FIBRATIONS AND COFIBRATIONS

N. P. STRICKLAND

Proposition 1. Let j: W — X be a map. The following are equivalent:

(a) j is a cofibration.

(b) 7 is left orthogonal to all maps of the form p;: Path(E) — E.

(¢) j has the homotopy extension property: for any map f: X — F and any
homotopy g;: W — E ending with g; = fj, there is a homotopy h;: X — FE
extending g; (in the sense that h; o j = ¢;) and ending with h; = f.

Proof. (a)=(c): Let j be a cofibration, so there is a retraction r: I x X — I X
W Uw X. Given maps f: X — E and g: I x W — E as in (¢) we define a map
kE: IxWUw X — E by k(t,w) = g(t,w) on I x W and k(x) = f(z) on X; this is
consistent with the equivalence relation (1, w) = jw because g(1,w) = fj(w). We
then define h = kr: I x X — X, and check that this is as required in (c).

(c)=-(a): Suppose that (c) holds. Take E = I x WUy X, and let f: X — E and
g: I x W — E be the obvious maps. We then get a map h: I x X — FE such that
h(1,2) = f(x) and h(t, jw) = (t,w) when w € W. It follows that h is a retraction
onto I x W Uy X, so j is a cofibration.

(b)<(c): A square of the form

#

W —L— Path(E)

X ——F

is the same thing as a pair of maps f: X — E, g: I x W — E such that g(1,w) =
fj(w), via the usual translation g(t,w) = g¢#(w)(t). A fill in map h#: X —
Path(F) with p;h# = f and h#j = g% is the same as a map h: [ — E such that
h(1,z) = f(z) and h(t, jw) = g(¢t,w). Thus (b) is just a translation of (c). O

Proposition 2. Let ¢q: F — B be a map. The following are equivalent:

(a) ¢ is a fibration.

(b) g is right orthogonal to all maps of the form i;: X — I x X.

(¢) ¢ has the homotopy lifting property: given a homotopy ¢:: X — B and a
map f: X — FE which lifts g (in the sense that qf = g¢1) there is a lifted
homotopy hy: X — E with ghy = g and hy = f.

Proof. Exercise. O

Definition 3. A closed subspace W C X is a neighbourhood deformation retract
(NDR) if there exist maps u: X — I and h: I x X — X such that

(a) W =u"1{0}.
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(b) hy =1x.
(¢) helw = 1w for all t € I.
(d) ho(z) € W for all z € X such that u(z) < 1.

We say that (u,h) is a representation of W as an NDR. We say that W is a
deformation retract (DR) if we can choose h such that hy(X) € W. This holds
automatically if u(z) < 1 for all z, and conversely if hy(X) C W then we can
replace u by u/2 and assume that u < 1 everywhere. Note also that in this case hy
is a retraction of X onto W.

Proposition4. If W C X and Y C Z are NDR’s, thensois WxZUX xY C X x Z.
Moreover, this is a DR if either W C X or Y C Z is.

Proof. Let (u, h) and (v, k) represent W and Y as NDR’s. Write T = W x ZUX xY.
Define w: X x Z — I by w(z,z) = u(z)v(z); it is clear that w=1{0} = T. Define
q: I x X XxZ — X xZ by

(z,2) ifur=vz=0
q(t,z,2z) = ¢ (h(t,2), k(1 — (1 — H)ux/vz,2)) if vz > ux and vz > 0
(h(1 = (1 —t)vz/ux,x),k(t,z)) if ux > vz and ux > 0.

We need to show that this is well-defined continuous. It is well-defined because the
second and third clauses both give (h(t,z),k(t,2)) when uz = vz > 0. The set
where uz > 0 is the union of the two relatively closed sets where the second and
third clauses apply. It follows easily that g is continuous on {(¢,z, z) | ux > 0}, and
similarly on {(¢,z,z) | vz > 0}. All that is left is to check that ¢ is continuous at
points (¢, x, z) where ux = vz = 0. Note that this implies that x € W and z € Y
and ¢(t,z,z) = (z,2z). Let U and V be neighbourhoods of z and z in X and Z.
Write U’ = {2/ € X | h(t,z) € U for all t}. As x € W we have h(t,z) = z for
all ¢ and thus x € U’. We can also describe U’ as the preimage of C(I,U) under
the map h#: X — C(I, X) that is adjoint to h: I x X — X. Note that C(I,U) is
open in C(I, X) (even in the compact-open topology, and a fortiori in the standard
topology), so U’ is open in X. It is clear that (I x U’ x V') C U x V. It follows that
both components of g are continuous, and thus that ¢ is continuous as required.

It is easy to check that g1 = 1xxz. Suppose that (z,2z) € W x Z, so ux = 0. If
vz = 0 then ¢(t,x,z) = (x,z) by the first clause in the definition of ¢. If vz > 0
then the second clause applies and ¢(t,z,2) = (h(t,x),k(1,2)) but k&1 = 1z and
hi(x) = = because x € W, so ¢(t,x, z) = (x,z). This shows that ¢(t,z, z) = (z, 2)
when (z,2) € W x Z, and the same holds when (z,z) € X x Y by a similar
argument. Thus ¢;|r = 1p for all ¢.

Finally, suppose that w(z,z) < 1. We either have uz < vz and uax < 1 or
vz < ux and vz < 1, without loss of generality the former. As ux < 1 we have
h(0,2) € W, and as ux < vz either the first or second clause in the definition of
q(t,x, z) applies. Either way we see easily that ¢(0,z,z) € T. This proves that
(w, q) represents T C X x Z as an NDR.

If W is a DR of X then we may assume that u < 1 everywhere. It follows
immediately that w < 1 everywhere and thus that T is a DR of X x Z. Clearly
this also applies if Y is a DR of Z. O

Proposition 5. A map j: W — X is a cofibration if and only if it is a closed
inclusion and jW is an NDR of X.
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Proof. First suppose that j is a closed inclusion (so we can harmlessly think of W
as a subspace of X) and that W is an NDR of X. It is easy to see that {1} is a DR
of I (take u(s) =1—s and h(t,s) =1 —t+ts). It follows from Proposition 4 that
IxXUIxWisaDRof I x X,sothereisamapr =h1: I XX - 1xXUIxW
which is the identity on 1 x X UT x W. As j is a closed inclusion, one can check
that Cyl(j) is just the space 1 x X UT x W, so this map r is precisely what we need
to show that j is a cofibration.

Conversely, suppose that j: W — X is a cofibration. One can check from the

definitions that the map W % I x W — Cyl(j) is always a closed inclusion.
As j is a cofibration, the evident map Cyl(j) — I x X has a left inverse. As
everything is weakly Hausdorff, it follows that Cyl(j) — I x X is also a closed
inclusion, and thus that the composite map W — I x X (sending w to (1, j(w)))
is also a closed inclusion. It is not hard to conclude that j is a closed inclusion.
We may therefore harmlessly think of W as a subspace of X, and of Cyl(j) as
1x XUI x W. The retraction r: I x X — 1 x XUI xW C I x X thus has the
form r(t,x) = (v(t,x), h(t,z)), where v: I x X — I and h: I x X — X. We define
u(z) = v(0,x); one can check that (u, h) represents W as an NDR of X. O

Corollary 6. A smashout of cofibrations is a cofibration.

Proof. Let j: W — X and k: Y — Z be cofibrations. Then we can think of j and k
as inclusions of subspaces, and their smashout is just the inclusion W x ZUX xY —
X x Z, so the claim follows from Proposition 4. O

Proposition 7. A map j: W — X is an acyclic cofibration if and only if it is a
closed inclusion and jW is a DR of X.

Proof. By proposition 5, we may assume that j is the inclusion of a closed subspace
and that W is an NDR of X, represented by (u, h) say. If W is a DR we may assume
that hq(X) = W, and it is easy to check that hy: X — W is a homotopy inverse
for j, so that j is an acyclic cofibration.

