FIBRATIONS AND COFIBRATIONS

N. P. STRICKLAND

Proposition 1. Let $j: W \to X$ be a map. The following are equivalent:

- (a) j is a cofibration.
- (b) j is left orthogonal to all maps of the form $p_1: \operatorname{Path}(E) \to E$.
- (c) j has the homotopy extension property: for any map $f: X \to E$ and any homotopy $g_t: W \to E$ ending with $g_1 = fj$, there is a homotopy $h_t: X \to E$ extending g_t (in the sense that $h_t \circ j = g_t$) and ending with $h_1 = f$.

Proof. (a) \Rightarrow (c): Let j be a cofibration, so there is a retraction $r: I \times X \to I \times W \cup_W X$. Given maps $f: X \to E$ and $g: I \times W \to E$ as in (c) we define a map $k: I \times W \cup_W X \to E$ by k(t, w) = g(t, w) on $I \times W$ and k(x) = f(x) on X; this is consistent with the equivalence relation (1, w) = jw because g(1, w) = fj(w). We then define $h = kr: I \times X \to X$, and check that this is as required in (c).

 $(c) \Rightarrow (a)$: Suppose that (c) holds. Take $E = I \times W \cup_W X$, and let $f: X \to E$ and $g: I \times W \to E$ be the obvious maps. We then get a map $h: I \times X \to E$ such that h(1,x) = f(x) and h(t,jw) = (t,w) when $w \in W$. It follows that h is a retraction onto $I \times W \cup_W X$, so j is a cofibration.

(b) \Leftrightarrow (c): A square of the form

is the same thing as a pair of maps $f: X \to E, g: I \times W \to E$ such that g(1, w) = fj(w), via the usual translation $g(t, w) = g^{\#}(w)(t)$. A fill in map $h^{\#}: X \to Path(E)$ with $p_1h^{\#} = f$ and $h^{\#}j = g^{\#}$ is the same as a map $h: I \to E$ such that h(1, x) = f(x) and h(t, jw) = g(t, w). Thus (b) is just a translation of (c). \Box

Proposition 2. Let $q: E \to B$ be a map. The following are equivalent:

- (a) q is a fibration.
- (b) q is right orthogonal to all maps of the form $i_1: X \to I \times X$.
- (c) q has the homotopy lifting property: given a homotopy $g_t: X \to B$ and a map $f: X \to E$ which lifts g_1 (in the sense that $qf = g_1$) there is a lifted homotopy $h_t: X \to E$ with $qh_t = g_t$ and $h_1 = f$.

Proof. Exercise.

Definition 3. A closed subspace $W \subseteq X$ is a *neighbourhood deformation retract* (NDR) if there exist maps $u: X \to I$ and $h: I \times X \to X$ such that

(a) $W = u^{-1}\{0\}.$

- (b) $h_1 = 1_X$.
- (c) $h_t|_W = 1_W$ for all $t \in I$.
- (d) $h_0(x) \in W$ for all $x \in X$ such that u(x) < 1.

We say that (u, h) is a representation of W as an NDR. We say that W is a deformation retract (DR) if we can choose h such that $h_1(X) \subseteq W$. This holds automatically if u(x) < 1 for all x, and conversely if $h_1(X) \subseteq W$ then we can replace u by u/2 and assume that u < 1 everywhere. Note also that in this case h_1 is a retraction of X onto W.

Proposition 4. If $W \subseteq X$ and $Y \subseteq Z$ are NDR's, then so is $W \times Z \cup X \times Y \subseteq X \times Z$. Moreover, this is a DR if either $W \subseteq X$ or $Y \subseteq Z$ is.

