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Proposition 1. Let j : W −→ X be a map. The following are equivalent:
(a) j is a cofibration.
(b) j is left orthogonal to all maps of the form p1 : Path(E) −→ E.
(c) j has the homotopy extension property: for any map f : X −→ E and any

homotopy gt : W −→ E ending with g1 = fj, there is a homotopy ht : X −→ E
extending gt (in the sense that ht ◦ j = gt) and ending with h1 = f .

Proof. (a)⇒(c): Let j be a cofibration, so there is a retraction r : I × X −→ I ×
W ∪W X. Given maps f : X −→ E and g : I ×W −→ E as in (c) we define a map
k : I ×W ∪W X −→ E by k(t, w) = g(t, w) on I ×W and k(x) = f(x) on X; this is
consistent with the equivalence relation (1, w) = jw because g(1, w) = fj(w). We
then define h = kr : I ×X −→ X, and check that this is as required in (c).

(c)⇒(a): Suppose that (c) holds. Take E = I×W ∪W X, and let f : X −→ E and
g : I ×W −→ E be the obvious maps. We then get a map h : I ×X −→ E such that
h(1, x) = f(x) and h(t, jw) = (t, w) when w ∈ W . It follows that h is a retraction
onto I ×W ∪W X, so j is a cofibration.

(b)⇔(c): A square of the form

W Path(E)

X E
u

j

w
g#

u

p1

w
f

is the same thing as a pair of maps f : X −→ E, g : I ×W −→ E such that g(1, w) =
fj(w), via the usual translation g(t, w) = g#(w)(t). A fill in map h# : X −→
Path(E) with p1h

# = f and h#j = g# is the same as a map h : I −→ E such that
h(1, x) = f(x) and h(t, jw) = g(t, w). Thus (b) is just a translation of (c). �

Proposition 2. Let q : E −→ B be a map. The following are equivalent:
(a) q is a fibration.
(b) q is right orthogonal to all maps of the form i1 : X −→ I ×X.
(c) q has the homotopy lifting property: given a homotopy gt : X −→ B and a

map f : X −→ E which lifts g1 (in the sense that qf = g1) there is a lifted
homotopy ht : X −→ E with qht = gt and h1 = f .

Proof. Exercise. �

Definition 3. A closed subspace W ⊆ X is a neighbourhood deformation retract
(NDR) if there exist maps u : X −→ I and h : I ×X −→ X such that

(a) W = u−1{0}.
1
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(b) h1 = 1X .
(c) ht|W = 1W for all t ∈ I.
(d) h0(x) ∈ W for all x ∈ X such that u(x) < 1.

We say that (u, h) is a representation of W as an NDR. We say that W is a
deformation retract (DR) if we can choose h such that h1(X) ⊆ W . This holds
automatically if u(x) < 1 for all x, and conversely if h1(X) ⊆ W then we can
replace u by u/2 and assume that u < 1 everywhere. Note also that in this case h1

is a retraction of X onto W .

Proposition 4. If W ⊆ X and Y ⊆ Z are NDR’s, then so is W×Z∪X×Y ⊆ X×Z.
Moreover, this is a DR if either W ⊆ X or Y ⊆ Z is.

Proof. Let (u, h) and (v, k) represent W and Y as NDR’s. Write T = W×Z∪X×Y .
Define w : X × Z −→ I by w(x, z) = u(x)v(z); it is clear that w−1{0} = T . Define
q : I ×X × Z −→ X × Z by

q(t, x, z) =


(x, z) if ux = vz = 0
(h(t, x), k(1− (1− t)ux/vz, z)) if vz ≥ ux and vz > 0
(h(1− (1− t)vz/ux, x), k(t, z)) if ux ≥ vz and ux > 0.

We need to show that this is well-defined continuous. It is well-defined because the
second and third clauses both give (h(t, x), k(t, z)) when ux = vz > 0. The set
where ux > 0 is the union of the two relatively closed sets where the second and
third clauses apply. It follows easily that q is continuous on {(t, x, z) | ux > 0}, and
similarly on {(t, x, z) | vz > 0}. All that is left is to check that q is continuous at
points (t, x, z) where ux = vz = 0. Note that this implies that x ∈ W and z ∈ Y
and q(t, x, z) = (x, z). Let U and V be neighbourhoods of x and z in X and Z.
Write U ′ = {x′ ∈ X | h(t, x) ∈ U for all t}. As x ∈ W we have h(t, x) = x for
all t and thus x ∈ U ′. We can also describe U ′ as the preimage of C(I, U) under
the map h# : X −→ C(I,X) that is adjoint to h : I ×X −→ X. Note that C(I, U) is
open in C(I, X) (even in the compact-open topology, and a fortiori in the standard
topology), so U ′ is open in X. It is clear that q(I×U ′×V ′) ⊆ U×V . It follows that
both components of q are continuous, and thus that q is continuous as required.

It is easy to check that q1 = 1X×Z . Suppose that (x, z) ∈ W × Z, so ux = 0. If
vz = 0 then q(t, x, z) = (x, z) by the first clause in the definition of q. If vz > 0
then the second clause applies and q(t, x, z) = (h(t, x), k(1, z)) but k1 = 1Z and
ht(x) = x because x ∈ W , so q(t, x, z) = (x, z). This shows that q(t, x, z) = (x, z)
when (x, z) ∈ W × Z, and the same holds when (x, z) ∈ X × Y by a similar
argument. Thus qt|T = 1T for all t.

Finally, suppose that w(x, z) < 1. We either have ux ≤ vz and ux < 1 or
vz ≤ ux and vz < 1, without loss of generality the former. As ux < 1 we have
h(0, x) ∈ W , and as ux ≤ vz either the first or second clause in the definition of
q(t, x, z) applies. Either way we see easily that q(0, x, z) ∈ T . This proves that
(w, q) represents T ⊆ X × Z as an NDR.

If W is a DR of X then we may assume that u < 1 everywhere. It follows
immediately that w < 1 everywhere and thus that T is a DR of X × Z. Clearly
this also applies if Y is a DR of Z. �

Proposition 5. A map j : W −→ X is a cofibration if and only if it is a closed
inclusion and jW is an NDR of X.
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Proof. First suppose that j is a closed inclusion (so we can harmlessly think of W
as a subspace of X) and that W is an NDR of X. It is easy to see that {1} is a DR
of I (take u(s) = 1− s and h(t, s) = 1− t + ts). It follows from Proposition 4 that
1×X ∪ I ×W is a DR of I ×X, so there is a map r = h1 : I ×X −→ 1×X ∪ I ×W
which is the identity on 1 ×X ∪ I ×W . As j is a closed inclusion, one can check
that Cyl(j) is just the space 1×X ∪ I×W , so this map r is precisely what we need
to show that j is a cofibration.

Conversely, suppose that j : W −→ X is a cofibration. One can check from the
definitions that the map W

i1−→ I × W −→ Cyl(j) is always a closed inclusion.
As j is a cofibration, the evident map Cyl(j) −→ I × X has a left inverse. As
everything is weakly Hausdorff, it follows that Cyl(j) −→ I × X is also a closed
inclusion, and thus that the composite map W −→ I ×X (sending w to (1, j(w)))
is also a closed inclusion. It is not hard to conclude that j is a closed inclusion.
We may therefore harmlessly think of W as a subspace of X, and of Cyl(j) as
1×X ∪ I ×W . The retraction r : I ×X −→ 1×X ∪ I ×W ⊆ I ×X thus has the
form r(t, x) = (v(t, x), h(t, x)), where v : I ×X −→ I and h : I ×X −→ X. We define
u(x) = v(0, x); one can check that (u, h) represents W as an NDR of X. �

Corollary 6. A smashout of cofibrations is a cofibration.

Proof. Let j : W −→ X and k : Y −→ Z be cofibrations. Then we can think of j and k
as inclusions of subspaces, and their smashout is just the inclusion W×Z∪X×Y −→
X × Z, so the claim follows from Proposition 4. �

Proposition 7. A map j : W −→ X is an acyclic cofibration if and only if it is a
closed inclusion and jW is a DR of X.

Proof. By proposition 5, we may assume that j is the inclusion of a closed subspace
and that W is an NDR of X, represented by (u, h) say. If W is a DR we may assume
that h1(X) = W , and it is easy to check that h1 : X −→ W is a homotopy inverse
for j, so that j is an acyclic cofibration.

For the converse, suppose that j is an acyclic cofibration. We then have a
homotopy inverse f : X −→ W with fj ' 1W and jf ' 1X . After extending the
homotopy fj ' 1W over X (using the homotopy extension property of cofibrations)
we may assume that fj = 1W . Let gt : X −→ X be a homotopy with g0 = 1X and
g1 = jf . Define P = {0, 1} × X ∪ I ×W and Q = I × X. It is easy to see that
{0, 1} ⊂ I is an NDR, so Proposition 4 tells us that P is an NDR of Q, and thus that
1×Q∪I×P is a retract of I×Q = I2×X. We define a map h : 1×Q∪I×P −→ X
by

h(s, 0, x) = g(s, jf(x))

h(1, t, x) = g(1− t, x)

h(s, 1, x) = x

h(s, t, w) = g(s(1− t), j(w)) for w ∈ W.

Note that the first and second clauses are consistent because g0 = jf and fj = 1W

so g0jf = jfjf = jf . All other consistency checks are left to the reader. Because
1 × Q ∪ I × P is a retract of I2 × X, we can extend h over all of I2 × X (just
compose with the retraction). Having done this, we define k(t, x) = h(0, t, x), so
that k : I×X −→ X. We find that k(1, x) = x for all x, that k(t, w) = w for all t and
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all w ∈ W , and that k(0, x) = f(x) ∈ W for all x. It follows that (u, k) represents
W as a DR of X. �

Corollary 8. The smashout of a cofibration and an acyclic cofibration is an acyclic
cofibration.

Proof. This is immediate from Propositions 4 and 7. �

Proposition 9. If j : W −→ X is an acyclic cofibration then there is a diagram

W X W

X I ×X X,

v

u

j

v w
j

v

u

i1

ww
r

v

u

j

v w
k

wws

in which rj = 1W and sk = 1X . In other words, the map j is a retract of the map
i1.

Proof. We may assume that W is a closed subspace of X. Choose (u, h) representing
W as a DR of X. Define g : I × X −→ X by g(t, x) = h(max(t/ux, 1), x). This is
clearly continuous on I×(X\W ). Suppose that (t, w) ∈ I×W (so that g(t, w) = w)
and that U is an open neighbourhood of w in X. Write U ′ = {x ∈ X | h(I×{x}) ⊆
U}. As in the proof of Proposition 4, we see that this is an open neighbourhood of
w. Clearly g(I × U ′) ⊆ U , and thus g is continuous at (t, w). This shows that g is
continuous everywhere. One can check that (u, g) represents W as a DR of X, and
that g(t, x) = x whenever t ≥ ux.

Now define

k(x) = (1− u(x), x)

r(x) = g(0, x)

s(t, x) = g(1− t, x).

One can check that the diagram commutes. �

Corollary 10. If j : W −→ X is an acyclic cofibration and q : E −→ B is a fibration
then j is left orthogonal to q.

Proof. Suppose we are given a diagram of the following form:

W E

X B.
u

j

w
f

u

q

w
g
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Choose maps k, r, s as in Proposition 9. The homotopy lifting property tells us
that there is a map h : I ×X −→ E making the following diagram commute:

X E

I ×X B.

w
fr

u

i1

u

q

�
�
�
��

h

w
gs

It follows that we can add the map hk : X −→ E to the original diagram and it will
still commute. This means that j is orthogonal to q. �

Proposition 11. If q : E −→ B is an acyclic fibration then it is homotopy equivalent
over B to B.

Proof. As q is a homotopy equivalence, there is a map e : B −→ E such that qe ' 1B

and eq ' 1E . After lifting the homotopy qe ' 1B (using the homotopy lifting
property of fibrations) we may assume that qe = 1B . Choose a homotopy gt : E −→
E with g0 = 1E and g1 = eq. Write J = {1}× I ∪ I ×{0, 1} ⊂ I2, and define maps
n : J × E −→ E and m : I2 × E −→ B by

n(s, 0, x) = eqg(s, x)

n(1, t, x) = g(1− t, x)

n(s, 1, x) = x

m(s, t, x) = qg(s(1− t), x).

One can check that the following diagram commutes:

J × E E

I2 × E B.

w
n

v

u u

q

w
m

The inclusion J ×E � I2×E is an acyclic cofibration, so it is orthogonal to q by
Proposition 10. Thus, there is a map l : I2 × E −→ E filling in the square. Define
h : I × E −→ E by h(t, x) = l(0, t, x). Then h(0, x) = eq(x) and h(1, x) = x and
qh(t, x) = q(x), so h is a homotopy over B between eq and 1E , as required. �

Corollary 12. If q : E −→ B is an acyclic fibration, then for each b ∈ B the fibre
q−1{b} is contractible.

Proposition 13. If j : W −→ X is a cofibration and q : E −→ B is an acyclic
fibration, then j is left orthogonal to q.
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Proof. Let e and h be as in the proof of Proposition 11. Given a diagram of the
form

W E

X B,
u

j

w
f

u
q

w
g

we consider the diagram

I ×W ∪ 0×X E

I ×X B.

v

u

w
k

u

q

w
g◦proj

The left hand vertical map is an acyclic cofibration, which is orthogonal to q by
Proposition 10. There is thus a map l : I ×X −→ E filling in the square. One can
check that the map x 7→ l(1, x) fills in the original square. �

Proposition 14. We have acf⊥ = fib and cof⊥ = afb.

Proof. We have seen in Propositions 10 and 13 that acf ⊥ fib and cof ⊥ afb, so
that fib ⊆ acf⊥ and afb ⊆ cof⊥. Suppose that q ∈ acf⊥. Recall that Path(q) =
{(ω, e) ∈ Path(B) × E | ω(1) = q(e)}. We define maps f : Path(q) −→ E and
g : I × Path(q) −→ B by f(ω, e) = e and g(t, ω, e) = ω(t). This gives a diagram as
follows:

Path(q) E

I × Path(q) B.

v

u
i1

w
f

u
q

w
g

As i1 is clearly an acyclic cofibration, there is a map m : I × Path(q) −→ E filling
in the square. One can check that the adjoint map l = m# : Path(q) −→ Path(E)
(defined by l(ω, e)(t) = m(t, ω, e)) is a path-lifting function for q, so q is a fibration.

Now suppose that q ∈ cof⊥. The above shows that q is a fibration; we need to
show that it is also a homotopy equivalence. By filling in the square on the left
below, we get a map e : B −→ E with qe = 1B . We then fill in the right hand square
(in which g(0, x) = eq(x) and g(1, x) = x) to get a homotopy h : I × E −→ E over
B between eq and 1E , as required.

∅ E {0, 1} × E E

B B I × E B.

v

u

v w

u

q

v

u

w
g

u

q

w
1

w
q◦proj

�

Proposition 15. If j : W −→ X is a cofibration and q : E −→ B is a fibration then
the crossmap F (j, q) : C(X, E) −→ C(W,E) ×C(W,B) C(X, B) is a fibration. If j or
q is acyclic then so is F (j, q).
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Proof. Let i be an acyclic cofibration. Then i2j is an acyclic cofibration and thus
orthogonal to q, so F (i2j, q) is surjective. However, F (i, F (j, q)) = F (i2j, q) so
F (i, F (j, q)) is surjective, so i is orthogonal to F (j, q). This holds for all i ∈ acf,
so F (j, q) ∈ acf⊥ = fib as claimed. A similar argument shows that if j ∈ acf or
q ∈ afb then F (j, q) ∈ cof⊥ = fib. �

Corollary 16. If j : W −→ X is a cofibration and E is any space, then the restriction
map j∗ : C(X, E) −→ C(W,E) is a fibration. If j is acyclic then so is j∗.

Proof. Apply Proposition 15 to the map q : E −→ 0. �

Proposition 17. We have acf = ⊥ fib and cof = ⊥ afb.

Proof. We already know that acf ⊆ ⊥ fib and cof ⊆ ⊥ afb. Suppose that j ∈ ⊥ afb.
Let f : I ×W −→ Cyl(j) and g : X −→ Cyl(j) be the evident maps, so that f(1, w) =
gj(w). As usual, we write f# : W −→ PathCyl(j) for the adjoint map, defined by
f#(w)(t) = f(t, w). This gives a commutative square as follows:

W PathCyl(j)

X Cyl(j).

v

u
j

w
f#

u
p1

w
g

We know from Corollary 16 that the map p1 is an acyclic fibration and thus is
orthogonal to j, so there is a map r# : X −→ PathCyl(j) filling in the square. One
can check that the corresponding map r : I × X −→ Cyl(j) (defined by r(t, x) =
r#(t)(x)) is a retraction, so that j is a cofibration.

Now suppose that j ∈ ⊥ fib. From the above, we know that j is a cofibration,
and we need to show that it is also a homotopy equivalence. We first fill in the
left hand diagram below to get a map f : X −→ W with fj = 1W . We then define
c : W −→ Path(X) by c(w)(t) = j(w), and apply Corollary 16 to the inclusion
{0, 1} � I to see that (p0, p1) : Path(E) −→ E × E is a fibration. This means
that we can fill in the right hand square below to get a map h# : X −→ Path(X)
whose adjoint is a homotopy between 1X and fj under W . This shows that j is a
homotopy equivalence, as claimed. �


