over Op
so Oc/ f(x) is free of rank d over Op/y = Ox so f(z) € W (C). We conclude from Proposition 17.8 that
f is a Weierstrass series of degree d. O

Lemma 20.3. Let q: C — D be an isogeny of formal curves over X. Then q is an epimorphism in the
category of formal schemes over X. In other words, if r,s: D — E are maps of formal schemes over X and
rq = sq then r = s.

Proof. Choose coordinates x on C, y on D and z1,...,2. on E. We then have series f,g;,h; such that
gy = f(z) and 7z = ¢;(y) and s*z; = h;(y), so g;(f(x)) = hi(f(z)) in Ox[z] = Oc. As ¢*: Op — O¢ is
injective we conclude that g; = h; sor = s. O

Definition 20.4. Let p be a prime, let X be a scheme such that p is nilpotent in Ox, and let G be a formal
group over X. We say that G has Weierstrass height n (or W-height n) if the map pg: G — G is an isogeny
of degree p™. We say that G is p-divisible if it has W-height n for some n (where necessarily 0 < n < 00).

Remark 20.5. Write X,cq = spec(Ox/Nil(Ox)) C X, which is a scheme over spec(F,). Write Gieqa =
G X x Xred, which is a formal group over X,oq. This has height n for some n with 0 < n < oo; if n < 0o then
in terms of a coordinate we have [p](x) = uz?” + O(p™ + 1). It is easy to see that G has W-height n if and
only if n < co and u is invertible.

Definition 20.6. For the rest of this section, X will be a scheme such that pis nilpotent in Ox and G will
be a formal group of W-height n over X. The symbol G will really denote G x X, considered as a formal
group over X.

Lemma 20.7. We have Hom(G,G,) =0

Proof. Let s: G — @a be a homomorphism. For N > 0 we have p¥ = 0 in Ox so p" = 0 as an
endomorphism of G,. By considering the following square, we see that s o pg =0.

-

a H
As pg is an isogeny, it is an epimorphism, so s = 0. |

Definition 20.8. An additive extension of G is a sequence of formal group schemes and homomorphisms

@a 2y E % G such that qj = 0 and there exist maps @a L EEG (not necessarily homomorphisms) with
rj=1g and jr +sq = 1g and ¢gs = 1g. Such a pair (r,s) is a (non-additive) splitting of the extension.
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Remark 20.9. Let E, j, q, » and s be as above. Note that j and s are monomorphisms and r and
q are epimorphisms. Define maps f: G, x G — E and g: E — G, x G by fla,u) = j(a) + s(u) and
g(e) = (r(e), q(e)). Then it is easy to check that fg = jg+ sr = 1g. Moreover, as ¢ is a homomorphism with
gj = 0 and ¢gs = 1 we have qf(a,u) = u. Also, we have jrf(a,u) = (1 — sq)f(a,u) = f(a,u) — s(u) = j(a)
and j is a monomorphism so rf(a) = a. We now see that gf = 1, so that f and ¢g are mutually inverse
isomorphisms.

Definition 20.10. Let E and E’ be additive extensions of G. A morphism from E to E’ is a homomorphism
f: E — E' of formal group schemes such that fj = j’ and ¢’ f = q, so that the following diagram commutes:

G >%>E—>>G

|

G >—>EI*»G
]

If we choose splittings r, s, v’ and s’ and define g = s¢’ + jr'(1 — fsq¢'): E' — E then one can check that
fg=1p and gf = 1g so f is automatically an isomorphism. We write Ext(G, G,) for the set of isomorphism
classes of additive extensions of G.

Lemma 20.11. If E and E’ are additive extensions of G then there is at most one morphism from E to E'.

Proof. Let fo, f1: E — E’' be morphisms and put § = fo — f1, so we need to show that § = 0. As f;j = 5/
and ¢'f; = ¢ for i = 0,1 we have 5 = 0 and ¢'d = 0. Now put ( = r'ds: G — G,. As 1g = sq + jr and
1gr = 8'q" + j'r’ we have
6= (s'q" +5'1")o(sq + jr) = j'r"dsq = j'Cq.
As 7’ is monic and a homomorphism, and ¢ is epic and a homomorphism, and j'Cq is a homomorphism, it
is not hard to check that ¢ is a homomorphism. As Hom (G, G,) = 0 we see that { = 0 so § = 0 as required.
In fact, we do not need to show that ¢ is a homomorphism but merely that ¢ o pc = ps o (, as one sees
easily from the proof of Lemma 20.7. This is easier so we will give the details. We claim that
i'¢paq = j'Capr = peri'Ca = §'pa Cq-
The three equalities use the fact that ¢, j'(q¢ = ¢ and j’ respectively are homomorphisms. As j’ is mono and
q is epi we conclude that (pg = p@ag as required. O
Definition 20.12. We write
Z(G)={0: G xx G — Gy |o(u,v) =c(v,u), o(u,0)=0,
o(w,w)—o(u+v,w)+o(u,v+w)—o(u,v) =0}
C(G) = {r: G — G, | 7(0) = 0}.
We also define a map ¢: C(G) — Z(G) by
(1) (u,v) = 7(u+v) — 7(u) — 7(v).
We call Z(G) the group of symmetric two-cocycles on G with values in @a.

Remark 20.13. The case v = w = 0 of the cocycle identity o(v, w) —o(u+v,w)+o(u,v+w) —o(u,v) =0
gives o(u,0) = ¢(0,0). Thus, it would be equivalent to replace the condition o(u,0) = 0 by ¢(0,0) = 0 in
Definition 20.12.

~

Remark 20.14. It is clear that ¢: C(G) — Z(G) is a homomorphism of Ox-modules. The kernel is
Hom(G,G,) = 0, so ¢ is injective. We may thus think of 6C(G) as a subgroup of Z(G) and define the
quotient module Z(G)/5C(G).