For the converse, suppose that j is an acyclic cofibration. We then have a
homotopy inverse f: X — W with fj ~ 1y and jf ~ 1x. After extending the
homotopy fj ~ 1y over X (using the homotopy extension property of cofibrations)
we may assume that fj = 1y. Let g;: X — X be a homotopy with gg = 1x and
g1 = jf. Define P ={0,1} x XUI x W and @ = I x X. It is easy to see that
{0,1} C I is an NDR, so Proposition 4 tells us that P is an NDR of @, and thus that
1xQUIxPisaretract of IxQ =1?>xX. Wedefineamap h: I1xQUIXP — X
by

h(S,O,J?) = 9(5,jf(l'))

h(1,t,2) = g(1 —t, x)

h(s,1,z) =

h(s,t,w) = g(s(1 —t),j(w)) for w e W.

Note that the first and second clauses are consistent because gp = jf and fj = 1y
so gojf = jfif = jf. All other consistency checks are left to the reader. Because
1 x QUI x P is a retract of I? x X, we can extend h over all of I? x X (just
compose with the retraction). Having done this, we define k(¢,z) = h(0,¢,x), so
that k: I x X — X. We find that k(1,2) = « for all z, that k(¢, w) = w for all ¢ and



4 N. P. STRICKLAND

all w € W, and that k(0,z) = f(z) € W for all z. It follows that (u, k) represents
W as a DR of X. d

Corollary 8. The smashout of a cofibration and an acyclic cofibration is an acyclic
cofibration.

Proof. This is immediate from Propositions 4 and 7. (]

Proposition 9. If j: W — X is an acyclic cofibration then there is a diagram

J r

w X w

XTIXXT»X,

in which rj = 1y and sk = 1x. In other words, the map j is a retract of the map
1.

Proof. We may assume that W is a closed subspace of X. Choose (u, h) representing
W as a DR of X. Define g: I x X — X by ¢(¢t,z) = h(max(t/uz,1),z). This is
clearly continuous on I x (X \W). Suppose that (t,w) € I xW (so that g(t,w) = w)
and that U is an open neighbourhood of w in X. Write U’ = {x € X | h(I x {z}) C
U}. As in the proof of Proposition 4, we see that this is an open neighbourhood of
w. Clearly g(I x U") C U, and thus g is continuous at (¢,w). This shows that g is
continuous everywhere. One can check that (u, g) represents W as a DR of X, and
that g(t,z) =  whenever t > ux.

Now define
k(z) = (1 —u(z),x)
r(z) = g(0,2)
S(tvx) = g(]- - t,!L’)
One can check that the diagram commutes. ([

Corollary 10. If j: W — X is an acyclic cofibration and ¢q: E — B is a fibration
then j is left orthogonal to q.

Proof. Suppose we are given a diagram of the following form:
w—

|}

X g
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Choose maps k,r,s as in Proposition 9. The homotopy lifting property tells us
that there is a map h: I x X — E making the following diagram commute:

1" .5

i1 q

IXXTB

It follows that we can add the map hk: X — E to the original diagram and it will
still commute. This means that j is orthogonal to q. O

Proposition 11. If ¢: F — B is an acyclic fibration then it is homotopy equivalent
over B to B.

Proof. As q is a homotopy equivalence, there is a map e: B — FE such that ge ~ 1
and eq ~ 1g. After lifting the homotopy ge ~ 1p (using the homotopy lifting
property of fibrations) we may assume that ge = 15. Choose a homotopy ¢;: E —
E with go = 1g and g1 = eq. Write J = {1} x TUI x {0,1} C I?, and define maps
n:JxE—FEandm:I?xE — B by

One can check that the following diagram commutes:

JxE ——E

I’ x E —— B.

The inclusion J x E ~ I? x E is an acyclic cofibration, so it is orthogonal to ¢ by
Proposition 10. Thus, there is a map [: I? x E — FE filling in the square. Define
h:Ix E — E by h(t,z) = 1(0,t,x). Then h(0,z) = eq(z) and h(1,z) = = and
qh(t,z) = q(x), so h is a homotopy over B between eq and 1, as required. |

Corollary 12. If g: E — B is an acyclic fibration, then for each b € B the fibre
q~1{b} is contractible.

Proposition 13. If j: W — X is a cofibration and ¢: £ — B is an acyclic
fibration, then j is left orthogonal to q.
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Proof. Let e and h be as in the proof of Proposition 11. Given a diagram of the
form f
W ——F

X —— B
we consider the diagram

IXWUOXx X —— g

|

IxX — B.
goproj

The left hand vertical map is an acyclic cofibration, which is orthogonal to ¢ by
Proposition 10. There is thus a map [: I x X — F filling in the square. One can
check that the map = — I(1,x) fills in the original square. O

Proposition 14. We have acf' = fib and coft = afb.

Proof. We have seen in Propositions 10 and 13 that acf L fib and cof L afb, so
that fib C acf™ and afb C cof™. Suppose that ¢ € acf’. Recall that Path(q) =
{(w,e) € Path(B) x E | w(1) = ¢(e)}. We define maps f: Path(¢) — F and
g: I x Path(q) — B by f(w,e) = e and g(t,w,e) = w(t). This gives a diagram as
follows:

Path(q) — ' E

I x Path(q) —— B.

As iy is clearly an acyclic cofibration, there is a map m: I x Path(q) — F filling
in the square. One can check that the adjoint map I = m#: Path(q) — Path(E)
(defined by I(w, €)(t) = m(t,w,e)) is a path-lifting function for ¢, so ¢ is a fibration.

Now suppose that ¢ € cof™. The above shows that ¢ is a fibration; we need to
show that it is also a homotopy equivalence. By filling in the square on the left
below, we get a map e: B — E with ge = 1. We then fill in the right hand square
(in which ¢(0,z) = eq(z) and g(1,x) = x) to get a homotopy h: I x E — E over
B between eq and 1g, as required.

)——— F {0,1}xE 25 g

( q q

B—B I xE ——— B.
1 qoproj

]

Proposition 15. If j: W — X is a cofibration and ¢: £ — B is a fibration then
the crossmap F'(j,q): C(X, E) — C(W, E) xcw,p) C(X, B) is a fibration. If j or
q is acyclic then so is F(j,q).
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Proof. Let i be an acyclic cofibration. Then ¢0j is an acyclic cofibration and thus
orthogonal to ¢, so F'(i0dj,q) is surjective. However, F(i, F(j,q)) = F(i0j,q) so
F(i,F(j,q)) is surjective, so i is orthogonal to F'(j,q). This holds for all ¢ € acf,
so F(j,q) € acft = fib as claimed. A similar argument shows that if j € acf or
q € afb then F(j,q) € coft = fib. |

Corollary 16. If j: W — X is a cofibration and F is any space, then the restriction
map j*: C(X,E) — C(W, E) is a fibration. If j is acyclic then so is j*.

Proof. Apply Proposition 15 to the map ¢: E — 0. O
Proposition 17. We have acf = * fib and cof = * afb.

Proof. We already know that acf C +fib and cof C * afb. Suppose that j € * afb.
Let f: I xW — Cyl(j) and g: X — Cyl(j) be the evident maps, so that f(1,w) =
gj(w). As usual, we write f#: W — Path Cyl(j) for the adjoint map, defined by
f#(w)(t) = f(t,w). This gives a commutative square as follows:

#
W~ Path Cyl(j)

We know from Corollary 16 that the map p; is an acyclic fibration and thus is
orthogonal to j, so there is a map r#: X — Path Cyl(j) filling in the square. One
can check that the corresponding map r: I x X — Cyl(j) (defined by r(t,z) =
r#(t)(z)) is a retraction, so that j is a cofibration.

Now suppose that j € *fib. From the above, we know that j is a cofibration,
and we need to show that it is also a homotopy equivalence. We first fill in the
left hand diagram below to get a map f: X — W with fj = 1lyy. We then define
c: W — Path(X) by c(w)(t) = j(w), and apply Corollary 16 to the inclusion
{0,1} — I to see that (po,p1): Path(E) — E x E is a fibration. This means
that we can fill in the right hand square below to get a map h*: X — Path(X)
whose adjoint is a homotopy between 1x and fj under W. This shows that j is a
homotopy equivalence, as claimed. ([l