Proof. Let (u, h) and (v, k) represent W and Y as NDR's. Write $T = W \times Z \cup X \times Y$. Define $w: X \times Z \to I$ by w(x, z) = u(x)v(z); it is clear that $w^{-1}\{0\} = T$. Define $q: I \times X \times Z \to X \times Z$ by

$$q(t, x, z) = \begin{cases} (x, z) & \text{if } ux = vz = 0\\ (h(t, x), k(1 - (1 - t)ux/vz, z)) & \text{if } vz \ge ux \text{ and } vz > 0\\ (h(1 - (1 - t)vz/ux, x), k(t, z)) & \text{if } ux \ge vz \text{ and } ux > 0. \end{cases}$$

We need to show that this is well-defined continuous. It is well-defined because the second and third clauses both give (h(t, x), k(t, z)) when ux = vz > 0. The set where ux > 0 is the union of the two relatively closed sets where the second and third clauses apply. It follows easily that q is continuous on $\{(t, x, z) \mid ux > 0\}$, and similarly on $\{(t, x, z) \mid vz > 0\}$. All that is left is to check that q is continuous at points $(t, x, z) \mid vz > 0\}$. All that is left is to check that q is continuous at points $(t, x, z) \mid vz > 0\}$. Let U and V be neighbourhoods of x and z in X and Z. Write $U' = \{x' \in X \mid h(t, x) \in U \text{ for all } t\}$. As $x \in W$ we have h(t, x) = x for all t and thus $x \in U'$. We can also describe U' as the preimage of C(I, U) under the map $h^{\#} \colon X \to C(I, X)$ that is adjoint to $h \colon I \times X \to X$. Note that C(I, U) is open in C(I, X) (even in the compact-open topology, and a fortiori in the standard topology), so U' is open in X. It is clear that $q(I \times U' \times V') \subseteq U \times V$. It follows that both components of q are continuous, and thus that q is continuous as required.

It is easy to check that $q_1 = 1_{X \times Z}$. Suppose that $(x, z) \in W \times Z$, so ux = 0. If vz = 0 then q(t, x, z) = (x, z) by the first clause in the definition of q. If vz > 0 then the second clause applies and q(t, x, z) = (h(t, x), k(1, z)) but $k_1 = 1_Z$ and $h_t(x) = x$ because $x \in W$, so q(t, x, z) = (x, z). This shows that q(t, x, z) = (x, z) when $(x, z) \in W \times Z$, and the same holds when $(x, z) \in X \times Y$ by a similar argument. Thus $q_t|_T = 1_T$ for all t.

Finally, suppose that w(x,z) < 1. We either have $ux \le vz$ and ux < 1 or $vz \le ux$ and vz < 1, without loss of generality the former. As ux < 1 we have $h(0,x) \in W$, and as $ux \le vz$ either the first or second clause in the definition of q(t,x,z) applies. Either way we see easily that $q(0,x,z) \in T$. This proves that (w,q) represents $T \subseteq X \times Z$ as an NDR.

If W is a DR of X then we may assume that u < 1 everywhere. It follows immediately that w < 1 everywhere and thus that T is a DR of $X \times Z$. Clearly this also applies if Y is a DR of Z.

Proposition 5. A map $j: W \to X$ is a cofibration if and only if it is a closed inclusion and jW is an NDR of X.

 $\mathbf{2}$

Proof. First suppose that j is a closed inclusion (so we can harmlessly think of W as a subspace of X) and that W is an NDR of X. It is easy to see that $\{1\}$ is a DR of I (take u(s) = 1 - s and h(t, s) = 1 - t + ts). It follows from Proposition 4 that $1 \times X \cup I \times W$ is a DR of $I \times X$, so there is a map $r = h_1 \colon I \times X \to 1 \times X \cup I \times W$ which is the identity on $1 \times X \cup I \times W$. As j is a closed inclusion, one can check that Cyl(j) is just the space $1 \times X \cup I \times W$, so this map r is precisely what we need to show that j is a cofibration.