Definition 20.15. Given o € Z(G) we define E, = G, x G with group operation

(a,u) + (b,v) = (a+b—oc(u,v),u+v).
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(The inverse of (a,u) is (—a 4 o(u, —u), —u).) We also define G, 5B, 4 Gand G, & B, & G by
j(a) = (a,0)

s(u) = (0,u)

q(a, u)

r(a,u)

(a,

u
a

One can check directly that this gives an additive extension of G. We define a map 6: Z(G) — Ext(G, @a)
by 8(c) = E,.

Proposition 20.16. The map 6 induces a bijection Z(G)/5C(G) ~ Ext(G, Gy).

Proof. First, suppose we have two symmetric cocycles o and ¢’ with ¢ — ¢’ = §(7). One can then check
that the map f(a,u) = (a + 7(u),u) gives an isomorphism of extensions F, ~ F,., so that 6(c) = 0(c’) €
Ext(G, G,). Thus, 8 induces a map 8: Z(G)/6C(G) — Ext(G, G,).

Now suppose instead that we have symmetric cocycles o and ¢’ and an isomorphism of extensions f: E, —
Eyr. Define 7 = r'fs: G — G, (using the usual splittings of E, and E,). It is easy to see that 7(0) = 0
so that 7 € C(G). As ¢'f = g we have f(0,u) = (7(u),u). As fj = j' we have f(a,0) = (a,0). As
(a,u) = (a,0) + (0,u) we have f(a,0) = (a,0) + (7(u),u) = (a + 7(u),u). This gives f((0,u) + (0,v)) =
f(=o(u,v),u+v) = (t(u+v)—0o(u,v),u+v). On the other hand we have f((0,u)+(0,v)) = f(0,u)+f(0,v) =
(t(u) + 7(v) — o’ (u,v),u + v). By comparing these answers we see that ¢ — ¢’ = 6(7). It follows easily that
our map 6: Z(G)/5C(G) — Ext(G, CA}'a) is injective.

Finally, suppose we start with an additive extension E’. Choose splittings v’ and s’ in the usual way and
define o(u,v) = r'(s'(u+v) — §'(u) — s'(v)). We know that ¢': E' — G is a homomorphism with ¢’s’ =1 so
qd (s (u+v)—s'(u)—s'(v)) =0and j'r' =1 — s'¢q so we see that

jlo(u,v) = (1 —5¢)(s'(u+v) —s(u)—s'(v) =s(u+v)—su)—s ).
From this it follows that j'o satisfies the symmetric cocycle conditions and j’ is a monomorphism so o
satisfies the conditions, so o € Z(G). We define f: E, — E’ by f(a,u) = j'(a) + s'(u). One can check

directly that this is an isomorphism of extensions, so that the isomorphism class of E’ lies in the image of f.
It now follows that € is an isomorphism. |

Remark 20.17. If we choose a coordinate x on G (giving a formal group law F'(x,y)) then Z(G) becomes
the set of power series o(z,y) such that o(z,y) = o(y,z) and o(z,0) = 0 and

U(y,Z) - O'(.%‘ +r yaz) +0'($,y+F Z) - U(x7y) =0.

Lemma 20.18. For any formal group law F over any ring R and any k > 2 there is a naturally defined
symmetric cocycle o, (F)(xz,y) such that ox(F)(x,y) = ck(z,y) + O(k + 1).

Proof. Recall from Theorem 7.2 that the Lazard ring L is a polynomial ring on generators a; for j > 2. The
formal group law F over R corresponds to a ring map ¢: L — R, sending a; to «; say. Define R’ = Rle] /€.
Let ¢': L — R’ be the map that sends ay to ay + € and sends a; to «; for j # k. Let F' be the formal group
law over R’ coming from ¢’, so F/ = F (mod ¢), so (z +py) —r & —p y has the form eo(z,y) for some series
o € R[z,y]. It is easy to see that this is symmetric and o(z,0) = 0. Next note that when x = 2’ (mod €)
we have eo(z,y) = ea(z',y), because €2 = 0. We also have eu +r ev = e(u + v). It follows that

THp Y+ 2= +ry+rz+trelo(@y) +o@+ry2)).

Using the commutativity and associativity of F' and F” it is easy to conclude that o is a symmetric cocycle.
We define oy (F) = 0.

We now need to prove that o(x,y) = cx(z,y) + O(k+ 1). It will suffice to do this for the universal formal
group law over L. We give L its usual grading and then give L'[z,y] the grading extending this such that
€ is homogeneous of degree k — 1 and = and y are homogeneous of degree —1. With these gradings one
can check that F(z,y) and F'(x,y) are homogeneous of degree —1 and thus that o(z,y) is homogeneous of
degree —k. This means that o(z,y) = >, bijx'y’ where b;; € L is homogeneous of degree k — i — j. This
means that b;; = 0 when i 4 j < k and that b;; € Z when i + j = k. Define o'(z,y) = >, bixiyl. All

52



that is left is to show that o'(x,y) = c¢x(z,y). For this we note that o’ = o (Fy), where F,(z,y) =z +y is
the additive formal group law. One can see from the construction in Proposition 6.3 and the definition of ay,
that o (F,) = ¢k as required. O

We leave the proof of the next two lemmas to the reader.

Lemma 20.19. If F is a formal group law over R and o(xz,y) is a symmetric cocycle for F and o(x,y) =
0+ O(k) then there is a unique a € R such that o(z,y) = aci(z,y) + O(k +1). O

Lemma 20.20. We have §(x*) = by (x,y) + O(k+1), where by,(z,y) = (x+y)* —2* —y* = v(k)er(z,y). O

Now let G be a formal group over X of W-height n. It follows from Theorem 11.11 that we can choose
a coordinate x on Gypeq such that the resulting formal group law is additive to order p™ — 1. The map
Og — Og,., is clearly surjective, so we can choose a coordinate on G' extending x; we call this coordinate
rzalso. Hx+py=o+y+ Zij a;jz'y’ and I = (p) + (a;; | i +j < p™) we find that I is nilpotent and
that there is an element u € Ox such that x +rp y = 2+ y + ucpn (z,y) + O(p™ + 1) (mod I). We see from
Lemma 11.6 that [p]p(z) = —ua?” + O(p" 4+ 1) (mod I); as G has W-height n we deduce that u is a unit in
Ox. We now see that

8(a?") = (x+py)P —a —y? =ul cpuir(z,y) + O+ 1) (mod I).

Proposition 20.21. The group Ext(G, éa) is a free module of rank n — 1 over Ox. If x is a coordinate as
above and F' is the resulting formal group law then {op (F)(z,y) | 1 <r <n—1} is a basis for Ext(G,G,).

Proof. Write R = Ox, and let u € R* be as in the preceeding discussion. For k > 2 we define 7 (z,y) € Z(G)
by
5(x* Jv(k) if k is not a power of p
(@, y) = 6((x/wP" ") ifk=p" >p"
opr (F)(z,y) itk =p" <p™
Note that 74 (z,y) = cx(z,y) + O(k+ 1) (mod I) for all k.
For any R-module M we let Z(G; M) denote the set of formal power series o(z,y) € M|z, y] that satisfy
the symmetric cocycle conditions. Define a map Onr: [[5o M — Z(G; M) by 6(m) = >, my7y; (one can

check that this converges, because §(z*) = 0+ O(k) for all k). One can check using Lemma 20.19 that 6,
is an isomorphism when /M = 0. As in the proof of Proposition 17.2, we deduce that 0, is iso for all k
and thus that 0g is iso. This implies that

Z(G) = R{op(F),...,0pm-1(F)} & 0(C(G))
and thus that R
Ext(G,G.) = Z(G)/6(C(G)) = R{op,...,0pm-1}.
O

Definition 20.22. Given a formal group scheme H of dimension d over X, we define J = Jg = {f €
Ox | f(0) = 0} and wy = J/J? and tyg = Homoe, (wg,Ox). It is easy to see that wy and ty are free
modules of rank d over Ox. Moreover, a map q¢: G — H induces a map q.: t¢ — ty provided only that
¢(0) = 0; we do not need g to be a homomorphism.

Definition 20.23. Let éa 2 E'% G be an additive extension. A rigidification of this extension is a pair
of maps Ox = ta, &ty &% te such that roj, = 1 and gyso = 1 and j.rg + soge = 1.

Exercise 20.24. Show that if rg: tg — Ox satisfies rgj. = 1 then there is a unique map sg: tg — tg such
that (ro, o) is a rigidification. Similarly, show that if sy satisfies g.so = 1 then there is a unique r¢ such
that (ro, so) is a rigidification.

Exercise 20.25. Show that if (rg, sg) is a rigidification and u € wg = Home, (tg, Ox) then (rg + j.u, so —
ugy) is another rigidification, and this construction gives a bijection between w¢ and the set of rigidifications.

Exercise 20.26. Given a rigidification (rg, sg), there is a splitting (r, s) such that ro = 7, and sg = s..
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Definition 20.27. A rigidified additive extension of G is an additive extension with a specified rigidification.
An isomorphism of rigidified extensions is an isomorphism f: E — E’ of extensions such that r{ o fi. = rg
and f, o sg = s5. We write M(G) = Ext,ig(G, @a) for the set of isomorphism classes of rigidified additive
extensions of G. This is also called the Dieudonné module of G.

Exercise 20.28. Prove that there is a natural short exact sequence
wg — Extyig (G, (A;a) — Ext(G, (A;a),

so that Ext,ig (G, CA}’(L) is a free Ox-module of rank n.
Exercise 20.29. Define

Ciig(G) ={7: G = G, | 7(0) =0 and 7, = 0: t¢ — Ox}.
Prove that R

Xtrig (G, Ga) = Z(GQ)/6Cig(G) = Ox{op(F),...,opn (F)}.
Definition 20.30. For any Ox-algebra R we put

E(R) = {(a,u) € Homo, (Z(G),Nil(R)) x G(R) | a(8(7)) = 7(u) for all 7 € C(G)}.
We define addition on this set by
(a,u) + (b,v) = (a + b+ e(u,v),u +v),
where e(u,v): Z(G) — R is defined by e(u,v)(0) = o(u,v).
We will now construct a “universal additive extension” E of G, from which all additive extensions can be

obtained by pushout. Here E itself i is not actually an additive extension of G according to our definitions,
because the kernel of the projection E — G is not Gy but rather a formal group isomorphic to G” 1

Theorem 20.31. The above definitions make E into a formal group scheme of dimension n over X, which
fits naturally in an extension
Hom(Ext(G,G,),Gs) = F = G.
The resulting short exact sequence of cotangent spaces is naturally identified with the sequence
wa = Extyig (G, Go) = Ext(G, G,).
In particular, this gives wg ~ Extyig (G, Ga) = M(G).

Proof. The given rule does indeed give a binary operation on E (R), because we have
(a+b+e(u,v))(6(7)) = a(8(7)) + b(3(7)) + €(u, v)(6(7))
=7(u) + 7(v) + 6(7(u,v)) = 7(u+v).
One can check directly from the definitions that this operation gives a commutative group structure on E (R),

with unit element (0,0) and inverses given by —(a,u) = (—a — €(u, —u), —u). The projection ¢: E — G is
evidently a homomorphism, and the kernel is

{(a,0) | @ € Homp, (Z(G),Nil(R)) | a(§(7)) =0 for all 7 € C(G)},
which is naturally identified with the group
Homo, (Z(G)/6C(G),Nil(R)) = Hom(Ext(G, G,), Nil(R)) = Hom(Ext(G, G,), Go)(R).
Now choose a coordinate on GG, which gives a splitting
Z(G) = R{op,...,0pm-1} ®6(C(Q))
as in Proposition 20.21. This gives a bijection E(R) — Nil(R)"~! x G(R) by
(@, u) = (alop(F)), - - -, alopn-1(F)), u).
We can make the target into a group by the rule

(a1,...,ap—1,u) + (b1,...,bp_1,v) = (a1 + b1 + 0p(F)(u,v), ..., an_1 + by_1 4+ opn-1(F)(u,v),u 4 v),
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and then our bijection becomes an isomorphism. Using this it is easy to give a nonadditive splitting of the
sequence
Hom(Ext(G, G,),Go) = E — G.

All that is left is to identify the cotangent space wg. Consider an Ox-linear map f: Z(G)/6Chig(G) — Ox.
We define a ring map

Xs: Oc = Ox & C(G) — Oxle] /e
by x¢(r,7) =7+ €f(6(7)). This defines a section uy of G over spec(Ox|e]/€?) which restricts to zero on X.
Now let ay be the composite

Z(G) = Z(G)/6C,,(G) L Ox =5 Oxle]/é.

For any 7 € C(G) we have 7(us) = xf(7) = €f(6(7)) = ayr(7), so (af,uf) € E(Oxle]/€%). This reduces
modulo € to zero, so it defines an element ay € tz. One can check directly that this construction gives an
isomorphism

Homox (M(G), Ox) = HOmoX (Z(G)/5Crig(G), Ox) — tE
and dually an isomorphism wgz — M(G). O

We now give another description of the module M(G) which is sometimes useful. We will formulate the
first step for formal groups of arbitrary dimension, purely so that we can treat G X x G on the same footing
as G.

Definition 20.32. Given any formal group scheme G of dimension d over X we define ¢, x as before (so
this is a free module of rank d over Og). We then let QIE;/X denote the k’th exterior power of Qg,x over

Og, and define a formal de Rham differential d: Q’é /x Qéf/;{ by the usual rule

d(fodfv A Ndfx) = dfo Ndft A<+ N dfy.
This satisfies d* = 0 so we can define the cohomology groups Hj;,(G/X) = H*(Q&/X); these are contravari-
antly functorial in G. Next, we have natural maps d;: G xx G — G for i = 0,1,2 given by do(u,v) = v
and di(u,v) = u+ v and dz(u,v) = w, which induce map d}: Hir(G) — Hjz(G xx G). We say that a
class a € H}p(G) is primitive if d§(a) — di () + d5 (o) = 0. We write Prim(H},(G/X)) for the subgroup of
primitives (which is naturally an Ox-module).

We now revert to the case where G is a one-dimensional group of Weierstrass height n < co.

We next want to define a map ¢: Z(G) — Prim(H}5(G/X)). Let J be the ideal in Ogx ¢ of functions
that vanish on the diagonal, so that Qg /x = J/J?. Given o € Z(Q), put a(u,u’) = o(u,v’ —u), so a € J,
and let « be the image of a in Qg x.

Lemma 20.33. If I is the ideal in Ogx g defining the zero section, then Z(G) < I2.

Proof. Let Iy and I be the ideals defining 0 x G and G x 0 respectively. From the definitions it is clear that
Z(G) < IpnI; and Iy, I; < I so it will suffice to prove that Iy NIy = Ipl;. This is clear after we choose a
coordinate giving Ogx v = Ox|[xo, 1] with Iy = (zo) and I; = (x1). a

Lemma 20.34. We have dyja—dja+dia = do € Qgyx g /x- In particular, the left hand side is a coboundary,
so [a] € Prim(Hj,(G/X)).
Proof. Let J' be the ideal of functions f on G% that satisfy f(u,v,u,v) =0, so Qgxc/x = J'/(J)?. The
form do is represented by the function A € J' given by A(u,v,u’,v") = o(u,v) — o(u’,v’), or equivalently
AMu,v,u+x,v+y) =o(u,v) —o(u—+z,0+y).
The form > j(fl)j djo is represented by the function p € J " given by
plu,v,utz,0v+y)=a(v,v+y) —a(u+v,utv+z+y) —alu,u+z)
=o(v,y) —o(ut+v,z+y)+ o(u,z).
Let R(a,b,c) denote the cocycle identity

a(b,c) —o(a+b,c)—ala,b+c)+o(a,b) =0.
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After expanding and cancelling the identity
R(U, T,V + y) - R(U, v, + y) - R(l.v v, y) + R(Uv z, y)
we find that
plu,v,u+ 2,0+ y) — Mu,v,u+ 2,0+ y) = o(x, y).
Here o € I? by Lemma 20.33, and it follows that u — X\ € (J')? as required. O

It is now clear that the construction o — [a] gives a homomorphism Z(G) — Prim(H}(G/X)). It will
be useful to control the target of this map more precisely.

Definition 20.35. We put
Z'(G) ={a € Qg/x | a|x =0, [a] € Prim(Hjz(G))}.

Proposition 20.36. The construction o + « gives a homomorphism ¢: Z(G) — Z'(G) fitting into a
diagram as follows:

Crig(G) =2 Z (@) Extl, (G, G,)

l s &

Cusg(G) — > 2/(G) — Prim(H}(G/X)).

The top row is a splittable short exact sequence, and the bottom row is right exact.

Proof. We have seen previously that the top row is a splittable short exact sequence. Now consider an element
o € Z(G) and define a(u,u + z) = o(u,z) and ¢(o) = « as before. Note that @(0,z2) = o(0,z) = 0, so
alx = 0. Given this and Lemma 20.34 we see that a € Z'(G), so we have a homomorphism ¢: Z(G) — Z'(G)
as indicated. Now consider the case ¢ = 7 for some 7 € Ciig(G). We then have a(u,u + z) = (67)(u,z) =
7(u+2)—7(u) — 7(x), whereas d7 is represented by the function (u,u+z) — 7(u) —7(u+ ). The condition
T € Ciig(G) means that 7 vanishes to second order at the identity and thus that the term 7(x) can be
neglected when we project to Q¢ x. It follows that ¢(0(7)) = —dr, so the left hand square commutes.

We now prove that the bottom row is right exact. It is clear that dCiis(G) < Z'(G) and that the
construction a + [a] gives a homomorphism Z'(G)/dCyig(G) — Prim(Hj(G/X)); we claim that this
is an isomorphism. For the proof it is convenient to choose a coordinate x on G, and to let Dx denote
the unique element in Prim(Q¢,x) with (Dx)|x = (dz)|x (as in Proposition 9.16). Consider an element
¢ € Prim(H},(G/X)). Choose a representative form o € Qg/x, let ¢ be the scalar such that af|x =
tdzr|x, and put @/ = a — tdzx. We find that o is another representative of ¢ lying in Z'(G), so the map
Z'(G)/dClig(G) — Prim(H}(G/X)) is surjective. If a € Z'(G) and [a] = 0 then we must have a = dr for
some 7 € Og, and after subtracting a constant we may assume that 7 € C(G). The assumption a|x =0
then forces 7 € Clig(G). It follows that our map is also injective.

Finally, as the left square commutes we have an induced map of cokernels, which gives ¢: Extiz(G, éa) —
Prim(H},(G/X)) as required. |

So far we have implicitly worked with a formal group G of finite Weierstrass height over an affine scheme
X (which forces p to be nilpotent in Ox). Our results extend more or less automatically to cover the case
where X is a formal scheme where p is topologically nilpotent in Ox, but need not be actually nilpotent. In
that context it is possible for Ox to be torsion-free.

Proposition 20.37. If Ox is torsion-free then the map ¢: Z(G) — Z'(G) is an isomorphism, as is the
induced map Extig (G, Go) — Prim(Hp(G/X)).

Proof. The key point about the torsion-free case is that if f € Ogy ~ Ox [x1,...,2,] and df =0 then f is
constant (i.e. it lies in the subring Ox). This will be used several times.
Suppose that o € Z(G) satisfies ¢(o) = 0. Lemma 20.34 then gives do = Zj(—l)jd;qb(a) =0, s0 0 is
constant. We also have ¢(0,0) = 0 by the definition of Z(G), so o = 0. This proves that ¢ is injective.
Now suppose we start with o« € Z/(G). As the class [a] is primitive we must have Zj(fl)jd;a = do
for some function o € Ogx . After subtracting a constant we may assume that o(0,0) = 0, and then o
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is uniquely determined. We claim that o € Z(G). Indeed, using the uniqueness property we deduce that
o(u,v) = o(v,u). We next introduce maps

diZGXXGXXG%GXXG
as follows:
do(U,’U,U}) = (an) dl(U,U,UJ) = (U’ + U,U)) d2(U,U7UJ) = (U,’U + U)) d3(U,’U7U}) = (U,U).

For the cocycle identity we must show that the function p = >",(=1)'dfo € Ogxaxxa is zero. As Ox
is torsion-free and p(0,0,0) = 0 it will suffice to prove that dp = 0. Here d commutes with the operators
df and do = 3 (=1)dfa so dp = 37, ;(—1)"*7d;dja. This is zero by a standard argument with simplicial
identities, which can also be written out more explicitly if desired. Thus, o satisfies the cocycle identity, and
also the identity o(u,0) = 0 by Remark 20.13. Thus ¢ € Z(G) as claimed.

Now put 3 = ¢(0) € Z'(G) and v = a — 3 € Z'(G). By the construction of o we have Y (—1)/d}o = do,
but by Lemma 20.34 we have Y (—1)’d; = do, so Y (—1)7d}vy = 0. This means that v € Prim(Qg,x). We
know from Proposition 9.16 that the map 6 + 6|x gives an isomorphism Prim(Qg,x) — wa, but v € Z'(G)
so v|x = 0, so v = 0. This means that « = 8 = ¢(0), so ¢ is surjective and thus an isomorphism. It
follows directly from Proposition 20.36 that the induced map Ext,iz(G, Ga) — Prim(H},(G/X)) is also an
isomorphism. O

21. CURVES AND THEIR OPERATORS

Definition 21.1. Let G be a formal group over a scheme X. A curve on G just means a morphism
v: Al x X — G of formal schemes over X that preserves the zero sections. We write Curves(G) for the set
of all curves on G, and we use the group structure of G to make this a group.

Definition 21.2. We say that a curve + is basic if the map ~: Al x X — G is an isomorphism. If so, the
inverse map has the form u — (x(u),7w(u)) for some coordinate x. By a slight abuse of language, we say
that v and x are inverse to each other.

To be explicit, a curve should be written as 7(a,t) to indicate the dependence on a € X and ¢ € Al
However, we will often streamline the notation by omitting explicit mention of a.

Definition 21.3. We define maps 0,, vy, fn: Curves(G) — Curves(G) (for n,m € NT and a € Ox) as
follows.
(a) We define (6,7)(t) = y(at), or more explicitly (8,7)(z,t) = v(z,a(z)t) for z € X and t € Al. These
are called homothety operators.
(b) Similarly, we put (v.,7y)(t) = v(t™), or (vny)(x,t) = vy(z,t™). These are called verschiebung opera-
tors.
(¢c) The definition of f, is more complicated. First, we let f/ y: (A™/%,,) x X — G be the unique map
making the right hand square below commute.

Al x X Amox X - G

I

A™ x X <= (A™ Ym) X X ——G.
e f/
mY

We then let o(t1,...,t,) be the list of elementary symmetric functions in the variables t;, starting
with ). t; and ending with [[,¢;. This defines an isomorphism o as shown. Next, we define
im(t) = (0,...,0,(=1)""¢) and f,,v = (f., 7)o Yimm. These are called frobenius operators. (The
connection with Frobenius morphisms as discussed previously is rather indirect, and will not be
discussed until much later.)

Remark 21.4. Suppose that Ox contains a primitive m’th root of unity ¢, so that H?;Bl(l —tH =1—tm
in Ox[t]. This means that the elementary symmetric functions of the vector (*(t) = [t,(t,...,(™ ] are
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0,...,0,(=1)m*1. We can thus define ¢)™: Al -5 Al by ™ (t) = t™ and then enlarge the above diagram as
follows:

m * m

AMxx< RAxx—* sAmxx 2 .qgm
Amx X = (A™/%,,) % X —C
m7Y

Using this we find that (v, finy) () = (fmy)(E™) = ZZ_OI v(¢'t). Note that this characterises f,,7, because
the map ™ is an epimorphism of schemes. If Ox does not have a primitive m’th root of unity then we
can just adjoin one by forming the ring Ox[¢]/ ¢ (¢) (where ¢, is the m’th cyclotomic polynomial) and the
corresponding scheme X’. This is faithfully flat over X so most properties of f,, can be proved by changing
base to X'.

Example 21.5. Consider the case where G = G, x X, so Curves(G) = {g9(t) € Ox[t] | g(0) = 0}, with
group structure by ordinary addition. If g(t) = ;. cit?, then

(0a9)(t) = glat) = Y _(cia")t’

>0
('Ung) tn Z c; £
>0
™) = et S ¢ = Y net
>0 7=0 k>0
(fng)(t Z ncnkt
k>0

Proposition 21.6. All the above operators respect addition in Curves(G), and they satisfy the following
identities:

eaeb = eab
UnUm = Unm
fnfm = fnm
fnvn =n

fnvm = vm fn if (na m) =1
fnea = oa"fn
0avy, = vp0gn.

Moreover, we have 81 = v, = f1 =

Proof. 1t is straightforward to check that all operators preserve addition and that 6,0, = 04, and v,V = Vpm
and 6,v, = v,0,~. Next, after making a faithfully flat base change if necessary, we may assume that Ox
contains a primitive nm’th root of unity, say £&. We then have

n—1 n—1
ado)E™) = S )€1 = S () (€)™
i=0 =0
=S A€ = 3 ) = () ().
i=0 j=0 k=0

It follows that f,, fi, = fnm as claimed. For the remaining identities we use the element { = £, which is a
primitive n’th root of unity. Next, we have

m—1 m—1 m—1
(fnony) (") = Z (vny)( Cl Z Y( Cmtn Z y(t (")
=0 i=0 =0
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This gives f,v, = n. On the other hand, if m and n are coprime then the map ¢* — (™ is bijective and so

m—1 m—1 m—
(f7lvm7)(tn) = Z (UM’Y)(Cit) = Z sztm Z ’Y Cltm Umfn'Y)(tn)
1=0 =0 1=0

Finally, we have
n—1

(Oan foy) (") = (fa7)(( Zv (Clat) = Z( a)(C't) = (falbay) ().

This gives f,,0, = 0,» fr and completes the proof. |

Remark 21.7. Suppose that n is invertible in Ox. We then find that n.1g: G — G is an isomorphism,
and it follows that multiplication by n is an isomorphism on Curves(G).

Remark 21.8. We can regard A! as the colimit of the schemes D,, = spec(Z[t]/t"+1), and this makes
Curves(G) the inverse limit of the groups Map% (D, x X, G). We give these groups the discrete topology,
and then we give Curves(G) the inverse limit topology.

More concretely, we can choose a coordinate = on GG. Then, for any curve ~ there is a formal power series
g(t) € Ox|t] such that z(y(t)) = g(¢); this identifies Curves(G) with ¢t Ox[t], with group operation given by
+ . In this picture the topology on Curves(G) is just the t-adic topology.

We can use this topology to interpret various infinite sums of the operators in Definition 21.3.

Definition 21.9. Let p be a prime number. A curve v is p-typical if f,,v = 0 for all m > 1 with m # 0
(mod p). We write Curves,(G) for the subgroup of p-typical curves.

Remark 21.10. We also say that a curve v is additive if it satisfies y(s +t) = v(s) + y(¢). If so, it is easy
to check that f,,v =0 for all m > 1, so that v is p-typical for all p.

Until further notice, we will assume that Ox is a Z,)-algebra for some prime p.
Proposition 21.11. The group Curves,(G) is naturally a summand in Curves(G).

Proof. We define an operator

€= H(l —-q Uqfq) = Znilﬁdn)vnfn-
q n
Here the product is indexed by all primes ¢ different from p, and the sum is indexed by all positive integers
n # 0 (mod p). The function p is the Mébius function, so y(n) = (—1)7 if n is a product of j distinct primes,
and p(n) = 0 if n is not square-free. It makes sense to multiply by ¢~! or m~! because of Remark 21.7.
If we identify curves with power series as in Remark 21.8 then vy is just the operator g(t) — g(t*) = 0
(mod t*); it follows that the sum and the product are both convergent, and a straightforward argument
shows that they are the same. As fyv, = ¢ we see that ¢~ 'v,f, is idempotent, and therefore the operator
€g =1 —q 'v,fq, is also idempotent. We also see from Proposition 21.6 that these idempotents commute,
and thus that e is also idempotent. It is clear that if 7 is p-typical then e(y) = . Conversely, we have
fq€q = 0 and so fye = 0 for all ¢ # p, so €(7y) is always p-typical. This shows that € gives a natural retraction
Curves(G) — Curves,(G). O

Example 21.12. Consider the case where G = @a x X and «y corresponds to a series g(t) =, c;t'. Using
Example 21.5 we see that f;v = 0 iff ¢j, = 0 for all j, and thus that v is p-typical iff ¢;, = 0 whenever k is
not a power of p. In the general case we find that (eg)(t) = 3, ¢,st? , so € is just the most obvious projector
onto Curves,(G).

Definition 21.13. Consider a coordinate z: G — A'. The map (x,m): G — Al x X is then an isomorphism,
with inverse v: A! x X — G say. We say that z is a p-typical coordinate iff v is a p-typical curve. We say
that a formal group law F' over Oy is p-typical iff the tautological coordinate on the formal group Gp is
p-typical.

Proposition 21.14. Any formal group G (over a p-local base, by our standing assumption) admits a p-

typical coordinate.
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Proof. Choose any coordinate x, and let v denote the inverse curve as in Definition 21.13. Put § = €(vy), and
note that this agrees with ~y to first order, so it is also an isomorphism A' x X — G. We can invert this and
project to A! to get a new coordinate y on G, which is easily seen to be p-typical. (]

Proposition 21.15. Let x be a p-typical coordinate on G, and let vy be the inverse curve, and let § be any
other p-typical curve. Then there is a unique sequence of coefficients a; € Ox such that 6 = .7 v;ﬂai%
or equivalently 5(t) = 3.5y v(a;it?").

Proof. Put g(t) = z(6(t)) € Ox[t]. Suppose that this has the form g(t) = at? (mod t?*!) with a # 0. We

claim that d is a power of p. If not, we can choose a prime ¢ # p dividing d and apply = to the identity
Vqfqd = 0 to get

F F
0= 2(3(¢'t) = Y g(¢'t) =qat” (mod t*t"),
0<i<q 0<i<q

which contradicts the assumption a # 0. We thus have d = p’ for some i, and it follows that ¢ — Vi gy
vanishes to order strictly greater than d. The proposition follows by a standard argument of successive
approximation. O

Proposition 21.16. Let G be a formal group over a base X such that Ox is an algebra over Z,, and let
a be a generator for wg. Then there is a canonical additive curve n on G with n*a = pdot. In terms of a
suitable coordinate this is given by x(n(t)) = expp(pt).

Proof. Choose a coordinate x with a = dpz, and let v be the inverse curve, so v*« = dpt. Put 6 = €(7), so
J is p-typical and 0*a = dot. Put n = (p — v, fp)J. We claim that this is additive and independent of the
choice of x, and that n*a = pdyt.

To prove this, let y be the p-typical coordinate inverse to §, and let F' be the corresponding formal group
law. We then have

Y1) = Plr(y(t) — ¢ y((£,0)7)) = pt (mod £2),
which gives n*a = pé*a = pdot.

Now let §" be another p-typical curve with (6")*o = dot. By Proposition 21.15 we have &' = > ° /04,6
for some list of coefficients a;, and the condition on o implies that ag = 1. As f,v, = p we see that
(p — vpfp)vhba,0 = 0 and so (p — v, f,)8" = (p — v, f,)d, so 1 is well-defined.

All that is left is to show that 7 is additive. If Ox is a Q-algebra then (by the theory of logarithms) we
can take = to be an additive coordinate, and we then find that 6 = v and f,0 = f,v = 0 so n = p~y, which
is certainly additive. For general X we can apply the previous case to see that n becomes additive over
Q® Ox. If Ox is torsion-free this implies easily that 7 itself is additive. In particular, as the Lazard ring
is torsion-free we see that 7 is additive in the case of the universal FGL, and it follows by base change that
it is additive for any formal group. O

Proposition 21.17. Let v be any p-typical basic curve on G, inverse to a coordinate x. Let n be the
canonical additive curve such that n*dox = pdot. Then there is a unique series of elements ui, € Ox (for
k> 0) such that
,
py(t) = n(t) + Y y(urt?).
k>0

Proof. We have a p-typical curve 8(t) = pv(t) —n(t), which satisfies 5*« = 0. We can use Proposition 21.15
to expand 3 as f(t) = >, V(ukt”k), and then by considering the effect on dox we get ug = 0, so this
rearranges to give py(t) = n(t) + > .- v (ut?") as claimed. O

Remark 21.18. If we let F' be the formal group law such that v(s) +v(t) = v(s +r t), and apply = to the

equation displayed above, we get
F

[plr(t) = expp(pt) +r Y uit?,
k>0
which is how things are more commonly written in the literature. The elements uy, are called the Hazewinkel
parameters of (G,v) or of F.
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22. WITT VECTORS

Let R be a ring, and write NT for the set of strictly positive integers. It turns out that there is a non-
obvious ring structure on the set Map(NT, R), which has many applications in formal group theory and
related areas. We write W R for [, R with this ring structure, and call this the big ring of Witt vectors for
R.

Now consider a subset U C NT. We say that U is closed under factorisation if 1 € U, and whenever
nm € U we have n,m € U. It will turn out in this case that the set Map(U, R) inherits a ring structure as
a quotient ring of W R. In particular, we will use the rings

W,R = Map({d | d divides n}, R)
Wy R = Map(p", R).

Lemma 22.1. There is a bijection e: WR — (1 4+t R[t]) given by e(a) =[], (1 — a(n)t™). Moreover, if we
define wn(a) =3y, da(d)™? then we have

—te(a) Je(a) = Z wp(a)t™.

Proof. The product is clearly ¢-adically convergent, and thus well-defined. Suppose that e(a) = e(b). We
must show that a(n) = b(n), and we may assume inductively that a(m) = b(m) for all m < n. This means
that [],~,, (1 —a(k)t*) =[], (1 —b(k))t¥, and by considering the coefficient of " we see that a(n) = b(n).
Thus, the map e is injective.

Now suppose we have an arbitrary element f(t) € 1+ ¢ R[t]. We put f1 = f and then define a(n) and f,
recursively by

a(n) = coeflicient of t" in — f,,(t)
Jra1(t) = fu(t)(1 = a(n)t™)~".

We find that f,(t) = 1 (mod t") and f(t) = fu(t) [],,<,(1 — a(m)t™) so in the limit we get f = e(a). This
proves that e is a bijection. Next, the construction f — —t f//f is easily seen to convert products to sums,
and it sends 1 — a(d)t? to the series

—da(d)tt  a(dtt iodi
g~ T g — 2 el

The general case follows easily from this. |
Definition 22.2. For a,b € WR we define a + b = e~ !(e(a)e(b)) and ab = e~*(f(a,b)), where

f@) =TT TI @ - alir)sis) o).

i (rs)=1

Theorem 22.3. The above operations give a ring structure on W R. Moreover, the functions w, together
gwe a ring map w: WR — [, R, which is an isomorphism when R is a Q-algebra, and injective when R is
torsion-free.

Proof. Tt is clear that 14t R[t] is a group under multiplication, so W R is a group under addition (with the
zero function as the additive identity). The remaining properties are less easy to see directly, but we can
check them using the map w.

We first check that w is bijective when R is a QQ-algebra. For each n > 0 we can define a polynomial f,
(with rational coefficients) in the variables {uq | d|n} by the recursive rule

Fulw) == Jun = 0 dfalu)
d<n, d|n
61



If R is a Q-algebra we can then define f: [, . R — WR by f(u)(n) = fu(u). This is easily seen to be
inverse to w. Now suppose only that R is torsion-free. By considering the square

WR LR

| |

W@Q®R) —=],(Q® R)

we see that w is still injective.
Next, we have e(a + b) = e(a)e(b), so
e(a+b)  ea) e(b)

e(a+b) e(a) e(b)’
and we can combine this with Lemma 22.1 to see that w,(a + b) = wy(a) + wy,(b). Similarly, we have

a‘7b ! . . S . ryikrs
—tj;((a b)) = Z Z j2rsa(ir)keb(js)Friikrs,
’ g,k (r,s)=1

Now define a map
{(G,k,78) € (NDY | (r,5) =1} = {(n,d,e) € (NT)? | d and e divide n}
by (4,k,r,s) — (jkrs,jr,js). One can check that this is a bijection, and it follows that

‘tj}(&bb); = 550 S deald) by 1 = 3 wn(a)wn (),

n dln eln

50 wy (ab) = wy(a)w,(b). It follows that w: W R — [], R respects addition and multiplication, if we define
these pointwise on [], R. It follows, for example, that

w((ab)e - afbe)) = (w(a)w(®))w(e) - wa)(wd)w(e) = 0.

If R is torsion-free then w is injective, so (ab)c = a(bc). The other ring axioms can be verified the same way,
so WR is a ring. Finally, even if R has torsion, we can always find a torsion-free ring R’ with a surjective
map 7: R’ — R. (Indeed, we can just take R’ to be a polynomial ring over Z with one generator z, for each
element r € R, and define 7(z,) = r.) Now WR' is a ring and 7 induces a surjective map W R — W R that
preserves addition and multiplication, and it follows easily that W R also satisfies the ring axioms. ]

Lemma 22.4. If a(n)b(n) = 0 for all n, then the Witt sum of a and b is just the ordinary sum, so
(a +b)(n) =a(n) + b(n).
Proof. Put ¢(n) = a(n) 4+ b(n). We must show that ¢ is the Witt sum of a and b, or in other words
e(c) = e(a)e(b). As a(n)b(n) = 0 we have

(1+a(@t") (1 +b(n)t") = L+ a(n)t" +b(n)t" + a(n)b(n)t*" =1+ c(n)t",
and we can take the product over all n to prove the claim. O

Definition 22.5. Let U C N7 be closed under factorisation, and put
IvR={a:N" = R|a(U) =0}
WyR={a: N" = R|a(U°) =0}.
We will identify Iy R with Map(U¢, R) and Wy R with Map(U, R) where convenient. Given a € WR we

define an element a|y € Wy R by (a|y)(n) = a(n) for n € U, and (a|y)(n) = 0 for n ¢ U. We define
alye € Iy R in a similar way.

Proposition 22.6. There is a unique ring structure on Wy R for which the map a — aly gives a ring
homomorphism WR — Wy R. The kernel of this homomorphism is Iy R, so we get an induced isomorphism
WR/IyR — WyR. Forn € U the ring map w,: WR — R factors through Wy R. These maps taken
together give a ring map w: Wy R — [[,; R which is an isomorphism when R is a Q-algebra, and injective
when R is torsion-free.
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The proof will follow after some preliminaries.

Lemma 22.7. Ifa € IyR then w,(a) =0 for alln € U. Conversely, if R is torsion-free and wy(a) =0 for
all n € U, then a € Iy R.

Proof. First suppose that a € IyR. For n € U we observe that a(d) = 0 whenever d|n, and thus that
wp(a) = 0. Now suppose that R is torsion-free, and that for all n € U we have w,(a) = 0. We must show
that a(n) = 0, and we may assume inductively that a(d) = 0 for all proper divisors d of n. With that
assumption the equation wy,(a) = 0 reduces to na(n) = 0 and the claim follows. O

Corollary 22.8. Iy R is an ideal in W R.

Proof. This is clear from the lemma in the torsion-free case, and we can recover the general case by writing
R as a quotient of a torsion-free ring. O

Proof of Proposition 22.6. We have seen that Iy R is an ideal. For a € W R we see using Lemma 22.4 that
a = (aly) + (alye) = (a|v) (mod IyR). Thus, if a|y = bly we find that a = b (mod Iy R). We next claim
that the converse also holds. Indeed, suppose that a,b € WR with a = b (mod Iy R). We also have a = a|y
(mod IyR) and b = by (mod Iy R) so a|ly = bly + ¢ for some ¢ € Iy R. Lemma 22.4 tellus us that the sum
by + c is just the ordinary pointwise sum, so it commutes with restriction. In particular we can restrict to
U* to see that ¢ = 0, so a|y = b|y as claimed. We can thus define addition and multiplication on Wy R by

a4y b= (a+0b)|y = the unique ¢ € Wy R such that a +b=c¢ (mod IyR)
a.yb = (ab)|y = the unique d € Wiy R such that ab=d (mod Iy R) .

It is straightforward to check that this gives a ring structure for which the restriction map is a homomorphism
with kernel Iy R. If n € U it is immediate from the definitions that w,(a) depends only on a(d) for d € U,
s0 wy(a) = wp(a|y). The rest is now easy. O
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