
GROUPS AND SYMMETRY

N. P. STRICKLAND

1. Symmetry groups in Rn

1.1. General linear groups. We write Mn or Mn(R) for the set of n× n matrices over the real
numbers. Recall that an n×n matrix A is invertible if there is a matrix B such that AB = I = BA.
This holds iff det(A) 6= 0, and in that case the matrix B is unique, and we call it A−1.

We write GLn or GLn(R) for the set of invertible n× n matrices over R.
Recall that a group is a set G equipped with a binary operation ∗ and an element e ∈ G such

that
• The set G is closed under ∗, in other words a ∗ b ∈ G whenever a, b ∈ G.
• The operation is associative, in other words a ∗ (b ∗ c) = (a ∗ b) ∗ c whenever a, b, c ∈ G.
• e is a neutral element, in other words e ∗ a = a = a ∗ e for all a ∈ G.
• The operation has inverses: for any a ∈ G there exists an element a−1 ∈ G with a ∗ a−1 =
e = a−1 ∗ a.

For most groups in this course, we will write ab for a ∗ b and 1 for e.
It is easy to check that GLn is a group under matrix multiplication; it is called the general

linear group.

1.2. Orthogonal groups. Given vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn, we define

〈x, y〉 =
n∑
i=1

xiyi

‖x‖ =
√
〈x, x〉 = the length of x

d(x, y) = ‖x− y‖ = the distance from x to y .

Proposition 1.1 (The Cauchy-Schwartz inequality). For any x, y ∈ Rn we have |〈x, y〉| ≤
‖x‖ ‖y‖.

Proof. (This is included for completeness but is not examinable.)
For any t ∈ R we define

f(t) = ‖x+ ty‖2

= 〈x+ ty, x+ ty〉
= 〈x, x〉+ 2t〈x, y〉+ t2〈y, y〉
= ‖x‖2 + t2‖y‖2 + 2t〈x, y〉.

From the first part of the definition we see that f(t) ≥ 0 for all t. We now take t = −〈x, y〉/‖y‖2;
the geometric interpretation is that in this case x + ty is the projection of x perpendicular to y.
Then

t2‖y‖2 = 〈x, y〉2‖y‖2/‖y‖4 = 〈x, y〉2/‖y‖2

and
2t〈x, y〉 = −2〈x, y〉2/‖y‖2

so
f(t) = ‖x‖2 + t2‖y‖2 + 2t〈x, y〉 = ‖x‖2 − 〈x, y〉2/‖y‖2.
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Thus, the inequality f(t) ≥ 0 gives ‖x‖2 ≥ 〈x, y〉2/‖y‖2 or equivalently ‖x‖ ‖y‖ ≥ 〈x, y〉. All this
assumes that y 6= 0 but the case y = 0 is trivial. �

This allows us to define the angle between two nonzero vectors x and y to be the number
θ ∈ [0, π] such that 〈x, y〉 = ‖x‖‖y‖ cos(θ).

Proposition 1.2 (The triangle inequality). We have ‖x+y‖ ≤ ‖x‖+‖y‖, and d(x, z) ≤ d(x, y)+
d(y, z).

Proof. Using the Cauchy-Schwartz inequality, we have

(‖x‖+ ‖y‖)2 = ‖x‖2 + ‖y‖2 + 2‖x‖ ‖y‖
≥ ‖x‖2 + ‖y‖2 + 2〈x, y〉
= ‖x+ y‖2.

By taking square roots we get ‖x‖+ ‖y‖ ≥ ‖x+ y‖, and thus

d(x, y) + d(y, z) = ‖y − x‖+ ‖z − y‖ ≥ ‖(y − x) + (z − y)‖ = ‖z − x‖ = d(x, z).

�

Next recall that AT denotes the transpose of A, so the rows of AT are the columns of A, or in
other words (AT )ij = Aji. It is easy to check that

〈x,Ay〉 = 〈ATx, y〉 =
∑
i,j

xiAijyj .

Proposition 1.3. If A ∈Mn, then the following conditions are equivalent:
(a) A is invertible with A−1 = AT .
(b) A preserves inner products, or in other words 〈Ax,Ay〉 = 〈x, y〉 for all x, y ∈ Rn.
(c) A preserves lengths, or in other words ‖Ax‖ = ‖x‖ for all x ∈ Rn.
(d) A preserves distances, or in other words d(Ax,Ay) = d(x, y) for all x, y ∈ Rn.

Proof. (a)⇒(b): If AT = A−1 then

〈Ax,Ay〉 = 〈ATAx, y〉 = 〈A−1Ax, y〉 = 〈x, y〉.
(b)⇒(c)⇒(d): this is trivial, as lengths are defined in terms of inner products, and distances

are defined in terms of lengths.
(d)⇒(c): If A preserves distances then ‖Ax‖ = d(Ax,A0) = d(x, 0) = ‖x‖.
(c)⇒(b): Note that

‖x+ y‖2 = 〈x+ y, x+ y〉 = ‖x‖2 + ‖y‖2 + 2〈x, y〉,
so

〈x, y〉 = (‖x+ y‖2 − ‖x‖2 − ‖y‖2)/2.
Thus, if A preserves lengths we have

〈Ax,Ay〉 = (‖Ax+Ay‖2 − ‖Ax‖2 − ‖Ay‖2)/2

= (‖A(x+ y)‖2 − ‖Ax‖2 − ‖Ay‖2)/2

= (‖x+ y‖2 − ‖x‖2 − ‖y‖2)/2

= 〈x, y〉.

(b)⇒(a): Suppose that 〈Ax,Ay〉 = 〈x, y〉 for all x, y. We also have 〈Ax,Ay〉 = 〈x,ATAy〉,
so we deduce that 〈x, y − ATAy〉 = 0. This means that y − ATAy is orthogonal to every vector
in Rn. In particular, it is orthogonal to itself, so it must be zero, so y = ATAy for all y. This
shows that ATA = I, so AT is an inverse for A. (Here we are using the fact that if A and B are
square matrices of the same size and BA = I then AB = I also. Why is this false for non-square
matrices?) �

Definition 1.4. A matrixA is orthogonal if it satisfies the equivalent conditions in the Proposition.
We write On for the set of n× n orthogonal matrices, and call this the orthogonal group.
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Proposition 1.5. On is a subgroup of GLn.

Proof. We need to check that (1) the identity matrix is in On, (2) if A ∈ On then A−1 ∈ On
and (3) if A,B ∈ On then AB ∈ On. Condition (1) is clear, because IT = I = I−1. If A ∈ On
then ATA = I and ATT = A so if we put C = AT we see that CCT = I, so C ∈ On. On the other
hand, we also have C = A−1 so A−1 ∈ On as required. Finally, if A,B ∈ On then (AB)T = BTAT

and BBT = I and AAT = I, so AB(AB)T = ABBTAT = AAT = I. Thus AB ∈ On. �

1.3. Determinants. Recall that the determinant of an n× n matrix A is given by the formula

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Ai,σ(i).

In other words, for each permutation σ of {1, . . . , n} we form the product

A1,σ(1)A2,σ(2) . . . An,σ(n),

we multiply by the signature of σ and then add all these terms up to get the determinant. For
example, when n = 2 we just have the identity permutation ι and the transposition τ = (1 2), and
so we have the familiar formula

det
(
A11 A12

A21 A22

)
= sgn(ι)A1,ι(1)A2,ι(2) + sgn(τ)A1,τ(1)A2,τ(2) = A11A22 −A12A21.

Much more important than the definition is the following list of properties:
(a) det(I) = 1
(b) det(AB) = det(A) det(B)
(c) det(AT ) = det(A)
(d) If we multiply a single row in A by a number t to get a new matrix A′, then det(A′) =

tdet(A). The same thing works for columns instead of rows.
(e) If we add a multiple of one row in A to another row to get a new matrix A′, then det(A′) =

det(A).

(f) det(tA) = tn det(A) for t ∈ R (for example det
(
ta tb
tc td

)
= t2ad−t2bc = t2 det

(
a b
c d

)
).

If A is invertible then det(A) det(A−1) = det(I) = 1, so det(A) 6= 0. Thus det can be thought
of as a function from GLn = {invertible n× n matrices} to the set R× := R \ {0}. Let Dt be the
matrix obtained from I by multiplying the first row by t; for example, when n = 4 we have

Dt =


t 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

We then have det(Dt) = t; this shows that the function det : GLn −→ R× is surjective. Moreover,
R× is a group under multiplication, and properties (a) and (b) can be restated as follows:

Proposition 1.6. The determinant gives a surjective homomorphism det : GLn −→ R×. �

We next recall the First Isomorphism Theorem:

Theorem 1.7. If φ : G −→ H is a surjective homomorphism of groups and N = {g ∈ G | φ(g) = 1}
is the kernel of φ, then:

(a) N is a normal subgroup of G; in other words, it contains 1, is closed under multiplication
and inversion, and satisfies gNg−1 = N for all g ∈ G.

(b) It follows that there is a quotient group G/N . The elements of G/N are the cosets of N .
For each coset C we can choose g ∈ G such that C = gN , but there will usually be many
choices for g.

(c) There is a unique function φ : G/N −→ H with φ(gN) = φ(g) for all g ∈ G.
(d) The function φ is actually an isomorphism of groups. �
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Definition 1.8. We write

SLn = ker(det : GLn −→ R×) = {n× n matrices A such that det(A) = 1},

and call this the special linear group.

The First Isomorphism Theorem implies:

Proposition 1.9. SLn is a normal subgroup of GLn, and there is a natural isomorphism

det : GLn/SLn −→ R×. �

1.4. Orthogonal determinants.

Lemma 1.10. If A ∈ On then det(A) ∈ {1,−1} = {±1}.

Proof. det(A)2 = det(A) det(AT ) = det(AAT ) = det(I) = 1. �

Clearly {±1} is a subgroup of R×, and det gives a homomorphism from On to {±1}. Clearly
DT
−1D−1 = D2

−1 = I, so D−1 ∈ On, and det(D−1) = −1, so our homomorphism det : On −→ {±1}
is surjective.

Definition 1.11. We write

SOn = ker(det : On −→ {±1}) = {n× n orthogonal matrices A such that det(A) = 1},

and call this the special orthogonal group.

The First Isomorphism Theorem gives:

Proposition 1.12. SOn is a normal subgroup of On, and there is a natural isomorphism

det : On/SOn −→ {±1}.

1.5. One dimension. A 1× 1 matrix is just a number. Thus GL1 = R×, and O1 = {±1}. The
determinant map is just the identity, so SL1 = SO1 = {1}, the trivial group.

1.6. Two dimensions. Given an angle θ, we write c = cos(θ) and s = sin(θ) (so s2 + c2 = 1) and
define matrices as follows:

Rθ =
(
c −s
s c

)
Sθ =

(
c s
s −c

)
.

It is easy to see that these are orthogonal, and that det(Rθ) = 1 and det(Sθ) = −1. Thus
Rθ ∈ SO2 and Sθ ∈ O2 \ SO2.

Theorem 1.13. Any matrix A ∈ SO2 has the form Rθ for some θ. Any matrix A ∈ O2 \ SO2

has the form Sθ for some θ.

Proof. Suppose A ∈ O2. We have A =
(
a b
c d

)
for some a, b, c, d. As A is orthogonal we have

I = ATA, so (
1 0
0 1

)
=

(
a c
b d

) (
a b
c d

)
=

(
a2 + c2 ab+ cd
ab+ cd b2 + d2

)
,

so a2 + c2 = b2 +d2 = 1 and ab+ cd = 0. In other words, the vectors u = (a, c) and v = (b, d) have
length one and are orthogonal to each other. As u is a unit vector, we have u = (cos(θ), sin(θ))
for some θ, so a = cos(θ) and c = sin(θ). It is geometrically clear (see the diagram below) that
the only unit vectors orthogonal to u are (−c, a) = (− sin(θ), cos(θ)) and (c,−a) = (sin(θ), cos(θ)).
If v = (−c, a) we find that A = Rθ, and if v = (c,−a) we find that A = Sθ. By equating
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determinants, we see that the first case must occur if A ∈ SO2, and the second case must occur if
A ∈ O2 \ SO2.

±v = (−c, a) = (− sin(θ), cos(θ))

±v = (c,−a) = (sin(θ),− cos(θ))

u = (a, c) = (cos(θ), sin(θ))

θθ
θ

θ

�

In R2 it is often convenient to use polar coordinates. We will write [r, φ] for the point at distance
r from the origin and angle φ to the x axis, so

[r, φ] = (r cos(φ), r sin(φ)).

Note that [r, φ] = [r′, φ′] iff r = r′ = 0 or (r = r′ 6= 0 and φ− φ′ is an integer multiple of 2π).

Proposition 1.14. We have Rθ.[r, φ] = [r, θ + φ], so Rθ represents an anticlockwise rotation
through an angle θ.

Proof.

Rθ.[r, φ] =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

) (
r cos(φ)
r sin(φ)

)
= r

(
cos(θ) cos(φ)− sin(θ) sin(φ)
sin(θ) cos(φ) + cos(θ) sin(φ)

)
=

(
r cos(θ + φ)
r sin(θ + φ)

)
= [r, θ + φ].

�

We also want to characterise Sθ geometrically. Firstly, a very similar calculation shows that
Sθ.[r, φ] = [r, θ−φ]. Now define u+ = [1, θ/2] and u− = [1, (θ+ π)/2], so that u+ and u− are unit
vectors and are orthogonal to each other. Note also that −[r, φ] = [r, φ−π], so −u− = [1, (θ−π)/2].
We have

Sθ.u+ = [1, θ − θ/2] = [1, θ/2] = u+

Sθ.u− = [1, θ − θ/2− π/2] = [1, (θ − π)/2] = −u−.

Thus u+ and u− are eigenvectors of Sθ with eigenvalues +1 and −1 respectively. This means
that Sθ represents reflection across the line through 0 and u+. We summarise our conclusions as
follows:

Proposition 1.15. We have Sθ.[r, φ] = [r, θ − φ], and Sθ represents reflection across a line L
through 0 at angle θ/2 to the x-axis. �
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u−

−u− = Sθu−

u+ = Sθu+

θ/2

L

By working in polar coordinates, it is now easy to check the following facts:

Rθ = Rφ iff θ − φ ∈ 2πZ
Sθ = Sφ iff θ − φ ∈ 2πZ

RθRφ = Rθ+φ

RθSφ = Sθ+φ

SθRφ = Sθ−φ

SθSφ = Rθ−φ

R−1
θ = R−θ

S−1
θ = Sθ

RθSφR
−1
θ = Sφ+2θ.

In particular, we have RθRφ = RφRθ, so the group SO2 is Abelian.
We also have SθSθ = Rθ−θ = R0 = I, so all reflections have order 2. A rotation Rθ has

order dividing m iff mθ is an integer multiple of 2π, iff θ = 2πr/m (mod 2πZ) for some r ∈
{0, 1, . . . ,m− 1}. It has order exactly m iff (r,m) = 1. Most rotations have infinite order.

1.7. Symmetries of geometric objects. Let X be a subset of Rn. For any A ∈ On we put
AX = {Ax | x ∈ X}, the image of X under A. The symmetry group of X is

Symm(X) = {A ∈ On | AX = X}.

The direct symmetry group is

Dir(X) = {A ∈ SOn | AX = X} = Symm(X) ∩ SOn.

Example 1.16. Let X be a rectangle as shown below.

6
?

-�

S0

Sπ

It is clearly invariant under the reflections S0 (across the x-axis) and Sπ (across the y-axis), and
also under a half-turn (which is Rπ). We have S0Sπ = SπS0 = Rπ = R−π and R0 = I. The
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symmetry groups are

Symm(X) = {I, S0, Sπ, Rπ}
Dir(X) = {I,Rπ}.

Now suppose that A is not a symmetry of X. Then AX is different from X, but it has the
same shape and thus is “just as symmetrical” as X. However, it it not true (as one might naively
think) that Symm(AX) = Symm(X); instead, Symm(AX) is conjugate to Symm(X). The slogan
is that “conjugacy is doing the same thing somewhere else”.

Proposition 1.17. For any X ⊆ Rn and A ∈ On we have Symm(AX) = ASymm(X)A−1 and
Dir(AX) = ADir(X)A−1.

Proof. If B ∈ Symm(X) then BX = X so (ABA−1)(AX) = ABX = AX, which shows that
ABA−1 ∈ Symm(AX). Thus ASymm(X)A−1 ⊆ Symm(AX). Conversely, suppose that C ∈
Symm(AX). If we put B = A−1CA, then a similar argument shows that B ∈ Symm(X). Thus,
the matrix C = ABA−1 lies in ASymm(X)A−1, proving that Symm(AX) ⊆ ASymm(X)A−1 as
required.

The argument for Dir(X) is the same. It works even if A 6∈ SOn, because

det(ABA−1) = det(A) det(B) det(A)−1 = det(B),

so B lies in SOn iff ABA−1 lies in SOn. �

For another example of this sort of phenomenon let L be a line through the origin, and let SL
be the reflection across L. If L has angle φ to the x-axis, then SL = S2φ. The line RθL has angle
θ+φ to the x-axis, so SRθL = S2(θ+φ). On the other hand, from our formulae for compositions of
reflections and rotations, we see that RθS2φR

−1
θ = S2φ+2θ. In summary, we have:

Proposition 1.18. For any rotation R ∈ SO2 and any line L in R2 we have RSLR−1 = SRL. �

Example 1.19.

X
?
6S0

�-
Sπ

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��

S
S

S
S

S

S
S

S
S

S

Rπ/6X

S
So

S
Sw

Sπ/3

��>
��=

S4π/3

We can see directly that

Symm(X) = {I, S0, Sπ, Rπ}
Symm(Rπ/6X) = {I, Sπ/3, S4π/3, Rπ}

We also have

Rπ/6IR
−1
π/6 = I

Rπ/6S0R
−1
π/6 = Sπ/3

Rπ/6SπR
−1
π/6 = S4π/3

Rπ/6RπR
−1
π/6 = Rπ.
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This shows that Symm(Rπ/6X) = Rπ/6 Symm(X)R−1
π/6, illustrating Proposition 1.17. Also, if we

let L denote the long axis of X we see that S0 = SL and Sπ/3 is the reflection in the long axis of
Rπ/6X, which is Rπ/6L. This illustrates Proposition 1.18.

2. Polygons

2.1. Cyclic and dihedral groups. Fix an integer n > 0. For k = 0, . . . , n− 1 we put

vk = [1, 2πk/n] = (cos(2πk/n), sin(2πk/n)).

We then let Xn be the regular n-gon with vertices v0, . . . , vn−1. In the case n = 1 this is to be
interpreted as the line segment from (0, 0) to v0 = (1, 0).

X1 X2 X3 X4 X5

We also define

Cn = Dir(Xn)

Dn = Symm(Xn)

R = R2π/n = 1/n-turn around the origin
S = S0 = reflection across the x-axis .

We call Cn the cyclic group, and Dn the dihedral group.

Theorem 2.1. We have

Cn = {Ri | 0 ≤ i < n}
Dn = {Ri | 0 ≤ i < n} ∪ {RiS | 0 ≤ i < n}.

Proof. First, it is clear that R ∈ Cn and S ∈ Dn, so Cn ⊇ {Ri | 0 ≤ i < n} and Dn ⊇ {Ri | 0 ≤
i < n} ∪ {RiS | 0 ≤ i < n}. Suppose that A ∈ Cn. Then Av0 ∈ RXn and ‖Av0‖ = ‖v0‖ = 1.
However, it is easy to see that the only vectors in Xn of length 1 are the vertices, so Av0 = vi for
some i with 0 ≤ i < n. This means that the matrix A′ := R−iA satisfies A′v0 = v0. Also, A′ is
a rotation, and the only way a rotation of the plane can have a nonzero fixed point is if it is the
identity. Thus A′ = I, so A = Ri. Thus Cn = {Ai | 0 ≤ i < n} as claimed.

Now suppose that B ∈ Dn. If B ∈ Cn then B = Ri for some i by the above. If B 6∈ Cn then
det(B) = −1, so BS ∈ Dn and det(BS) = det(B) det(S) = 1, so BS = Ri for some i. This means
that B = BSS = RiS, which proves the claim about Dn. �

Remark 2.2. Because SOn is normal in On, we see that Cn is normal in Dn. It is easy to see
that Dn/Cn ' {±1}.

2.2. The classification of subgroups.

Proposition 2.3. Let G be a finite subgroup of SO2. Then G = Cn for some n.

Proof. Let θ be the smallest angle in the range (0, 2π] such that Rθ ∈ G. I claim that θ = 2π/n
for some n, and that G = Cn. To see this, let φ be any angle such that φ ≥ 0 and Rφ ∈ G. Let k
be the largest integer such that kθ ≤ φ and put ψ = φ− kθ. We then have 0 ≤ ψ < θ ≤ 2π, and
Rψ = RφR

−k
θ ∈ G. If ψ were in the range (0, 2π], this would contradict our definition of θ, so we

must have ψ = 0. Thus φ = kθ and Rφ = Rkθ . This shows that the elements of G are precisely
the powers of Rθ.

In particular, we have R2π = I ∈ G, so we can apply the above argument with φ = 2π and
deduce that 2π = nθ for some n > 0, so θ = 2π/n. Thus G consists of the powers of R2π/n, in
other words G = Cn. �
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Theorem 2.4. Let G be a finite subgroup of O2. Then either G = Cn = Dir(Xn) for some n, or
G = RθDnR

−1
θ = Symm(RθXn) for some n and θ.

Proof. Put H = G ∩ SO2; the Proposition tells us that H = Cn for some n. If G ≤ SO2 then
G = H = Cn. Otherwise G contains some reflection, say S2θ ∈ G. If A ∈ G then either

(a) det(A) = 1, so A ∈ H and A = Rk2π/n for some k; or
(b) det(A) = −1 so AS2θ ∈ G and det(AS2θ) = 1 so AS2θ = Rk2π/n for some k so A =

Rk2π/nS2θ.

Next, note that R−1
θ Rk2π/nRθ = Rk2π/n and R−1

θ S2θRθ = S0. It follows that the group G′ :=
R−1
θ GRθ consists of the elements Rk2π/n and Rk2π/nS0, or in other words G′ = Dn. Thus G =

RθG
′R−1
θ = RθDnR

−1
θ , as required. �

3. Affine isometries

Definition 3.1. An isometry of Rn is a function f : Rn −→ Rn of the form f(x) = Ax + a for
some orthogonal matrix A ∈ On and some vector a ∈ Rn. We write Isomn for the set of all such
functions.

Remark 3.2. If we have an isometry f(x) = Ax+ a as above, then d(f(x), f(y)) = d(x, y) for all
x and y in Rn, or in other words, f preserves distances. To see this, note that

d(f(x), f(y)) = ‖(Ax+ a)− (Ay + a)‖ = ‖A(x− y)‖ = ‖x− y‖ = d(x, y).

(At the third step we used the fact that A is an orthogonal matrix, so ‖Az‖ = ‖z‖ for any vector
z ∈ Rn.)

Remark 3.3. Let f : Rn −→ Rn be any function that preserves distances. It can be shown that
there is a matrix A ∈ On and a vector a ∈ Rn such that f(x) = Ax+a for all x, so f ∈ Isomn. (The
proof takes about a page and a half, but we will not give it here.) This means that Definition 3.1
is compatible with the general definition of isometries for metric spaces.

Remark 3.4. Suppose we have isometries f(x) = Ax+ a and g(x) = Bx+ b. Then

f(g(x)) = (AB)x+ (Ab+ a)

f−1(x) = A−1x+ (−A−1a).

We have AB ∈ On and Ab + a ∈ Rn so f ◦ g ∈ Isomn. Similarly A−1 ∈ On and −A−1a ∈ Rn
so f−1 ∈ Isomn. This shows that Isomn is a group under composition. We will usually write fg
instead of f ◦ g, and write 1 for the identity map.

We will not distinguish between a matrix A ∈ On and the corresponding isometry f(x) = Ax.
We thus think of On as a subgroup of Isomn.

For any a ∈ Rn we have an isometry Ta defined by Ta(x) = x + a; this is called a translation.
We clearly have TaTb = Ta+b and T−1

a = T−a. It follows that the translations form an abelian
subgroup Transn ≤ Isomn. Using the correspondence Ta ↔ a we can identify Transn with Rn.

3.1. The homomorphism ψ.

Definition 3.5. Given an isometry f(x) = Ax + a, we define ψ(f) = A ∈ On and det(f) =
det(A) = det(ψ(f)) ∈ {1,−1}. This gives functions ψ : Isomn −→ On and det : Isomn −→ {1,−1}.

Proposition 3.6. The map ψ is a surjective homomorphism with kernel Transn, and thus it
induces an isomorphism Isomn /Transn ' On. Moreover, det : Isomn −→ {±1} is also a homo-
morphism.

Proof. First suppose we have f(x) = Ax+ a and g(x) = Bx+ b. Then

fg(x) = f(Bx+ b) = A(Bx+ b) + a = ABx+ (Ab+ a),

which shows that ψ(fg) = AB = ψ(f)ψ(g). This shows that ψ is a homomorphism, and it follows
that det : Isomn −→ {±1} is also a homomorphism. For any A ∈ On we can define an isometry
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f by f(x) = Ax and then ψ(f) = A, which shows that ψ is surjective. We have ψ(f) = I iff
f(x) = x+ a for all x, iff f is a translation, so ker(ψ) is the translation subgroup Transn. It now
follows from the First Isomorphism Theorem that Isomn /Transn ' On. �

Proposition 3.7. For any f ∈ Isomn and b ∈ Rn we have fTbf−1 = Tψ(f)a.
(This is meaningful because ψ(f) ∈ On is a matrix and a is a vector so ψ(f)a is another vector,

so we have a translation function Tψ(f)a.)

Proof. We can write f(x) = Ax+ a, where A = ψ(f). We then have

fTb(x) = f(x+ b) = Ax+Ab+ a = f(x) +Ab = TAbf(x).

Thus, fTb = TAbf , and we can multiply by f−1 on the right to get fTbf−1 = TAb = Tψ(f)b. �

Definition 3.8. For any subset X ⊆ Rn, we put

Isom(X) = {f ∈ Isomn | f(X) = X},

and call this the isometry group of X.

Example 3.9. Let X be the subset of R2 illustrated below. It extends infinitely in all directions,
and the distance between adjacent faces is one unit.
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If we shift X by n units to the right and m units up, we just get X again (assuming that n and
m are integers). In other words, T(n,m)X = X, so T(n,m) ∈ Isom(X). In fact, one can check that
these are the only symmetries, so Isom(X) = {T(n,m) | (n,m) ∈ Z2}.

We conclude this section by giving a simple criterion for when an isometry is the identity.

Definition 3.10. A list u0, . . . , un of n + 1 points in Rn is in general position if the vectors
u1 − u0, . . . , un − u0 form a basis of Rn.

Proposition 3.11. If u0, . . . , un are in general position, f ∈ Isomn and f(ui) = ui for all i, then
f = 1.