Conversely, suppose that $j: W \to X$ is a cofibration. One can check from the definitions that the map $W \xrightarrow{i_1} I \times W \to \operatorname{Cyl}(j)$ is always a closed inclusion. As j is a cofibration, the evident map $\operatorname{Cyl}(j) \to I \times X$ has a left inverse. As everything is weakly Hausdorff, it follows that $\operatorname{Cyl}(j) \to I \times X$ is also a closed inclusion, and thus that the composite map $W \to I \times X$ (sending w to (1, j(w))) is also a closed inclusion. It is not hard to conclude that j is a closed inclusion. We may therefore harmlessly think of W as a subspace of X, and of $\operatorname{Cyl}(j)$ as $1 \times X \cup I \times W$. The retraction $r: I \times X \to 1 \times X \cup I \times W \subseteq I \times X$ thus has the form r(t, x) = (v(t, x), h(t, x)), where $v: I \times X \to I$ and $h: I \times X \to X$. We define u(x) = v(0, x); one can check that (u, h) represents W as an NDR of X.

Corollary 6. A smashout of cofibrations is a cofibration.

Proof. Let $j: W \to X$ and $k: Y \to Z$ be cofibrations. Then we can think of j and k as inclusions of subspaces, and their smashout is just the inclusion $W \times Z \cup X \times Y \to X \times Z$, so the claim follows from Proposition 4.

Proposition 7. A map $j: W \to X$ is an acyclic cofibration if and only if it is a closed inclusion and jW is a DR of X.

Proof. By proposition 5, we may assume that j is the inclusion of a closed subspace and that W is an NDR of X, represented by (u, h) say. If W is a DR we may assume that $h_1(X) = W$, and it is easy to check that $h_1: X \to W$ is a homotopy inverse for j, so that j is an acyclic cofibration.

For the converse, suppose that j is an acyclic cofibration. We then have a homotopy inverse $f: X \to W$ with $fj \simeq 1_W$ and $jf \simeq 1_X$. After extending the homotopy $fj \simeq 1_W$ over X (using the homotopy extension property of cofibrations) we may assume that $fj = 1_W$. Let $g_t: X \to X$ be a homotopy with $g_0 = 1_X$ and $g_1 = jf$. Define $P = \{0, 1\} \times X \cup I \times W$ and $Q = I \times X$. It is easy to see that $\{0, 1\} \subset I$ is an NDR, so Proposition 4 tells us that P is an NDR of Q, and thus that $1 \times Q \cup I \times P$ is a retract of $I \times Q = I^2 \times X$. We define a map $h: 1 \times Q \cup I \times P \to X$ by

$$\begin{split} h(s,0,x) &= g(s,jf(x)) \\ h(1,t,x) &= g(1-t,x) \\ h(s,1,x) &= x \\ h(s,t,w) &= g(s(1-t),j(w)) \end{split} \quad \text{for } w \in W. \end{split}$$

Note that the first and second clauses are consistent because $g_0 = jf$ and $fj = 1_W$ so $g_0jf = jfjf = jf$. All other consistency checks are left to the reader. Because $1 \times Q \cup I \times P$ is a retract of $I^2 \times X$, we can extend h over all of $I^2 \times X$ (just compose with the retraction). Having done this, we define k(t, x) = h(0, t, x), so that $k: I \times X \to X$. We find that k(1, x) = x for all x, that k(t, w) = w for all t and

N. P. STRICKLAND

all $w \in W$, and that $k(0, x) = f(x) \in W$ for all x. It follows that (u, k) represents W as a DR of X.

Corollary 8. The smashout of a cofibration and an acyclic cofibration is an acyclic cofibration.

Proof. This is immediate from Propositions 4 and 7.

Proposition 9. If $j: W \to X$ is an acyclic cofibration then there is a diagram

in which $rj = 1_W$ and $sk = 1_X$. In other words, the map j is a retract of the map i_1 .

Proof. We may assume that W is a closed subspace of X. Choose (u, h) representing W as a DR of X. Define $g: I \times X \to X$ by $g(t, x) = h(\max(t/ux, 1), x)$. This is clearly continuous on $I \times (X \setminus W)$. Suppose that $(t, w) \in I \times W$ (so that g(t, w) = w) and that U is an open neighbourhood of w in X. Write $U' = \{x \in X \mid h(I \times \{x\}) \subseteq U\}$. As in the proof of Proposition 4, we see that this is an open neighbourhood of w. Clearly $g(I \times U') \subseteq U$, and thus g is continuous at (t, w). This shows that g is continuous everywhere. One can check that (u, g) represents W as a DR of X, and that g(t, x) = x whenever $t \geq ux$.

Now define

$$k(x) = (1 - u(x), x)$$

 $r(x) = g(0, x)$
 $s(t, x) = g(1 - t, x).$

One can check that the diagram commutes.

Corollary 10. If $j: W \to X$ is an acyclic cofibration and $q: E \to B$ is a fibration then j is left orthogonal to q.

Proof. Suppose we are given a diagram of the following form:

4

Choose maps k, r, s as in Proposition 9. The homotopy lifting property tells us that there is a map $h: I \times X \to E$ making the following diagram commute:

It follows that we can add the map $hk: X \to E$ to the original diagram and it will still commute. This means that j is orthogonal to q.

Proposition 11. If $q: E \to B$ is an acyclic fibration then it is homotopy equivalent over B to B.

Proof. As q is a homotopy equivalence, there is a map $e: B \to E$ such that $qe \simeq 1_B$ and $eq \simeq 1_E$. After lifting the homotopy $qe \simeq 1_B$ (using the homotopy lifting property of fibrations) we may assume that $qe = 1_B$. Choose a homotopy $g_t: E \to E$ with $g_0 = 1_E$ and $g_1 = eq$. Write $J = \{1\} \times I \cup I \times \{0, 1\} \subset I^2$, and define maps $n: J \times E \to E$ and $m: I^2 \times E \to B$ by

$$\begin{split} n(s,0,x) &= eqg(s,x) \\ n(1,t,x) &= g(1-t,x) \\ n(s,1,x) &= x \\ m(s,t,x) &= qg(s(1-t),x). \end{split}$$

One can check that the following diagram commutes:

$$J \times E \xrightarrow{n} E$$

$$\downarrow \qquad \qquad \downarrow^{q}$$

$$I^{2} \times E \xrightarrow{m} B.$$

The inclusion $J \times E \rightarrow I^2 \times E$ is an acyclic cofibration, so it is orthogonal to q by Proposition 10. Thus, there is a map $l: I^2 \times E \rightarrow E$ filling in the square. Define $h: I \times E \rightarrow E$ by h(t, x) = l(0, t, x). Then h(0, x) = eq(x) and h(1, x) = x and qh(t, x) = q(x), so h is a homotopy over B between eq and 1_E , as required. \Box

Corollary 12. If $q: E \to B$ is an acyclic fibration, then for each $b \in B$ the fibre $q^{-1}\{b\}$ is contractible.

Proposition 13. If $j: W \to X$ is a cofibration and $q: E \to B$ is an acyclic fibration, then j is left orthogonal to q.

Proof. Let e and h be as in the proof of Proposition 11. Given a diagram of the form

we consider the diagram

The left hand vertical map is an acyclic cofibration, which is orthogonal to q by Proposition 10. There is thus a map $l: I \times X \to E$ filling in the square. One can check that the map $x \mapsto l(1, x)$ fills in the original square.

Proposition 14. We have $\operatorname{acf}^{\perp} = \operatorname{fib} \operatorname{and} \operatorname{cof}^{\perp} = \operatorname{afb}$.

Proof. We have seen in Propositions 10 and 13 that $\operatorname{acf} \perp$ fib and $\operatorname{cof} \perp$ afb, so that fib $\subseteq \operatorname{acf}^{\perp}$ and afb $\subseteq \operatorname{cof}^{\perp}$. Suppose that $q \in \operatorname{acf}^{\perp}$. Recall that $\operatorname{Path}(q) = \{(\omega, e) \in \operatorname{Path}(B) \times E \mid \omega(1) = q(e)\}$. We define maps $f \colon \operatorname{Path}(q) \to E$ and $g \colon I \times \operatorname{Path}(q) \to B$ by $f(\omega, e) = e$ and $g(t, \omega, e) = \omega(t)$. This gives a diagram as follows:

As i_1 is clearly an acyclic cofibration, there is a map $m: I \times \text{Path}(q) \to E$ filling in the square. One can check that the adjoint map $l = m^{\#}: \text{Path}(q) \to \text{Path}(E)$ (defined by $l(\omega, e)(t) = m(t, \omega, e)$) is a path-lifting function for q, so q is a fibration.

Now suppose that $q \in \operatorname{cof}^{\perp}$. The above shows that q is a fibration; we need to show that it is also a homotopy equivalence. By filling in the square on the left below, we get a map $e: B \to E$ with $qe = 1_B$. We then fill in the right hand square (in which g(0, x) = eq(x) and g(1, x) = x) to get a homotopy $h: I \times E \to E$ over B between eq and 1_E , as required.

Proposition 15. If $j: W \to X$ is a cofibration and $q: E \to B$ is a fibration then the crossmap $F(j,q): C(X,E) \to C(W,E) \times_{C(W,B)} C(X,B)$ is a fibration. If j or q is acyclic then so is F(j,q). *Proof.* Let *i* be an acyclic cofibration. Then $i \Box j$ is an acyclic cofibration and thus orthogonal to q, so $F(i \Box j, q)$ is surjective. However, $F(i, F(j, q)) = F(i \Box j, q)$ so F(i, F(j, q)) is surjective, so *i* is orthogonal to F(j, q). This holds for all $i \in acf$, so $F(j, q) \in acf^{\perp} = fib$ as claimed. A similar argument shows that if $j \in acf$ or $q \in afb$ then $F(j, q) \in cof^{\perp} = fib$.

Corollary 16. If $j: W \to X$ is a cofibration and E is any space, then the restriction map $j^*: C(X, E) \to C(W, E)$ is a fibration. If j is acyclic then so is j^* .

Proof. Apply Proposition 15 to the map $q: E \to 0$.

Proposition 17. We have $acf = {}^{\perp} fib$ and $cof = {}^{\perp} afb$.

Proof. We already know that $\operatorname{acf} \subseteq {}^{\perp}$ fib and $\operatorname{cof} \subseteq {}^{\perp}$ afb. Suppose that $j \in {}^{\perp}$ afb. Let $f: I \times W \to \operatorname{Cyl}(j)$ and $g: X \to \operatorname{Cyl}(j)$ be the evident maps, so that f(1, w) = gj(w). As usual, we write $f^{\#}: W \to \operatorname{Path} \operatorname{Cyl}(j)$ for the adjoint map, defined by $f^{\#}(w)(t) = f(t, w)$. This gives a commutative square as follows:

$$W \xrightarrow{f^{\#}} \operatorname{Path} \operatorname{Cyl}(j)$$

$$\downarrow^{j} \qquad \qquad \downarrow^{p_{1}} \qquad \qquad \downarrow^{p_{1}}$$

$$X \xrightarrow{q} \operatorname{Cyl}(j).$$

We know from Corollary 16 that the map p_1 is an acyclic fibration and thus is orthogonal to j, so there is a map $r^{\#} \colon X \to \text{Path Cyl}(j)$ filling in the square. One can check that the corresponding map $r \colon I \times X \to \text{Cyl}(j)$ (defined by $r(t, x) = r^{\#}(t)(x)$) is a retraction, so that j is a cofibration.

Now suppose that $j \in {}^{\perp}$ fib. From the above, we know that j is a cofibration, and we need to show that it is also a homotopy equivalence. We first fill in the left hand diagram below to get a map $f: X \to W$ with $fj = 1_W$. We then define $c: W \to \operatorname{Path}(X)$ by c(w)(t) = j(w), and apply Corollary 16 to the inclusion $\{0, 1\} \to I$ to see that (p_0, p_1) : $\operatorname{Path}(E) \to E \times E$ is a fibration. This means that we can fill in the right hand square below to get a map $h^{\#}: X \to \operatorname{Path}(X)$ whose adjoint is a homotopy between 1_X and fj under W. This shows that j is a homotopy equivalence, as claimed. \Box