Proof. We have f(x) = Ax+ b for some A, b. It follows that

A(ui − u0) = (Aui + b)− (Au0 + b) = f(ui)− f(u0) = ui − u0

for all i. As the vectors ui − u0 form a basis, we deduce that A = I, so f(x) = x+ b for all x. In
particular, u0 = f(u0) = u0 + b, so b = 0. Thus f(x) = x for all x as claimed. �
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4. Plane isometries

We next define some special types of isometries of R2.
(1) For any a ∈ R2 and any angle θ, we put Rθ,a = TaRθT−a, so that

Rθ,a(x) = a+Rθ(x− a) = Rθx+ (1−Rθ)a.

Note that Rθ,a(a+ x) = a+ Rθx, which means that Rθ,a is the rotation through angle θ
around a. If θ is not a multiple of 2π then for all x 6= 0 we have Rθx 6= 0; it follows that
a is the unique fixed point of Rθ,a. Note also that ψ(Rθ,a) = Rθ.

(2) For any line L < R2 (not necessarily passing through the origin) we let SL be the reflection
across L. If L has angle θ/2 to the x-axis and a ∈ L one checks that SL = TaSθT−a. We
also have ψ(SL) = Sα, where α is the angle between L and the x-axis.

(3) For any line L < R2 and any vector b that is parallel to L, we define GL,b = TbSL. It is
not hard to check geometrically that GL,b = SLTb also, and it follows that

G2
L,b = (TbSL)(SLTb) = T 2

b = T2b.

-r r

-r rx Tbx

SLx TbSLx = SLTbx
b

b

L

Clearly GL,0 = SL. Maps of the form GL,b with b 6= 0 are called glide-reflections. We have
ψ(GL,b) = Sα, where α is the angle between L and the x-axis.

Proposition 4.1. For any f ∈ Isom2, precisely one of the following holds:
(a) f = 1
(b) f = Ta for some a ∈ R2 \ {0}
(c) f = Rθ,a for some a ∈ R2 and θ ∈ (0, 2π)
(d) f = SL for some line L < R2

(e) f = GL,b for some L and some nonzero vector b parallel to L.

Proof. We know that there exists a matrix A ∈ O2 and a vector b such that f(x) = Ax+ b for all
x. If A = I then we are in case (a) (if b = 0) or case (b) (if b 6= 0). We may thus assume that
A 6= I.

If A is a rotation we have A = Rθ for some θ ∈ (0, 2π). As A is a nontrivial rotation, for all x
we have x 6= Ax so (I − A)x 6= 0. Thus, the kernel of I − A is zero, so I − A is invertible. Put
a = (I −A)−1b, so that b = a−Aa. Then

Rθ,ax = TaAT−ax = A(x− a) + a = Ax+ a−Aa = Ax+ b = f(x),

so f = Rθ,a.
Now suppose instead that A is a reflection, say A = Sθ. As before we put u+ = [1, θ/2] and

u− = [1, (θ+π)/2], so u+ and u− are unit vectors and are orthogonal to each other. We can write
any vector x in the form x+ + x−, where x± is a multiple of u±, and then Ax = x+ − x−. It
follows that

f(x) = Ax+ b = x+ − x− + b+ + b− = (b+ + x+) + (b− − x−).
Now let L be the line through b−/2 at angle θ/2 to the x-axis. We can write any vector x as
(x+ + 1

2b−) + (x− − 1
2b−), where (x+ + 1

2b−) ∈ L and (x− − 1
2b−) is orthogonal to L. It follows

that
SLx = (x+ + 1

2b−)− (x− − 1
2b−) = x+ + b− − x−,

and thus that
GL,b+x = b+ + x+ + b− − x− = f(x).
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Thus, f = GL,b+ , so f is a reflection (if b+ = 0) or a glide-reflection (if b+ 6= 0). �

Remark 4.2. Suppose we have an isometry f , and we want to know where it falls in the above
clasification. One can check using the above proof that the following method will work.

(a) Find the matrix A = ψ(f) ∈ O2.
(b) If A is the identity, then f = Tu for some u. To find u, let x be any point for which one

can easily find f(x), and then u = f(x)− x.
(c) Now suppose that ψ(f) = Rθ for some angle θ ∈ (0, 2π). Then there is a unique point a

such that f(a) = a, and it works out that f = Rθ,a.
(d) Suppose instead that ψ(f) = Sθ for some θ. Then we choose a point x for which we can

easily calculate f(f(x)), and put u = (f(f(x))−x)/2. We then put L = {x | f(x) = x+u}.
It works out that L is always a line parallel to u, and that f = GL,u (if u 6= 0) or f = SL
(if u = 0).

4.1. Subgroups with no translations.

Theorem 4.3. Let H be a subgroup of Isom2, and suppose that H contains no translations (other
than the trivial translation T0 = 1). Then there is a point a ∈ R2 such that f(a) = a for all f ∈ H,
and thus H ≤ TaO2T

−1
a .

This theorem implies a classification of finite subgroups of Isom2, as will be explained in Corol-
lary 4.5. The proof relies on the following lemma.

Lemma 4.4. (a) (Ra,θSL)2 = Tc, where c = (1−Rθ)(a− SL(a)).
(b) Ra,θRb,φR−1

a,θR
−1
b,φ = Td, where d = (1−Rφ)(1−Rθ)(a− b).

(c) If K and L are parallel then there is a vector u perpendicular to K and L such that
L = K + u, and SLSK = T2u.

(d) If K and L are not parallel then they meet at a unique point a, and there is a unique angle
θ ∈ [0, π) such that L = Ra,θK, and SLSK = R2θ,a.

We will first prove the theorem using the lemma, then we will prove the lemma.

Proof of Theorem 4.3. I first claim that H contains no glide-reflections. Indeed, if GL,b ∈ H then
G2
L,b ∈ H but G2

L,b = T2b and 2b 6= 0, contrary to our assumption about H. Thus every element
of H is either the identity, a nontrivial rotation, or a reflection.

Now suppose that H contains a nontrivial rotation Ra,θ. Because this is nontrivial we have
Rθ(x) 6= x for all x, so (1 − Rθ)(x) 6= 0, so 1 − Rθ is invertible. I claim that f(a) = a for all
f ∈ H. This is clear if f = 1. If f is a nontrivial rotation, say f = Rb,φ, then we note that the
element g = Ra,θRb,φR

−1
a,θR

−1
b,φ also lies in H. Part (b) of the lemma tells us that g = Td, where

d = (1−Rφ)(1−Rθ)(a− b). As H contains no nontrivial translations, we have d = 0. As 1−Rθ
and 1− Rφ are invertible, we must have a− b = 0, and so a = b, so f = Ra,φ. Thus the element
f = Ra,φ has f(a) = a as claimed.

Now suppose instead that f is a reflection, say f = SL. We then note that the element h =
(Ra,θSL)2 also lies in H. Part (a) of the lemma tells us that h = Tc, where c = (1−Rθ)(a−SL(a)).
It follows that c = 0, and 1−Rθ is invertible so a−SL(a) = 0, so SL(a) = a. Thus f(a) = SL(a) = a
as required.

This proves the theorem when H contains a nontrivial rotation. Now suppose instead that H
contains only reflections and the identity map. I claim that H contains at most one reflection. If
not, let SK and SL be two different reflections in H, so SLSK also lies in H. We see from parts (c)
and (d) of the lemma that SLSK is either a nontrivial translation or a nontrivial rotation, giving
a contradiction. It follows that H is either the trivial group {1} or a group of the form {1, SL}
for some line L. In the first case we can take a to be any point at all, and in the second case a
can be any point on L. �

Proof of Lemma 4.4. We first check the general type of the various isometries considered, using
the method described in Remark 4.2.
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(a) Clearly ψ(Ra,θSL) is a rotation times a reflection, which is another reflection. Every
reflection in O2 squares to the identity, so ψ((Ra,θSL)2) = 1, so (Ra,θSL)2 = Tc for some
c.

(b) We have

ψ(Ra,θRb,φR−1
a,θR

−1
b,φ) = RθRφR−θR−φ = Rθ+φ−θ−φ = 1,

so
Ra,θRb,φR

−1
a,θR

−1
b,φ = Td

for some d.
(c) As L and K are parallel, they have the same angle with the x-axis, say α. We thus have

ψ(SLSK) = SαSα = 1,

so SLSK = Te for some e.
(d) Here ψ(SLSK) is a product of two different reflections in O2, so it is a rotation, say Rφ.

This means that SLSK = Ra,φ for some a and φ.
We next find the details.
(a) To find c, we choose any convenient point x, and then c will be c = (Ra,θSL)2(x)− x. We

will take x = SL(a). We then have SL(x) = a so Ra,θSL(x) = Ra,θ(a) = a so

(Ra,θSL)2(x) = Ra,θSL(a)

= RθSL(a) + (1−Rθ)a

c = (Ra,θSL)2(x)− x

= RθSL(a) + (1−Rθ)a− SL(a)

= (1−Rθ)a+ (Rθ − 1)SL(a)

= (1−Rθ)(a− SL(a)).

(b) Put f = Ra,θRb,φR
−1
a,θR

−1
b,φ. We have seen that ψ(f) = 1, so f = Td for some d. To

find d, we choose any convenient point x, and then d will be f(x) − x. We will take
x = Rb,φRa,θ(b), so

f(x) = Ra,θRb,φR
−1
a,θR

−1
b,φRb,φRa,θ(b)

= Ra,θRb,φ(b)

= Ra,θ(b)

= Rθb+ (1−Rθ)a.

(At the third step we used the fact that Rb,φ is a rotation around b, so it sends b to itself.)
We also have

x = Rb,φRa,θ(b)

= Rb,φ(Rθb+ (1−Rθ)a)

= RφRθb+Rφ(1−Rθ)a+ (1−Rφ)b.

By subtracting these, we get

d = f(x)− x

= Rθb+ (1−Rθ)a
−RφRθb−Rφ(1−Rθ)a− (1−Rφ)b

= (1−Rφ)Rθb+ (1−Rφ)(1−Rθ)a− (1−Rφ)b
= (1−Rφ)(1−Rθ)(a− b).

(c) We know that SLSK = Te for some e. Choose any point x on the line K, so SK(x) = x.
We then have e = SLSK(x)− x = SL(x)− x.

If we move away from x towards L in a direction perpendicular to K and L, we will
eventually reach L. In other words, there is a vector u perpendicular to K and L such
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that the point y := x+u lies in L. As L is parallel to K, it is easy to see that L = K +u.
Moreover, SL(x) is the reflection of x across L, which is just x + 2u. It follows that
e = SL(x)− x = 2u as claimed.

-r r r
uu

x y SLx

K L

(d) Let K and L be lines that are not parallel. It is geometrically clear that they meet in a
unique point, which we call a. Let α be the angle between the x-axis and K, measured
anticlockwise from the axis. Let θ be the angle between K and L, measured anticlockwise
from K, so that θ ∈ [0, π). Clearly L is obtained by rotating K around a through an angle
of θ, in other words L = Ra,θK. We also have SK = TaS2αT−a and SL = TaS2α+2θT−a
and S2α+2θS2α = R2θ so SLSK = TaR2θT−a = Ra,2θ.

�

Corollary 4.5. Let H be a finite subgroup of Isom2. Then either H = TaCnT
−1
a for some a and

n, or H = TaRθDnR
−1
θ T−1

a for some a, n and θ.

Proof. Every element of H has finite order, and thus cannot be a nontrivial translation. It follows
from the theorem that H ≤ TaO2T

−1
a for some a, so the group H ′ := T−1

a HTa is contained in O2.
Theorem 2.4 tells us that H ′ has the form Cn or RθDnR

−1
θ and clearly H = TaH

′T−1
a . The claim

follows. �

5. Wallpaper

In this section we study symmetry groups of “wallpaper patterns”, which for our purposes will
mean “reasonable” subsets of R2 which are translationally symmetric in two different directions.
(I say “reasonable” to exclude sets like Q2; we will be more precise later.) The real importance
of this study (and its three-dimensional analogue) is in the physical chemistry of crystals: the
symmetry group of a crystal is a useful tool in studying the way it vibrates, refracts X-rays, and
so on.

The simplest wallpaper group was discussed in Example 3.9. It turns out that there are precisely
17 types of wallpaper up to a suitable notion of equivalence. Here we will analyse a small selection
of these types, and prove some of the key results in the general classification.

We start with some general concepts.

Definition 5.1. For any subgroup H ≤ Isom2, the point group of H is the subgroup ψ(H) =
{ψ(h) | h ∈ H} ≤ O2, where ψ is as in Section 3.1. We also write Trans(H) = {a ∈ R2 | Ta ∈ H}
and call this the translation subgroup of H.

For any point a ∈ R2, we also define σa(H) = {A ∈ O2 | TaAT−1
a ∈ H}, which is a subgroup of

O2. This is the part of H that encodes the rotational and reflectional symmetry about a.

Proposition 5.2. For any a ∈ A we have σa(H) ⊆ ψ(H).

Proof. If A ∈ σa(H) then TaAT
−1
a ∈ H, so ψ(Ta)ψ(A)ψ(Ta)−1 ∈ ψ(H). We have ψ(Ta) = I and

ψ(A) = A, so A ∈ ψ(H), as required. �

Definition 5.3. Let G be a group, and let x1, . . . , xr be elements of G. We say that these elements
generate G if every element in g ∈ G can be expressed in terms of the elements xi, say

g = xn1
i1
xn2
i2
· · ·xnr

ir

for some indices i1, . . . , ir and integers n1, . . . , nr.
Equivalently, the xi generate G iff the only subgroup of G containing all the xi is G itself.
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We will be interested in finding small sets of generators for some of the wallpaper groups.

5.1. The group p4g. Let M be the figure shown on the left below, and let M ′ be its mirror
image, as shown on the right.
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It is easy to see that Symm(M) = Dir(M) = C4.
Now let X be the figure shown below, consisting of a copy of M centred at each point of the form

(n,m) with n,m ∈ Z, together with a copy of M ′ centred at each point of the form (n+ 1
2 ,m+ 1

2 ).
We will study the group Isom(X) := {f ∈ Isom2 | f(X) = X}, which is known in chemistry as
p4g.
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Let K and L be the lines marked in the diagram, so K has equation x + y = 1
2 and L has

equation y = 1
4 . We define isometries as follows:

T1 = T(1,0) (x, y) 7→ (x+ 1, y)
T2 = T(0,1) (x, y) 7→ (x, y + 1)
G = T(1/2,0)SL (x, y) 7→ ( 1

2 + x, 1
2 − y)

R = Rπ/2 (x, y) 7→ (−y, x)
S = SK (x, y) 7→ ( 1

2 − y, 1
2 − x).

I claim that X is invariant under all these isometries; this is clear by inspection. For example, if
we reflect the pattern across L and then shift half a unit to the right, we get the original pattern
back, which shows that GX = X.

Proposition 5.4. Isom(X) is generated by T1, T2, G and R.

Proof. Let H be the group generated by T1, T2, G and R. As these isometries preserve X, we
have H ≤ Isom(X). Now let f0 be an arbitrary element of Isom(X). If det(f0) = −1 we define
f1 = G−1f0, otherwise we put f1 = f0. Either way we have f1 ∈ Isom(X) and det(f1) = 1. It
is geometrically obvious that f1 must send the copy of M centred at (0, 0) to some other copy
of M , and thus that f1(0, 0) = (n,m) for some n,m ∈ Z. Now put f2 = T−n1 T−m2 f1, so that
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f2 ∈ Isom(X) and det(f2) = 1 and f2(0, 0) = (0, 0). This implies that f2 ∈ SO2, in other words f2
is a rotation, and clearly the angle must be a multiple of π/2, so f2 = Rk for some k. Thus f0 has
the form Tm2 Tn1 R

k or GTm2 Tn1 R
k, which means that f0 ∈ H. Thus Isom(X) ⊆ H as required. �

Corollary 5.5. Isom(X) is generated by R and S.

Proof. It will suffice to write the generators T1, T2 and G in terms of R and S. The relevant
formulae are as follows:

G = SR−1

T1 = G2 = SR−1SR−1

T2 = RT1R
−1 = RSR−1SR−2

These facts can be proved from the formulae given above in terms of x and y, or by geometric
arguments. �

Remark 5.6. We have ψ(T1) = ψ(T2) = I and ψ(R) = R and ψ(G) = S0. The group Isom(X)
is generated by T1, T2, R and G, so ψ(Isom(X)) is generated by R and S0, so ψ(Isom(X)) = D4.
On the other hand, one checks that for each a ∈ R2, the group σa(Isom(X)) is either C1, C2 or
C4. In particular, there is no point a for which σa(Isom(X)) = ψ(Isom(X)).

5.2. The group p4m. Let Cn,m denote the circle of radius 1/3 centred at (n,m), and let X
denote the union of all the circle Cn,m for (n,m) ∈ Z2.
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The symmetry type of this pattern is known as p4m.
Let T1, T2 and R be as before, and let S0 denote reflection in the x-axis (as usual). These are

easily seen to preserve X, and I claim that they generate Isom(X).
To see this, suppose that f0 ∈ Isom(X). Then f0 must send C0,0 to one of the other circles in

the pattern, say f(C0,0) = Cn,m. Put f1 = T−n1 T−m2 f0, so that f1 ∈ Isom(X) and f1(C0,0) = C0,0.
This means that f1 is either a rotation around (0, 0) or a reflection across a line through (0, 0). If
it is a rotation, the angle must clearly be a multiple of π/2, and thus f1 = Rk for some k. If it is
a reflection, one sees by inspection that the slope of the line must be kπ/4 for some k, and thus
that f1 = Skπ/2 = RkS0. Thus f0 = Tn1 T

m
2 Rk or f1 = Tn1 T

m
2 RkS0, as required.

In this case, the point group is generated by ψ(T1), ψ(T2), ψ(R) and ψ(S0). We have ψ(T1) =
ψ(T2) = 1 and ψ(R) = R and ψ(S0) = S0, so the point group is generated by R and S0 and thus
is equal to D4 again. In contrast to the p4g case, we have σ0(Isom(X)) = D4 = ψ(Isom(X)).
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5.3. The group p6m. Put u = (1, 0) and v = Rπ/6(u) = (1/2,
√

3/2), so that 0, u and v are the
vertices of an equilateral triangle of side 1. Let Cn,m be a circle of radius 1/3 centred at nu+mv,
and let X be the union of the circles Cn,m
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This can be analysed in much the same way as the previous example. We find that Isom(X) is
generated by Tu, Tv, Rπ/3 and S0. The point group is D6, which is the same as σ0 Isom(X).

5.4. Steps towards the classification. We will adopt the following definition.

Definition 5.7. A wallpaper group or two-dimensional crystallographic group is a subgroup H ≤
Isom2 such that

(a) ψ(H) is finite.
(b) There exist linearly independent vectors u, v ∈ Trans(H) such that every vector in Trans(H)

can be written as nu+mv for some n,m ∈ Z.

It is usual to use a somewhat different definition, which can be shown to be equivalent to that
given above.

Let H be a wallpaper group. We say that H is oriented if ψ(H) ≤ SO2; if so, we know from
Theorem 2.4 that ψ(H) = Cn for some n. We call n the rotational order of H.

Now suppose that H is not oriented, so ψ(H) = RθDnR
−1
θ for some n and θ. We again call n

the rotational order of H.

Lemma 5.8. If A ∈ ψ(H) and b ∈ Trans(H) ⊂ R2 then Ab ∈ Trans(H).

Proof. As b ∈ Trans(H) we have Tb ∈ H. As A ∈ ψ(H), there is an element f ∈ H of the form
f(x) = Ax + c for some c. It follows that fTbf−1 ∈ H, and we see from Proposition 3.7 that
fTbf

−1 = TAb, so Ab ∈ Trans(H). �

To explain what the next lemma is about, consider the group V ≤ R2 consisting of vectors of
the form n(−1, 0) + m(

√
2, 0) with n,m ∈ Z. We can choose a rational number n/m which is a

very good (but not perfect) rational approximation to
√

2, and we find that n(−1, 0) +m(
√

2, 0)
is very small (but nonzero). By making this precise, we find that for any ε > 0 there exists
v ∈ V \ {0} such that ‖v‖ < ε. Thus, there is no shortest vector in V \ {0}. This phenomenon can
only happen because (−1, 0) and (

√
2, 0) are linearly dependent vectors; in particular, it does not

occur in Trans(H). The point of the next lemma is to prove this.

Lemma 5.9. If H is a wallpaper group then there exists w ∈ Trans(H) \ {0} such that ‖b‖ ≥ ‖w‖
for all b ∈ Trans(H) \ {0}.
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Proof. Let u and v be as in Definition 5.7. We claim that there is a positive constant K > 0 such
that

‖nu+mv‖ ≥
√
n2 +m2/K.

To see this, define f : [0, 2π] −→ R by f(θ) = ‖ cos(θ)u + sin(θ)v‖. As u and v are linearly
independent we have cos(θ)u + sin(θ)v 6= 0 and thus f(θ) > 0 for all θ. It follows that 1/f is
a positive continuous function on the closed interval [0, 2π], so 1/f is bounded by some number
K > 0, so f(θ) ≥ 1/K for all θ. Now, for any n and m we can write (n,m) = r(cos(θ), sin(θ)) for
some θ, where r =

√
n2 +m2. This means that

‖nu+mv‖ = ‖r(cos(θ)u+ sin(θ)v)‖

= rf(θ) ≥ r/K =
√
n2 +m2/K,

as claimed.
Now consider a disc D of radius R centred at the origin, and put S = (Trans(H) \ {0}) ∩D,

the set of nonzero vectors in Trans(H) of length at most R. We choose R large enough that
D contains at least one of the nonzero points in Trans(H), so S 6= ∅. If nu + mv ∈ S then
R ≥ ‖nu+mv‖ ≥

√
n2 +m2/K, so |n|, |m| ≤ RK. This means that there are only finitely many

possibilities for n and m, so there are only finitely many points in S. Among this finite list of
points, we choose one that is as close as possible to zero, and call it w. This clearly has the
required property. �

Theorem 5.10. The rotational order of H is 1, 2, 3, 4 or 6.

Proof. Let n be the rotational order, so the element R := R2π/n lies in ψ(H). Let w ∈ Trans(H)
be as in Lemma 5.9. Lemma 5.8 tells us that R(w) ∈ Trans(H) and Trans(H) is a subgroup of R2

so R(w)−w ∈ Trans(H), so ‖R(w)−w‖ ≥ ‖w‖ by the definition of w. However, for any x and θ
we have ‖Rθ(x)− x‖ = 2 sin(θ/2)‖x‖, as we see from the diagram below.

x

‖x‖

Rθx

‖x‖

θ/2
θ/2

It follows that ‖R(w)−w‖ = 2 sin(π/n)‖w‖, so we must have 2 sin(π/n) ≥ 1, so sin(π/n) ≤ 1/2 =
sin(π/6), so n ≤ 6.

All that is left is to show that the case n = 5 leads to a contradiction, which we do by
a variation of the preceeding argument. Clearly w + R−2w ∈ Trans(H), but if n = 5 then
−R−2w = RπR−4π/5 = Rπ/5w so ‖w + R−2w‖ = ‖w − Rπ/5w‖ = 2 sin(π/10)‖w‖ < ‖w‖, which
contradicts our choice of w, as required. �

Proposition 5.11. Suppose that H has rotational order n, where n ∈ {3, 4, 6}. Let w be as in
Lemma 5.9, and put x = R2π/n(w). Then Trans(H) = {pw + qx | p, q ∈ Z}.

Proof. Put L = {pw+ qx | p, q ∈ Z} ≤ Trans(H) and r = ‖w‖. I claim that for each a ∈ R2, there
exists b ∈ L such that d(a, b) < r. Assuming this, when a ∈ Trans(H) we have a− b ∈ Trans(H)
and ‖a − b‖ < r so a − b = 0 by our choice of w, so a = b; this proves that Trans(H) = L as
required.

To prove the claim, we first consider the case n = 4, where w and x are orthogonal. After
a suitable change of coordinates we have w = (r, 0) and x = (0, r), and the claim is that every
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point in R2 lies in the open ball of radius r centred at (pr, qr) for some p, q ∈ Z. This should be
geometrically clear from the following diagram.

For an algebraic proof, note that {w, x} is a basis for R2, so any vector a ∈ R2 can certainly be
written in the form pw + qx for some p, q ∈ R. We can choose p′, q′ ∈ Z with |p − p′| ≤ 1

2 and
|q − q′| ≤ 1

2 , and then put b = p′w + q′x ∈ L. We then have a− b = (p− p′)w + (q − q′)x and w
and x are orthogonal so

‖a− b‖2 = (p− p′)2r2 + (q − q′)2r2 ≤ ( 1
4 + 1

4 )r2 < r2,

so ‖a− b‖ < r as required.
We next turn to the case n = 6. It should be clear from the way the previous case worked that

the value of r is irrelevant, so we assume that r = 1. We may also change coordinates and assume
that w = (1, 0), so x = R2π/6w = (1/2,

√
3/2). The lattice L consists of the dots in the following

diagram:

Each of the triangles is equilateral with side 1, and every point in such a triangle lies at distance
< 1 from at least one of the vertices. (In fact, if T is an equilateral triangle of side 1 with vertices
A, B and C and X ∈ T then the distances d(A,X), d(B,X) and d(C,X) are all less than one
unless X is itself a vertex; in the exceptional case, of course X lies at distance 0 from one of the
vertices.) This settles the case n = 6.

Finally, we treat the case n = 3. With assumptions as in the case n = 6, we have w = (1, 0)
and x = R2π/3(w) = (−1/2,

√
3/2). Put y = R2π/6(w) = (1/2,

√
3/2) and notice that y = x + w

and x = y − w. This shows that every integer combination of w and x is an integer combination
of w and y, and vice versa. This means that the lattice for the n = 3 case is exactly the same as
for the n = 6 case, so again every point in R2 is at distance < 1 from a lattice point. �

We now see that ψ(H) is conjugate to Cn or Dn where n ∈ {1, 2, 3, 4, 6}, which gives twelve
possibilities for ψ(H). In the cases n ≥ 3 we have a strong information about Trans(H). Even
if we know ψ(H) and Trans(H) there may be more than one possibility for H, as exemplified
by the difference between p4g and p4m. Nonetheless, we are well on the way to the complete
classification of wallpaper groups.

6. Polyhedra

We now turn to the study of symmetries in three dimensions. In this context we will not
consider translations, so we are really just looking at subgroups of O3. It will turn out that this
is strongly related to the theory of regular polyhedra, otherwise known as Platonic solids.
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6.1. Actions of groups on sets. In our study of subgroups of O3 (and in later sections of the
course) it will be helpful to think about actions of groups on sets.

Definition 6.1. Let G be a group and X a set. An action of G on X is a rule which assigns to
each element g ∈ G and each element x ∈ X an element g ∗ x ∈ X, such that

A1 1 ∗ x = for all x ∈ X
A2 g ∗ (h ∗ x) = (gh) ∗ x for all g, h ∈ G and x ∈ X.

We will often write gx for g ∗ x.

Example 6.2. Put X = S2 = {x ∈ R3 | ‖x‖ = 1}. If x ∈ S2 and A ∈ O3 then Ax ∈ S2. Clearly
Ix = x and (AB)x = A(Bx), so this gives an action of O3 on S2.

Example 6.3. Consider the group G = D4 = {1, R,R2, R3, S,RS,R2S,R3S}, where R = Rπ/2
and S = S0. Let L0 be the line with equation x = y, and let L1 be the line with equation x = −y.
One checks that S(L0) = L1 and S(L1) = L0, and similarly R(L0) = L1 and R(L1) = L0. It
follows that for each g ∈ D4 we either have g(L0) = L0 or g(L0) = L1, and similarly we either
have g(L1) = L1 or g(L1) = L0. Thus, if we put X = {L0, L1} then D4 acts on X.

Example 6.4. Let G be any group. For any g, x ∈ G we define g ∗ x = gxg−1. This satisfies
1 ∗ x = x and

g ∗ (h ∗ x) = g ∗ (hxh−1) = ghxh−1g−1 = ghx(gh)−1 = (gh) ∗ x.

Thus, we have an action of G on itself, called the conjugation action. In this case it would of
course be a mistake to write gx instead of g ∗ x.

We next introduce a different way of thinking about group actions.

Definition 6.5. A permutation of a set X is a bijective function σ : X −→ X. We write S(X) for
the group of all permutations of X, and we write Sn = S({1, . . . , n}).

Suppose we have an action of G on X. For any g ∈ G, we can define a function φ(g) : X −→ X
by φ(g)(x) = g ∗ x. This satisfies φ(1)(x) = 1 ∗ x = x, so φ(1) is the identity map. Moreover, we
have

(φ(g) ◦ φ(h))(x) = φ(g)(φ(h)(x)) = g ∗ (h ∗ x) = (gh) ∗ x = φ(gh)(x),

so φ(gh) = φ(g) ◦φ(h). In particular, we have φ(g)φ(g−1) = φ(1) = 1, and similarly φ(g−1)φ(g) =
1. Thus φ(g) is a bijection, with inverse φ(g−1). We have thus defined a homomorphism φ : G −→
S(X). Conversely, if we start with a homomorphism φ : G −→ S(X) we can define an action by
g ∗ x = φ(g)(x). Thus, actions of G on X are essentially the same as homomorphisms from G to
S(X).

Example 6.6. Let V = {v0, v1, v2, v3, v4} be the set of vertices of the standard pentagon, so the
group D5 acts on V , giving a homomorphism φ : D5 −→ S(V ). If we write R = R2π/5 and S = S0

as usual then

φ(R)(v0) = v1

φ(R)(v1) = v2

φ(R)(v2) = v3

φ(R)(v3) = v4

φ(R)(v4) = v0.

We can write this in cycle notation as φ(R) = (v0 v1 v2 v3 v4). If we identify V with {0, 1, 2, 3, 4}
in the obvious way then φ(R) becomes the permutation (0 1 2 3 4). Similarly, we have φ(S) =
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(1 4)(2 3).

2π/5
v0

v1

v2

v3

v4

S0

6.2. Rotations and axes. We have already seen a very simple and concrete description of the
elements of SO2; they are just the rotations Rθ for 0 ≤ θ ≤ 2π. Our next task is to see how far
this generalises to SO3, or to SOn for n > 3.

Proposition 6.7. If A ∈ SOn and n is odd then 1 is an eigenvalue of A.

Proof. We have AT = A−1, so

AT (A− I) = I −AT = −(A− I)T .

For any n× n matrix B we have det(BT ) = det(B) and det(−B) = (−1)n det(B) = −det(B) (as
n is odd). We can thus take determinants in the displayed equation to get

det(A) det(A− I) = −det(A− I).

As A ∈ SOn we have det(A) = 1 so det(A− I) = −det(A− I), so det(A− I) = 0 as required. �

Corollary 6.8. If A ∈ SO3 then there is an orthonormal basis {u, v, w} of R3 and an angle θ
such that

Au = u

Av = cos(θ)v + sin(θ)w

Aw = − sin(θ)v + cos(θ)w.

Thus, A is conjugate in O3 to a matrix of the form

Uθ =

 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 .

Proof. As 1 is an eigenvalue, there is a vector u′ 6= 0 such that Au′ = u′. Put u = u′/‖u′‖, so
‖u‖ = 1 and Au = u. Let v be any unit vector perpendicular to u, and let w be either of the two
unit vectors that are perpendicular to the plane spanned by u and v. As Au = u and A preserves
inner products, we have 〈Av, u〉 = 〈Av,Au〉 = 〈v, u〉 = 0, so Av is perpendicular to u. It is clear
that v and w form a basis for the plane perpendicular to u, so Av = cv + sw for some c, s ∈ R.
Moreover, we have

1 = ‖v‖2 = ‖Av‖2 = 〈cv + sw, cv + sw〉 = c2 + s2,

so we have (c, s) = (cos(θ), sin(θ)) for some θ. Similarly, we have Aw = c′v + s′w for some c′, s′

with (c′)2 + (s′)2 = 1. As 〈v, w〉 = 0 we have 〈Av,Aw〉 = 0 and thus cc′ + ss′ = 0. Thus (c′, s′)
is a unit vector in R2 which is orthogonal to (c, s); one sees easily that the only possibilities are
(c′, s′) = (−s, c) and (c′, s′) = (s,−c). For the moment we simply assume that (c′, s′) = (−s, c); we
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will explain later why the other case is impossible. Define β : R3 −→ R3 by β(x, y, z) = xu+yv+zw.
As u, v and w are orthonormal we see that

‖β(x, y, z)‖2 = 〈xu+ yv + zw, xu+ yv + zw〉 = x2 + y2 + z2 = ‖(x, y, z)‖2.

Thus β is a norm-preserving linear map, so the corresponding matrix B is orthogonal. We have

AB(x, y, z) = A(xu+ yv + zw)
= xAu+ yAv + zAw

= xu+ y(cv + sw) + z(−sv + cw)

= xu+ (cy − sz)v + (sy + cz)w

= BUθ(x, y, z),

so B−1AB = Uθ. Thus A is conjugate to Uθ in O3, as claimed.
Now suppose instead that (c′, s′) = (s,−c). Then we would have B−1AB = U ′θ, where U ′θ

is obtained from Uθ by multiplying the last column by −1. However, we have A ∈ SO3 by
assumption, so det(B−1AB) = det(B)−1 det(A) det(B) = 1. We see by direct calculation that
det(U ′θ) = −1, and this gives a contradiction. Thus we must have (c′, s′) = (−s, c) after all. �

Proposition 6.9. Suppose that A ∈ SO3 and that there are two linearly independent vectors u
and v such that Au = u and Av = v. Then A = I.

Proof. If A is not the identity, then it must be a nontrivial rotation, around an axis L say. This
means that A fixes all the points on L, and moves all other points. As Au = u and Av = v,
we see that u and v must both lie on the line L. This is impossible, because they are linearly
independent. �

Proposition 6.10. If G ≤ O3 and −1 ∈ G and H = G ∩ SO3 then G = H × {±1}.

Proof. Define µ : H × {±1} −→ G by µ(A, t) = tA. As multiplication by any number commutes
with multiplication by any matrix, we have

µ(A, t)µ(A′, t′) = tAt′A′ = tt′AA′ = µ(AA′, tt′),

so µ is a homomorphism. Suppose that µ(A, t) = I; then either A = I and t = 1 or A = −I
and t = −1, but the second case is impossible because −I 6∈ SO3. This shows that ker(µ) is the
trivial group, so µ is injective. Next consider an element B ∈ G. If det(B) = 1 then B ∈ H so
B = µ(B, 1) so B is in the image of µ. If det(B) = −1 then −B ∈ G (because B and −1 both
lie in G) and det(−B) = 1 so −B ∈ H. We also have B = µ(−B,−1), so we again see that B is
in the image of µ. This shows that µ is surjective as well as injective, so it is an isomorphism of
groups. �

Corollary 6.11. In particular, we have O3 = SO3 × {±1} as groups. �

6.3. Symmetries of the tetrahedron. Let Tet be a regular tetrahedron centred at the origin,
whose edges have length 1, and let v1, . . . , v4 be the vertices of Tet.

1

2
3

4

The action of Symm(Tet) on the vertices gives rise to a homomorphism φ : Symm(Tet) −→ S4. For
example, let g be a 1/3-twist about the z-axis, anticlockwise as seen from above. Then g fixes v1
and sends v2 to v3, v3 to v4 and v4 back to v2. Thus φ(g) is the 3-cycle (2 3 4).

Theorem 6.12. The homomorphism φ : Symm(Tet) −→ S4 is an isomorphism, and it also gives
an isomorphism Dir(Tet) −→ A4.
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Proof. Given any pair of vertices vi, vj , let vk and vl be the two remaining vertices, and let P be
the plane through vk, vl and (vi + vj)/2. Let A be the reflection across P (if n is a unit normal to
P then A is given by Ax = x− 2〈n, x〉n.) We find that Avi = vj and Avj = vi, and that vk and
vl are fixed by A. Thus φ(A) is the transposition (i j). The diagram below illustrates the case
i = 3, j = 4.

1

2
3

4

The image of φ is a subgroup of S4 containing all the transpositions, and any permutation can
be written as a product of transpositions, so the image is all of S4, so φ is surjective. If A ∈ ker(φ)
then Avi = vi for all i. It is easy to see that {v1, v2, v3} is a basis of R3 so we can conclude that
A = I. This proves that φ is injective as well as surjective, so it is an isomorphism. We have seen
that φ−1 sends each transposition to a reflection, so it sends any product of n transpositions to a
product of n reflections, and we see that det(φ−1(σ)) = sgn(σ) for all σ ∈ S4, so φ−1 carries A4

to Dir(Tet). By putting σ = φ(g) we deduce that sgn(φ(g)) = det(g), so φ carries Dir(Tet) to A4.
Thus φ gives an isomorphism Dir(Tet) ' A4 as claimed. �

Remark 6.13. If g is a half turn around the axis shown on the left, then φ(g) is the permutation
(1 2)(3 4). If h is a one-third turn around the axis shown on the right, turning anticlockwise as
seen from above, then φ(h) = (2 3 4). Note that this rotation looks clockwise when seen from
below.

1

2
3

4

1

2
3

4

6.4. Symmetries of the cube. We now study the symmetries of a cube. We take our standard
cube to have vertices (±1,±1,±1), so the centre is at (0, 0, 0) and the edges have length 2.

1

2
3

4

5

6
7

8

We have marked the vertices so that the vertex labelled i is opposite the one labelled i+ 4, which
will be convenient later.

Note that (x, y, z) lies in the cube if and only if (−x,−y,−z) does, so −1 ∈ Symm(Cube) (the
corresponding thing is not true for the tetrahedron). We therefore see from Proposition 6.10 that
Symm(Cube) = {±1} ×Dir(Cube), so we will focus attention on Dir(Cube).

The action of Dir(Cube) on the eight vertices gives rise to an injective homomorphism Dir(Cube) −→
S8, but it turns out that this is far from being surjective. In fact, |Dir(Cube)| = 4! = 24 whereas
|S8| = 8! = 40320, so the image of our homomorphism is a rather small subgroup of S8. We
therefore use a different approach to study Dir(Cube). Let L1, L2, L3 and L4 be the four long
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diagonals of the cube, as shown below.

1

2
3

4

1

2
3

4

Note that Li passes through vi and vi+4.
If g ∈ Dir(Cube) then g must send each long diagonal to another long diagonal, so Dir(Cube)

acts on {L1, L2, L3, L4}. We therefore have a homomorphism φ : Dir(Cube) −→ S4 such that
g(Li) = Lφ(g)(i).

Lemma 6.14. The homomorphism φ is injective.

Proof. Suppose that g ∈ Dir(Cube) and that φ(g) = 1; we must show that g = 1. Because
φ(g) = 1 we have g(Li) = Li for all i. In particular, we have v1 ∈ L1 so g(v1) ∈ g(L1) = L1, so
either g(v1) = v1 or g(v1) = v5 = −v1. Thus g(v1) = ε1v1 for some ε1 ∈ {1,−1}, and similarly we
have g(vi) = εivi for some εi ∈ {1,−1} for i = 2, 3, 4.

Now suppose that ε1 = ε2 = ε3 = −1, so g(v1) = −v1, g(v2) = −v2 and g(v3) = −v3. As v1,
v2 and v3 are linearly independent (they do not all lie in any plane through the origin), they form
a basis of R3. Given this, it is clear that g = −1, so det(g) = −1, contradicting the assumption
that g ∈ Dir(Cube) ≤ SO3. So we cannot have ε1 = ε2 = ε3 = −1 after all.

More generally, any three of {v1, v2, v3, v4} form a basis, so no three of the ε’s can be −1. Thus
at most two of the ε’s are −1, so at least two of them are +1, say εi = εj = 1 with i 6= j. This
means that g(vi) = vi and g(vj) = vj , so g has two linearly independent fixed points. If g were
a nontrivial rotation then all the fixed points would lie on the axis and thus any two would be
linearly dependent. Thus g must be the identity. �

Theorem 6.15. The homomorphism φ : Dir(Cube) −→ S4 is an isomorphism.

Proof. Let g be a half turn around the axis shown on the left below. It is clear that g exchanges
L3 and L4. The line L1 is perpendicular to the axis of g, so when we perform the half turn we
send L1 to itself, just reversing the direction. Thus g(L1) = L1. Similarly, we have g(L2) = L2

and so φ(g) = (3 4).

1

2
3

4
1

2
3

4
1

2
3

4

Similarly, if we do a half turn about the other two axes we get the transpositions (2 3) and (1 2).
The transpositions (1 2), (2 3) and (3 4) lie in the image of φ and generate S4, so φ is surjective.
We have already seen that it is injective, so it must be an isomorphism. �
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Remark 6.16. Let h be a one-third turn about L4, rotating clockwise as seen from above.

1

2
3

4

If we look down L4 at the cube we see the following picture:

v1

v2

v3

v5

v6

v7

Thus h gives the following permutation of vertices:

v1 7→ v6 7→ v3 7→ v1

v5 7→ v2 7→ v7 7→ v5

As L1 joins v1 to v5, L2 joins v6 to v2 and L3 joins v3 to v7 we see that the permutation of L’s is
L1 7→ L2 7→ L3 7→ L1, so φ(h) = (1 2 3).

Now let k be a quarter turn around the z-axis, anticlockwise as seen from above.

1

2
3

4

We then have φ(k) = (1 2 3 4) and φ(k2) = (1 3)(2 4). We have thus found rotations giving
representatives of all the cycle types in S4.

7. Duality and the Octahedron

We next study the symmetries of the octahedron. We take our standard octahedron to have
vertices as follows:

w1 = (1, 0, 0) w2 = (0, 1, 0) w3 = (0, 0, 1)
w4 = (−1, 0, 0) w5 = (0,−1, 0) w6 = (0, 0,−1).
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4
5

3

1
2

6

It turns out that there is a close relationship (called “duality”) between the cube and the
octahedron. As illustrated in the picture on the left, the vertices of the octahedron are the centres
of the faces of the cube.

To see this algebraically, note that the vertices of the top face of the cube are (1, 1, 1), (−1, 1, 1),
(1,−1, 1) and (−1,−1, 1). Thus, the centre of the top face is

1
4
((1, 1, 1) + (−1, 1, 1) + (1,−1, 1) + (−1,−1, 1)) = (0, 0, 1).

This is just the top vertex of the octahedron. The calculation for the other faces follows the same
pattern.

On the other hand, the centres of the faces of the octahedron are the vertices of a cube one
third as big as the one we started with, as illustrated in the picture on the right.

Proposition 7.1. The group Symm(Oct) is the same as Symm(Cube) (and thus is isomorphic
to S4 × {±1}).

Proof. Suppose that g ∈ Symm(Cube). Let w be a vertex of the octahedron. Then w is the centre
of some face F of the cube. As g is a symmetry of the cube, gF is another face, and gw is the
centre of gF , so gw is a vertex of the octahedron. Thus g sends vertices of the octahedron to
vertices, and it follows that it sends the octahedron to itself. Thus Symm(Cube) ⊆ Symm(Oct).

Now suppose that h ∈ Symm(Oct). Let v be a vertex of the large cube, so v/3 is a vertex of
the small cube, so v/3 is the centre of some face F ′ of the octahedron. As h is a symmetry of the
octahedron, hF ′ is another face, and h(v/3) is the centre of hF ′, so h(v)/3 = h(v/3) is a vertex of
the small cube, so h(v) is a vertex of the large cube. Thus h sends vertices of the cube to vertices,
and it follows that it sends the cube to itself. Thus Symm(Oct) ⊆ Symm(Cube). �

Remark 7.2. You might hope that a similar picture would give interesting information about the
tetrahedron. However, the centres of the faces of a tetrahedron are just the vertices of a smaller
tetrahedron, as illustrated below, so we just conclude that the two different tetrahedra have the
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same symmetry group.

For an algebraic approach to this, note that the centre of the tetrahedron is (v1 + v2 + v3 + v4)/4,
but by assumption the centre is at the origin, so we must have v1 + v2 + v3 + v4 = 0. The vertices
of the face opposite v1 are v2, v3 and v4 so the centre of the face is (v2 + v3 + v4)/3 = −v1/3.
More generally, the centre of the face opposite vk is −vk/3, and the points −v1/3, −v2/3, −v3/3
and −v4/3 clearly form a tetrahedron one third as big as the one we started with.

8. The construction of the dodecahedron

Proposition 8.1. There is a solid (called the dodecahedron) with 12 faces, each of which is a
regular pentagon with edges of length 1.

The rest of this section will constitute the proof; a picture of the dodecahedron is shown below.

We will construct the dodecahedron by attaching “tents” to a cube as shown below. We have
only shown two tents here but eventually we will use six tents, one for each face.
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The edges of the cube will have length d; later on we will work out exactly what d has to be.
The tents will be as shown below, with dotted edges of length d and solid edges of length 1.

The next diagram shows the result of attaching tents to cubes of three different sizes.

Note that we have a bent pentagon with the thick line cutting across it. If d is small as shown on
the left, then the pentagon is bent outwards along the thick line. If d is too large as shown on the
right, then the pentagon is bent inwards along the thick line. If we choose exactly the right value
of d as shown in the middle, we get a flat pentagon.

On the other hand, for any value of d we can flatten out the pentagon and lay it out in the
plane.

d

1

d

1

d

1

If d is too small or too large then the pentagon will not be regular. The miraculous thing is that
the value of d that makes the pentagon flat is the same value that makes it regular; our next task
is to prove this.

Lemma 8.2. In the regular pentagon with sides of length 1, the distance τ in the diagram below
satisfies τ = 2 cos(π/5) = (1 +

√
5)/2, and moreover we have 1/(τ − 1) = τ .

1

11

1

1

τ

Proof. We can divide the pentagon into right angled triangles as shown on the left below. All the
angles in the middle are equal to θ and there are ten of them so θ = 2π/10 = π/5. As the angles
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of any triangle add up to π, we have φ = π/2− θ = 3π/10.

θ

φ

ψ

φ

ψ

φ

cos(ψ)cos(ψ)

1 1

Now consider the picture on the right, which shows that τ = 2 cos(ψ). We have a triangle with
angles π/2, φ and ψ so ψ = π−π/2−φ = π/2−φ = θ = π/5, so we conclude that τ = 2 cos(π/5).

We next claim that τ2 − τ − 1 = 0. To see this, put ξ = eπi/5 = cos(π/5) + i sin(π/5), so
ξ−1 = e−πi/5 = cos(π/5)− i sin(π/5), so ξ + ξ−1 = 2 cos(π/5) = τ . We find that

τ2 − τ − 1 = (ξ2 + 2 + ξ−2)− (ξ + ξ−1)− 1

= ξ2 − ξ + 1− ξ−1 + ξ−2,

so

(1 + ξ)(τ2 − τ − 1) = (1 + ξ)(ξ2 − ξ + 1− ξ−1 + ξ−2)

= ξ3 + ξ−2 = ξ−2(ξ5 + 1).

However, we also have ξ5 = eiπ = −1, so ξ5 + 1 = 0, so (1 + ξ)(τ2− τ − 1) = 0. As ξ 6= −1 we can
divide by ξ to deduce that τ2 − τ − 1 = 0 as claimed.

Solving this equation gives τ = (1±
√

5)/2, but (1−
√

5)/2 < 0 and τ is clearly positive so we
must have τ = (1 +

√
5)/2. We can also rearrange the equation τ2 − τ − 1 = 0 as (τ − 1)τ = 1

and so 1/(τ − 1) = τ . �

Now let T be a tent whose base is a square of side τ and whose other edges have length 1. We
place T with its base in the xy-plane parallel to the axes with the centre of the base at the origin
and with the ridge parallel to the x-axis.

x

y

z

A

B

C

D

E

F

It should be clear that the coordinates of A, . . . ,D are as follows:

A = (τ/2, τ/2, 0) B = (−τ/2, τ/2, 0)
C = (τ/2,−τ/2, 0) D = (−τ/2,−τ/2, 0)

Moreover, the line EF is horizontal and lies in the xz plane and it crosses the z-axis at its midpoint.
This means that the y coordinates of E and F are zero, their z-coordinates are the same, and the
x coordinate of E is minus the x coordinate of F . Thus for some a, b we have E = (−a, 0, b) and
F = (a, 0, b).
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Next, recall that the edges FA, FC, EB, ED and EF have length 1. As ~EF = (2a, 0, 0) and
EF has length 1 we must have a = 1/2. Thus

~FA = A− F = (τ/2− a, τ/2,−b)
= ((τ − 1)/2, τ/2,−b)

= ((
√

5− 1)/4, (
√

5 + 1)/4,−b).
As FA has length 1 we conclude that

1 = (
√

5− 1)2/16 + (
√

5 + 1)2/16 + (−b)2

= (6− 2
√

5)/16 + (6 + 2
√

5)/16 + b2

= 3/4 + b2.

This gives b2 = 1/4 so b = 1/2. In summary, we have

A = (τ/2, τ/2, 0) B = (−τ/2, τ/2, 0)
C = (τ/2,−τ/2, 0) D = (−τ/2,−τ/2, 0)
E = (−1/2, 0, 1/2) F = (1/2, 0, 1/2).

Lemma 8.3. The angles α and β indicated below are the same.

A

B

C

D

E

F

α

β

Proof. The left hand triangle looks like this.

1
2 (C +D) = (0,−τ2 , 0) (0, 0, 0)

1
2 (E + F ) = (0, 0, 12 )

τ
2

1
2

α

The top vertex is the midpoint of EF which is 1
2 (E+F ) and using our formulae for E and F we see

that this is just (0, 0, 1
2 ). The bottom right vertex is in the xy-plane directly underneath (0, 0, 1

2 ), so
it must be (0, 0, 0). The bottom left vertex is the midpoint of CD, which is 1

2 (C+D) = (0,− τ
2 , 0).

It follows easily that the sides have length 1
2 and τ

2 as shown, and thus that tan(α) = τ
2/

1
2 = τ .

In a similar way, we see that the right hand triangle is as follows:

(1
2 , 0, 0)

F = (1
2 , 0,

1
2 )

1
2 (A+ C) = (τ2 , 0, 0)

τ−1
2

1
2

β

This shows that
tan(β)=

1
2/τ−1

2=1/(τ−1) . We know from Lemma 8.2 that 1/(τ − 1) = τ so tan(β) = tan(α)
so β = α. �
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Now suppose we attach two tents to a cube of side τ as shown on the left.

P

Q

R

P

Q

Rα

β

Looking from the side we see the picture on the right. As α = β we see that P , Q and R lie on a
straight line, so the pentagon is flat as required.

We now attach a tent to each face, giving the following picture.

The same argument as before shows that all the pentagons are flat. You can just now just look
at the picture to see that we have twelve regular pentagonal faces, as required.

Proposition 8.4. The dodecahedron has 20 vertices and 30 edges.

Proof. There are 12 faces each with 5 edges, apparently giving 5× 12 = 60 edges. However, each
edge is an edge of two different faces, so we have counted each edge twice; there are really only
60/2 = 30 edges. Similarly, there are 12 faces each with 5 vertices, but each vertex occurs on three
different faces, so there are 12× 5/3 = 20 vertices altogether. �

9. Symmetries of the dodecahedron

We now investigate the group G := Dir(Dodec) of direct symmetries of the dodecahedron.
If g is a symmetry of the cube, it may or may not move the tents around in such a way as

to preserve the dodecahedron. For example, if we do a quarter around the z-axis then the ridge
of the top tent ends up at right angles to the way it originally was, so the dodecahedron is not
preserved. However, a half turn about the z-axis (or the x-axis or y-axis) does send tents to tents
and thus gives a symmetry of the dodecahedron. These half twists are given by the matrices(

1 0 0
0 −1 0
0 0 −1

)
,

(−1 0 0
0 1 0
0 0 −1

)
and

(−1 0 0
0 −1 0
0 0 1

)
.

These matrices commute and have order two, and the product of any two of them is the third one.
It follows that together with the identity they form a group of order four.

Next, if we do a one-third twist about a long diagonal of the cube we get another symmetry of
the dodecahedron, this time of order 3.

Finally, if we let L be the line joining the centres of two opposite faces then a rotation through
2π/5 also preserves the dodecahedron. It would take some work to prove this from our construction,
but I hope that it is reasonably clear geometrically.
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Proposition 9.1. The group G = Dir(Dodec) has order 60, and it is generated by the rotations
of order 2, 3 and 5 mentioned above.

Proof. Let H be the subgroup of G generated by the rotations considered previously. We have
seen that H has a subgroup of order 4 and that it contains an element of order 3 and an element
of order 5. It follows that |H| is divisible by 4, 3 and 5. As these numbers are coprime, it follows
that |H| is divisible by 4 × 3 × 5 = 60. As H is a subgroup of G, we see that |G| is divisible by
|H| and thus is divisible by 60.

Now let G act on the vertices of the dodecahedron, and choose a vertex v. The orbit-stabiliser
theorem says that |G| is the the order of the orbit Gv times the order of the stabiliser group
stabG(v). There are 20 vertices, so |Gv| ≤ 20. If g ∈ stabG(v) then g must be a rotation around
v, and by looking at the three edges meeting at v we see that the only possible angles are 0 and
±2π/3. This shows that | stabG(v)| = 3 and thus that |G| = |Gv|| stabG(v)| ≤ 20 × 3 = 60. As
|H| ≤ |G| ≤ 60 and |H| is divisible by 60 we must have |G| = |H| = 60 and G = H. �

Theorem 9.2. G is isomorphic to A5.

Proof. Let D denote the dodecahedron. By construction, D contains an inscribed cube C, and
each face of D is cut across by a single edge of C. If g ∈ G then gC is a cube inscribed in D,
and is typically different from C. Let X be the set of all the cubes that arise in this way. The
group G acts on the set X, and by construction the orbit of of the element C ∈ X is the whole of
X. Thus, the orbit-stabiliser theorem says that |G| = |X||K|, where K is the stabiliser of C. In
other words, K is the set of rotations that preserve both the cube C and the dodecahedron D, so
K is a subgroup of Dir(C). It follows that 24 = |Dir(C)| is divisible by |K|. However, K is not
equal to Dir(C) (because a quarter-twist around the z-axis does not preserve D) so |K| < 24. On
the other hand, K contains the group of order 4 generated by half-twists around the axes and it
also contains elements of order 3 given by rotating around the long diagonals, so |K| is divisible
by 12. It follows that |K| must be equal to 12. As |G| = |X||K| and |G| = 60 and |K| = 12 we
have X = 5.

Another way to see that X has five elements is as follows. Choose a face F of D, and let E be
the edge of C that cuts across F . Let g be a rotation through 2π/5 around the centre of F , so
gkF = F for k = 0, . . . , 4. Then gkE is the edge of gkC that cuts across F . As the edges gkE
are all different (for k = 0, 1, 2, 3, 4), the cubes gkC must all be different, so we have at least five
cubes.

E

gE

g2E

g3E

g4E

It is a bit more difficult to show that there are exactly five cubes by this method.
The action of G on X gives a homomorphism φ : G −→ S5. If g is as above then φ(g) is clearly

a 5-cycle, and thus an even permutation. If h is a one-third twist about a vertex of C, then
φ(h)3 = φ(h3) = 1, so φ(h) is a permutation of {1, . . . , 5} of order dividing 3. One checks that the
only possibilities are the identity and the 3-cycles, and by inspecting a model we see that φ(h) is
not the identity so it must be a 3-cycle. In particular, it is again an even permutation. Now let kx,
ky and kz be the half-twists about the x, y and z-axes. By inspecting a model again we see that
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φ(kx), φ(ky) and φ(kz) are distinct elements of S5 of the form (a b)(c d), so they are again even
permutations. It follows that {1, φ(kx), φ(ky), φ(kz)} is a subgroup of A5 of order 4. As elements
of the three types just considered generate G, we see that φ(x) is an even permutation for all
x ∈ G, so φ(G) ≤ A5. We have also seen that φ(G) contains a group of order 4 and elements of
orders 3 and 5, so |φ(G)| is divisible by 3× 4× 5 = 60. However, we also have |A5| = 5!/2 = 60,
so we must have φ(G) = A5. Thus φ : G −→ A5 is a surjective map between two sets that both
have exactly 60 elements, so φ must be a bijection. Thus φ gives an isomorphism G ' A5 as
claimed. �

10. The icosahedron

The icosahedron is the dual of the dodecahedron. We’ll write D for the dodecahedron and I
for the icosahedron. The centres of the 12 faces of D are the 12 vertices of I. If v is a vertex of
D, then 3 faces of D (say F1, F2 and F3) meet at v. If we write wi for the centre of Fi then w1,
w2 and w3 are vertices of I, and they form an equilateral triangle which is a face of I. This gives
20 faces, one for each of the 20 vertices of D.

The picture on the left shows I inside D. The picture on the right shows I rotated into a more
natural position.

11. Finite subgroups of SO3

We now consider the classification of finite subgroups of SO3. We have already met the groups

G1 = Dir(Tet) ' A4 |G1| = 12

G2 = Dir(Cube) = Dir(Oct) ' S4 |G2| = 24

G3 = Dir(Dodec) = Dir(Icos) ' A5 |G3| = 60.

The orders of these groups are 12, 24 and 60.
Now let n be any natural number. Let R̃ be a rotation through 2π/n around the z-axis,

anticlockwise as seen from above. This clearly has order n so the set C̃n = {1, R̃, . . . , R̃n−1} is a
subgroup of SO3 which is cyclic of order n. Strictly speaking this is different from Cn but it is
usually harmless to ignore the distinction.

Now let S̃ be a half-turn around the x-axis. Note that the effect of S̃ on the xy-plane is the
same as a reflection across the x-axis. One can easily check that S̃2 = 1 and S̃R̃S̃ = R̃−1 and that
the set

D̃n = {1, R̃, . . . , R̃n−1, S̃, R̃S̃, . . . , R̃n−1S̃}
is a subgroup of SO3 of order 2n. Again, it is usually harmless to identify this with Dn.

Another point of view is as follows. Given a matrix A =
(
a b
c d

)
∈ O2, define

λ(A) =

 a b 0
c d 0
0 0 1/det(A)

 .
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It is not hard to check that λ is a homomorphism and that λ(R2π/n) = R̃ and λ(S0) = S̃, so
C̃n = λ(Cn) and D̃n = λ(Dn).

The classification theorem is as follows.

Theorem 11.1. Let G be a finite subgroup of SO3. Then G is conjugate to one of the groups G1,
G2, G3, C̃n or D̃n (for some n).

The rest of this section will constitute the proof.

Definition 11.2. If g ∈ SO3 \ {1} (so g is a nontrivial rotation of R3) then the poles of g are the
two unit vectors on the axis of rotation of g, or in other words the two unit vectors v such that
g(v) = v. If G is a finite subgroup of SO3, the poles of G are the poles of all the elements g ∈ G
such that g 6= 1.

Remark 11.3. A unit vector v is a pole of G iff g(v) = v for some g ∈ G with g 6= 1, iff the group
stabG(v) = {g ∈ G | g(v) = v} is not the trivial group.

Remark 11.4. Often it is natural to describe a rotation g as being a rotation around w for some
non-unit vector w. We will write ŵ = w/‖w‖, which is a positive multiple of w and is a unit
vector. We call this the normalisation of w. Clearly g is also a rotation around ŵ.

Remark 11.5. Let v be any unit vector. Rotations around v are determined by their angles in
just the same way that rotations of the plane are determined by their angles. Thus, we can analyse
the finite groups of rotations around v in the same way that we analysed the finite subgroups of
SO2; we find that they are all cyclic. In particular, if v is a pole of G we find that stabG(v) is a
nontrivial finite group of rotations about v, so it is cyclic of order d for some d > 1. We call d the
degree of v.

Definition 11.6. From now on we fix a finite subgroup G ≤ SO3, and we let P be the set of
poles of G. We write n = |G| and p = |P |.
Lemma 11.7. The action of G on R3 preserves the set P .

Proof. Suppose that v ∈ P and h ∈ G; we must show that h(v) ∈ P . As v ∈ P there is some
nontrivial element g ∈ G with g(v) = v. Thus g′ := hgh−1 is another nontrivial element of g and
g′(h(v)) = hgh−1h(v) = hg(v) = h(v). Thus h(v) is a pole of g′ and thus lies in P , as required. �

Our main technique will be to study the orbits of the action of G on P . As a warm-up we
consider the case where there are only two poles.

Theorem 11.8. If G is a finite subgroup of SO3 and the set P of poles has order 2 then G is
cyclic.

Proof. Choose v ∈ P . Clearly −v ∈ P also, and as |P | = 2 we must have P = {v,−v}. Given
g ∈ G \ {1}, we know that g is a rotation about some axis L, and we choose a unit vector w
on L. Clearly w is a pole of G, so w ∈ P = {v,−v}, so v = w or v = −w. Either way we see
that gv = v; thus v is fixed under G. Now let U be the plane perpendicular to v. If u ∈ U then
〈gu, v〉 = 〈gu, gv〉 = 〈u, v〉 = 0, so gu ∈ U also. Thus, G is a finite subgroup of the group of
rotations of the plane U , which is isomorphic to SO2. We know from Proposition 2.3 that a finite
subgroup of SO2 is cyclic, so G is cyclic. �

We next record how the orbits work for the groups we already know about.
(a) The nontrivial elements of the group G1 = Dir(Tet) are the rotations through ±2π/3

about the vertices of the tetrahedron and the rotations through π about the midpoints of
the edges. Let v1, . . . , v4 be the vertices, so the two unit vectors on the line through vi are
±v̂i. If i < j then there is an edge joining vi to vj , whose midpoint is vij := (vi + vj)/2.
We thus have

P = {v̂1, v̂2, v̂3, v̂4,
− v̂1,−v̂2,−v̂3,−v̂4,
v̂12, v̂13, v̂14, v̂23, v̂24, v̂34}.
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You might think that we should include −v̂12 (for example) but in fact it is there already.
The centre of the tetrahedron is (v1 + v2 + v3 + v4)/4 but this is just the origin, so
−(v1 + v2) = v3 + v4. It follows that −v̂12 = v̂34, which is already in the list. Similarly,
for any i < j we can let k and l be the other two numbers in the range {1, 2, 3, 4} and we
have −v̂ij = v̂kl.

It is not hard to see that we can send any vertex of Tet to any other vertex by
the action of G1, so the set {v1, v2, v3, v4} is an orbit of the action. This implies that
{−v1,−v2,−v3,−v4} is also an orbit. Similarly, as we can send any edge to any other
edge by the action of G1, we see that {v̂12, v̂13, v̂14, v̂23, v̂24, v̂34} is another orbit. Thus
there are two orbits of poles of degree 3 and one orbit of poles of degree 2, making three
orbits altogether.

(b) The nontrivial elements of the group G2 = Dir(Cube) are:
– rotations through π about midpoints of edges of the cube
– rotations through ±2π/3 about vertices
– rotations through π or ±π/2 about centres of faces.

Here the negative of the midpoint of an edge is the midpoint of the opposite edge, the
negative of a vertex is the opposite vertex, and the negative of the centre of a face is the
centre of the opposite face. Thus, we do not need to worry about negatives, and the poles
are the normalisations of midpoints of edges, vertices, and centres of faces. There are 12
edges, 8 vertices and 6 faces so we have 12 + 8 + 6 = 26 poles altogether. As we can move
any edge to any other edge by the action of G2, we see that the first 12 poles form an
orbit. As we can move any vertex to any other vertex, we see that the next 8 poles form
an orbit. As we can move any face to any other face, we see that the last 6 poles form an
orbit. Thus we have one orbit consisting of 12 poles of degree 2, one orbit consisting of 8
poles of degree 3, and one orbit consisting of 6 poles of degree 4. Again we have 3 orbits
altogether.

(c) The nontrivial elements of G3 = Dir(Dodec) are:
– rotations through π about midpoints of edges of the dodecahedron
– rotations through ±2π/3 about vertices
– rotations through ±2π/5 or ±4π/5 about centres of faces.

Just as in the case of the cube, we do not have to worry about negatives. There are 30
edges, 20 vertices and 12 faces. We thus have one orbit consisting of 30 poles of degree 2,
one orbit consisting of 20 poles of degree 3, and one orbit consisting of 12 poles of degree
5.

(d) Now consider the cyclic group C̃n. All the nontrivial elements are rotations around the
unit vector w = (0, 0, 1), so P = {w,−w}. All elements of the group send w to w and −w
to −w, so {w} and {−w} are two separate orbits. There are thus 2 orbits, each consisting
of 1 pole of degree n.

(e) Finally, consider the dihedral group D̃n. The poles of the elements Ri (for i = 1, . . . , n−1)
are just w and −w again. Now consider the points

vk = (cos(2kπ/n), sin(2kπ/n), 0)

uk = (cos((2k + 1)π/n), sin((2k + 1)π/n), 0).
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These are defined for all k ∈ Z but vk+n = vk and uk+n = uk so there are really only n
v’s and n u’s. We show the case n = 5 below.

v0

v1

v2

v3

v4

u0

u1

u2

u3

u4

It is geometrically clear that a half twist around vk or uk preserves the standard n-gon Xn

and thus lies in D̃n, so the u’s and v’s are poles of D̃n. We also need to think about the
points −ui and −vj . When n is odd (as in the above picture) we see that −ui = vk for
some k and −vj = ul for some l. If n is even we see instead that −ui has the form uk and
−vj has the form vl. Either way, we get no new poles. Also, any symmetry of Xn sends
vertices to vertices, and we can move any vertex to any other vertex, so the v’s form an
orbit. Similarly, the u’s form an orbit. Thus, the u’s and v’s give 2 orbits, each consisting
of n poles of degree 2. Moreover, we have Rk(w) = w and S(w) = −w so {w,−w} is an
orbit consisting of 2 poles of degree n. Thus we again have three orbits altogether.

We now let G be an arbitrary finite subgroup of SO3. Our next task is to show that the number
of poles and orbits for G matches one of the possibilities discussed above. Our main tool is the
orbit counting theorem:

Theorem 11.9. Let H be a finite group that acts on a finite set X. For each h ∈ H put
Fix(h) = {x ∈ X | hx = x}, the set of fixed points of h. Then the number of orbits of H in X
is |H|−1

∑
h∈H |Fix(h)|, or in other words the average number of fixed points of an element of

H. �

Proposition 11.10. Let G be a nontrivial finite subgroup of SO3, and let P be the set of poles of
G. Put n = |G| and p = |P |, and let m be the number of orbits of G in P . Let dk be the degree of
the poles in the k’th orbit; we can order the orbits in such a way that d1 ≤ d2 ≤ . . . ≤ dm. Then

m = (p+ 2n− 2)/n

p =
m∑
k=1

n/dk.

Proof. The orbit counting theorem says thatm = n−1
∑
g∈G |Fix(g)|. If g 6= 1 then Fix(g) consists

of the two unit vectors on the axis of g, so |Fix(g)| = 2. There are n − 1 elements g ∈ G with
g 6= 1, so

∑
g 6=1 |Fix(g)| = 2(n − 1) = 2n − 2. In the remaining case g = 1 we have Fix(g) = P

and thus |Fix(g)| = p. This means that
∑
g∈G |Fix(g)| = p+2n− 2 and thus m = (p+2n− 2)/n.

Next, choose a point xk in the k’th orbit for each k. Then stabG(xk) has order dk. The
orbit-stabiliser theorem says that |G| = | stabG(xk)|| orbG(xk)|, so the size of the k’th orbit is
|G|/| stabG(xk)| = n/dk. As P is the disjoint union of the orbits we see that p = |P | is the sum of
the orders of all the orbits, so p =

∑
k n/dk, as claimed. �

Proposition 11.11. With notation as above we have either
(1) m = 3, d1 = 2, d2 = d3 = 3 and n = 12; or
(2) m = 3, d1 = 2, d2 = 3, d3 = 4 and n = 24; or
(3) m = 3, d1 = 2, d2 = 3, d3 = 5 and n = 60; or
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(4) m = p = 2 and d1 = d2 = n; or
(5) there is an integer d ≥ 2 such that m = 3, n = 2d, d1 = d2 = 2 and d3 = d.

Proof. First note that dk is the order of the stabiliser group of xk. As xk is a pole, this stabiliser
group is nontrivial, so dk ≥ 2.

Next, we can rearrange the equation m = (p+ 2n− 2)/n as m = 2 + (p− 2)/n. By assumption
G is a nontrivial group, and any nontrivial element has two poles, so p ≥ 2, which implies that
(p− 2)/n ≥ 0 and m ≥ 2.

Alternatively, we can rearrange to get p = mn − 2n + 2. We also know that p =
∑m
k=1 n/dk.

As each dk is at least 2, each term in the on the right hand side is at most n/2, and there are
m terms, so p ≤ mn/2. After feeding this back into the equation p = mn − 2n + 2 we find that
mn/2 ≤ 2n− 2 < 2n so mn < 4n so m < 4. As m ≥ 2 and m < 4 we must have m = 2 or m = 3.

If m = 2 then the equation m = 2 + (p− 2)/2 implies that p = 2. The equation p =
∑
k n/dk

now says that 2 = n/d1 + n/d2. As dk divides n for all k the terms n/d1 and n/d2 are positive
integers, so the only way their sum can be 2 is if n/d1 = n/d2 = 1, so d1 = d2 = n, so case (4)
holds.

Now suppose instead that m = 3. The equation m = 2 + (p − 2)/n then simplifies to give
p = n+2, and we can feed this into the equation p =

∑
n/dk = n/d1 +n/d2 +n/d3 and rearrange

to give
2
n

=
1
d1

+
1
d2

+
1
d3

− 1.

Recall that 2 ≤ d1 ≤ d2 ≤ d3. If the d’s are reasonably large then 1/d1, 1/d2 and 1/d3 will be
small and so 1/d1 + 1/d2 + 1/d3 − 1 will be negative, which is absurd because 2/n is certainly
positive. Thus, the d’s must be fairly small. We can complete the proof by making this argument
more precise.

We first claim that d1 = 2. Indeed, if not then 3 ≤ d1 ≤ d2 ≤ d3, so 1/d1, 1/d2 and 1/d3 are all
less than or equal to 1/3 so 1/d1 + 1/d2 + 1/d3 − 1 ≤ 3/3− 1 = 0, which contradicts the equation
2/n = (

∑
1/dk)− 1.

We thus have d1 = 2 as claimed. Suppose we also have d2 = 2. Then 2/n = 1/2+1/2+1/d3−1 =
1/d3, so n = 2d3. We are thus in case (5).

Now suppose instead that d2 > 2. We claim that in fact d2 = 3. Indeed, if not then 4 ≤ d2 ≤ d3

so 1/d2 and 1/d3 are at most 1/4, so 1/d1 + 1/d2 + 1/d3 − 1 ≤ 1/2 + 1/4 + 1/4 − 1 = 0, which
contradicts the equation 2/n = (

∑
1/dk)− 1.

We thus have d1 = 2 and d2 = 3 and d3 ≥ 3, so 2/n = 1/2 + 1/3 + 1/d3 − 1 = 1/d3 − 1/6.
If d3 = 3 this gives 2/n = 1/3 − 1/6 = 1/6 so n = 12 and we are in case (1). If d3 = 4 then
2/n = 1/4− 1/6 = 1/12 so n = 24 and we are in case (2). If d3 = 5 then 2/n = 1/5− 1/6 = 1/30
so n = 60 and we are in case (3). If d3 ≥ 6 then 2/n = 1/d3 − 1/6 ≤ 0, which is absurd. �

Proposition 11.12. If case (1) holds in Proposition 11.11 then G is conjugate to G1 = Dir(Tet).

Proof. Let V be the third orbit, which has order n/d3 = 12/3 = 4, so V = {v1, v2, v3, v4} say. Let
g be a one-third turn around v4, which lies in G because v4 is a pole of degree 3. Clearly g gives a
permutation of {v1, v2, v3}. The only way that a one-third turn can permute a set of three points
is if they form an equilateral triangle perpendicular to the axis of rotation, with the centre of the
triangle on the axis. It follows that the distances d(v1, v4), d(v2, v4) and d(v3, v4) are all the same.
Similarly, by rotating around v3 we see that d(v1, v3) = d(v2, v3) = d(v4, v3). We can also rotate
around v1 or v2 and we find that all the distances d(vi, vj) (for i 6= j) are the same. This means
that v1, v2, v3 and v4 are the vertices of a regular tetrahedron T . As G permutes these vertices,
it is a subgroup of Dir(T ), but |G| = 12 = |Dir(T )| so G = Dir(T ). Let r be the distance from
the origin to the vertices of the standard tetrahedron Tet, and put T ′ = rT ; it is not hard to see
that Dir(T ′) = Dir(T ) = G. As T ′ is a regular tetrahedron the same size as Tet, we can choose
an isometry f ∈ SO3 with f(Tet) = T ′. It follows that

Dir(T ′) = Dir(f(Tet)) = f Dir(Tet)f−1 = fG1f
−1,

so G is conjugate to G1. �
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Proposition 11.13. If case (2) holds in Proposition 11.11 then G is conjugate to G2 = Dir(Oct).

Proof. Let V be the third orbit, which has order n/d3 = 24/4 = 6. If v ∈ V then v is a pole of
degree 4 so −v is also a pole of degree 4. The poles in the other two orbits have degree 2 or 3, so
we must have −v ∈ V . It follows that V has the form {v1, v2, v3,−v1,−v2,−v3} for some v1, v2
and v3. Let g be a quarter turn around v3, which lies in G because v3 is a pole of degree 4. Clearly
g(v3) = v3 and g(−v3) = −v3 so g must permute the remaining vertices {v1, v2,−v1,−v2}. The
only way that a quarter turn can permute a set of four points is if they form a square perpendicular
to the axis of rotation. It follows that the distances d(v3, v1), d(v3, v2), d(v3,−v1) and d(v3,−v2)
are all the same, equal to r say. We also have

d(−v3, v1) = ‖v1 − (−v3)‖ = ‖v3 + v1‖ = ‖v3 − (−v1)‖ = d(v3,−v1) = r,

and by the same method we find that d(−v3,−v1) = d(−v3, v2) = d(−v3,−v2) = r. We can also
rotate about v1 or v2 instead, and we find that

d(±v1,±v2) = d(±v1,±v3) = d(±v2,±v1) = d(±v2,±v3) = r.

Using this, we find that the points in V are the vertices of a regular octahedron O, so G ≤ Dir(O),
but |G| = 24 = |Dir(O)| so G = Dir(O). By the same method as in the previous proposition we
find that G is conjugate to G2. �

Proposition 11.14. If case (3) holds in Proposition 11.11 then G is conjugate to G3 = Dir(Icos).

Proof. Let V be the third orbit, which has order n/d3 = 60/5 = 12. We will show that the points
in V are the vertices of an icosahedron.

If v ∈ V then v is a pole of degree 5 so −v is also a pole of degree 5. The poles in the other
two orbits have degree 2 or 3, so we must have −v ∈ V . Put V ′ = V \ {v,−v} so |V ′| = 10,
let g be a one-fifth turn around v, and let H be the subgroup of order 5 generated by g. We see
geometrically that for any x ∈ R3 that does not lie on the axis of g, the orbit Hx has order 5.
None of the points in V ′ lie on the axis, so V ′ must split into two orbits of order 5 under the
action of H, say V ′ = W1 ∪W2. All the points in W1 lie at the same distance (say r1) from v, and
all the points in W2 lie at some other distance r2 from v. We may assume that r1 ≤ r2 (otherwise
rename W1 as W2 and W2 as W1). We will actually assume that r1 < r2; one can check by going
through the following argument more carefully that the equation r1 = r2 leads to a contradiction.

Now let u be any point in V . As V is an orbit there exists an element h ∈ G with hv = u. For
any point w′ ∈ W1 we then have d(u, hw′) = d(hv, hw′) = d(v, w′) = r1. Thus all the points in
hW1 lie at distance r1 from u, and similarly the points in hW2 lie at distance r2. This means that
u has 5 nearest neighbours, and they all lie at distance r1 from u.

Choose a point w ∈W1. I claim that −w ∈W2. Indeed, −w is certainly a pole of degree 5 and
−w 6= ±v so −w ∈ V ′ = W1 ∪W2. It will thus be enough to show that −w 6∈W1. If −w ∈W1 we
have −w = gkw for some k, which means that −w = (−1)5w = g5kw = w (because g5 = 1). This
means that w = 0, which is impossible as w is a unit vector. We must therefore have −w ∈W2 as
required. Note that d(−v,−w) = d(v, w) = r1 and d(−v, w) = d(v,−w) = r2, so all the points in
W2 lie at distance r1 from −w and all the points in W1 lie at distance r2 from −w.
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We thus have a picture like this. The points in W1 are the vertices of the top pentagon, and
the points in W2 are the vertices of the bottom pentagon.

v

−v

wW1

−w W2

r1 r1

r1 r1

Because the nearest neighbours of any vertex lie at distance r1 from that vertex, we see that all
the edges have length r1 so we have a regular icosahedron, which we call I. Clearly G ≤ Dir(I)
but |G| = 60 = |Dir(I)|, so G = Dir(I). It follows as usual that G is conjugate to G3. �

Proposition 11.15. If case (4) holds in Proposition 11.11 then G is conjugate to C̃n.

Proof. This is essentially Theorem 11.8. �

Proposition 11.16. If case (5) holds in Proposition 11.11 and d > 2 then G is conjugate to D̃d.

Proof. Let P1, P2 and P3 be the three orbits in P . Choose w in P3, so w has degree d. Then −w
also has degree d and the poles in the first two orbits have degree 2 so −w ∈ P3. We also have
|P3| = n/d3 = 2d/d = 2, so P3 = {w,−w}. Let g be the rotation through 2π/d around w, and let
U be the plane through the origin perpendicular to w.

Now suppose that v ∈ P2, and let h be the half turn around v, which lies in G because v is a
pole of degree 2. As P3 is an orbit we have hP3 = P3 so hw = ±w. The only way that a half twist
around v can send w to −w is if v is perpendicular to w. Thus all the points in P2 lie in the plane
U , and similarly all the points in P1 lie in U .

Note also that the points v, gv, . . . , gd−1v are all different and all lie in P2, and |P2| = n/d2 =
2d/2 = d, so we must have P2 = {v, gv, . . . , gd−1v}. We can choose coordinate so that w = (0, 0, 1)
and v = (1, 0, 0). Then U is the xy-plane and P2 consists of the vertices of the standard polygon
Xd, with polar coordinates [1, 2kπ/d].

By a similar argument, the set P1 consists of d equally spaced points on the unit circle in the
xy-plane, and these points are all different from the points gkv. Thus there must be precisely one
of the the points in P1 lying in the gap between v and gv; call this point u. Let α be the angle
between u and v, and let β be the angle between u and gv. The half twist around u must send P2

to itself, and clearly this can only happen if v and gv are exchanged, and this means that α = β.
As α + β is the angle between v and gv, which is 2π/d, we have α = β = π/d. We also have
P1 = {u, gu, . . . , gd−1u}, which is the set of points with polar coordinates [1, (2k + 1)π/d]. The
group G consists of the rotations gk together with the half-twists around the points in P1 and
P2, so G = D̃d. This refers to D̃d as defined with respect to our new coordinate system: if D̃d is
defined using the original coordinate system, then G is merely conjugate to D̃d. �

Proposition 11.17. If case (5) holds in Proposition 11.11 and d = 2 then G is conjugate to D̃2.

Proof. In this case we have m = 3, d1 = d2 = d3 = 2 and |G| = n = 4. Let Pi be the i’th orbit,
so |Pi| = n/di = 2, so Pi = {vi, wi}, say. Let gi be a half twist around vi, which lies in G because
di = 2. Note that every element of G sends Pi = {vi, wi} to itself and gi sends vi to vi so it must
send wi to wi. Thus, wi is a fixed point of gi and the only two fixed points are vi and −vi so we
must have wi = −vi.

Now consider g2v1. As the orbit of v1 is {v1,−v1} we must have g2v1 = ±v1 and v1 is not one
of the fixed points of g2 so we must have g2v1 = −v1.
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You should be able to see from the following picture that g2b = −b if and only if b is perpen-
dicular to v2.

b

a

v2

g2a

−b = g2b

−a
As g2v1 = −v1, the vectors v1 and v2 must be orthogonal to each other. By a similar argument,
they are both orthogonal to v3. Thus G consists of the identity together with half twists around
three orthogonal axes, whereas D̃2 consists of the identity together with half-twists about the
standard x, y and z-axes. It follows that G is conjugate to D̃2. �


