Rings, Modules and Linear Algebra — Exam solutions

(1) (i) [similar examples seen]

(a) The characteristic polynomial of A is the determinant of the matrix on the left below. The matrix on the right is obtained by adding $t - 1$ times the second row to the first row and $t - 1$ times the fourth row to the third row, so it has the same determinant.

$$\begin{pmatrix} t - 1 & -1 & -1 & -1 \\ -1 & t - 1 & -1 & -1 \\ 0 & 0 & t - 1 & -1 \\ 0 & 0 & -1 & t - 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & t^2 - 2t & -t & -t \\ -1 & t - 1 & -1 & -1 \\ 0 & 0 & 0 & t^2 - 2t \\ 0 & 0 & -1 & t - 1 \end{pmatrix}$$

We now expand the determinant repeatedly along the first column to get

$$\begin{vmatrix} t^2 - 2t & -t & -t \\ 0 & t^2 - 2t & -t \\ 0 & -1 & t - 1 \end{vmatrix} = (t^2 - 2t) \begin{vmatrix} 0 & -1 & -1 \\ -1 & 0 & 0 \\ 0 & 0 & t - 1 \end{vmatrix} = (t^2 - 2t)^2 = t^2(t - 2)^2. \quad [4]$$

(b) The reduced echelon form of A is clearly given by

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

so $\text{rank}(A) = 2 \quad [2]$. Below we display the row-reduction of $A - 2I$:

$$\begin{pmatrix} -1 & 1 & 1 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

This makes it clear that $\text{rank}(A - 2I) = 3 \quad [2]$. (c) By looking at the characteristic polynomial, we see that M_A is a direct sum of modules of the form $B(0, k)$ or $B(2, k)$, with $1 \leq k \leq 2$. Each $B(0, k)$ contributes t^k to the characteristic polynomial, and each $B(2, k)$ contributes $(t - 2)^k$. The number of blocks of eigenvalue 0 is 4 − $\text{rank}(A) = 2$, and the number of blocks with eigenvalue 1 is 4 − $\text{rank}(A - 2I) = 1$. The only possibility is to have $M_A = B(0, 1) \oplus B(0, 1) \oplus B(2, 2) \quad [4]$.

(ii) [similar examples seen] We first observe that $1296 = 2^4 3^4$, so M must be a direct sum of groups of the form \mathbb{Z}_{2^j} or \mathbb{Z}_{3^k}, with $1 \leq j, k \leq 4 \quad [2]$. As $18m = 2^1 3^2 m = 0$ for all $m \in M$, we must in fact have $j = 1$ and $1 \leq k \leq 2$, so the possible building blocks are \mathbb{Z}_2, \mathbb{Z}_3 and $\mathbb{Z}_9 \quad [2]$. Thus, the 2-primary part must be $(\mathbb{Z}_2)^4$, and the 3-primary part could be $(\mathbb{Z}_3)^2$ or $(\mathbb{Z}_3)^2 \oplus \mathbb{Z}_9$ or $(\mathbb{Z}_3)^4$. Thus, there are thus 3 possibilities for M:

- $(\mathbb{Z}_2)^4 \oplus (\mathbb{Z}_3)^2 \quad [1]$
- $(\mathbb{Z}_2)^4 \oplus (\mathbb{Z}_3)^2 \oplus \mathbb{Z}_9 \quad [1]$
- $(\mathbb{Z}_2)^4 \oplus (\mathbb{Z}_3)^4 \quad [1]$

(iii) [The case $\lambda = 1$ was on a problem sheet]

I claim that

$$A^n = \begin{pmatrix} \lambda^n & n \lambda^{n-1} \\ 0 & \lambda^n \end{pmatrix}$$

for all $n \geq 0$. Indeed, this is clear when $n = 0$, and if it holds for $n = k$ we have

$$A^{k+1} = AA^k = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} \lambda^k & k \lambda^{k-1} \\ 0 & \lambda^k \end{pmatrix} = \begin{pmatrix} \lambda^{k+1} & (k+1) \lambda^k \\ 0 & \lambda^{k+1} \end{pmatrix}$$
so it also holds for $n = k + 1$. It therefore holds for all k by induction \[3\]. It follows that

$$f(A) = \sum_i a_i \begin{pmatrix} \lambda^i & i\lambda^{i-1} \\ 0 & \lambda^i \end{pmatrix}$$

$$= \left(\sum_i a_i \lambda^i \right) \begin{pmatrix} \sum_i i a_i \lambda^{i-1} \\ 0 \sum_i a_i \lambda^i \end{pmatrix}$$

$$= \begin{pmatrix} f(\lambda) & f'(\lambda) \\ 0 & f(\lambda) \end{pmatrix} [3].$$
(2)

(i) [similar examples seen]

We can simplify B by row and column operations as follows:

\[
\begin{pmatrix}
200 & 100 & 108 \\
36 & 0 & 72 \\
0 & 0 & 36
\end{pmatrix} \rightarrow
\begin{pmatrix}
0 & 100 & 8 \\
36 & 0 & 72 \\
0 & 0 & 36
\end{pmatrix} \rightarrow
\begin{pmatrix}
0 & 100 & 8 \\
36 & 0 & 72 \\
0 & 0 & 900
\end{pmatrix} \rightarrow
\begin{pmatrix}
0 & 100 & 8 \\
36 & 0 & 72 \\
0 & 0 & 900
\end{pmatrix} \rightarrow
\begin{pmatrix}
0 & 900 & 0 \\
0 & 0 & 4 \\
0 & 0 & 900
\end{pmatrix}.
\]

(In step 1 we subtracted C_2 from C_3, and $2C_2$ from C_1. In step 2 we subtracted $9R_1$ from R_2, and $4R_1$ from R_3. In step 3 we subtracted $2R_3$ from R_1, and in step 4 we added $25C_1 + 100C_3$ to C_2. Finally, in step 5 we permuted the rows and columns in an obvious way.)

[6] [3 marks will be awarded for a broadly correct method, with one mark deducted from this if the answer is not in normal form. The remaining 3 marks are for accuracy; one mark will be deducted for each error.]

This shows that $\mathbb{Z}^3/N \simeq \mathbb{Z}_4 \oplus \mathbb{Z}_{36} \oplus \mathbb{Z}_{900}$.

(ii) [similar examples seen] We can apply column operations as follows:

\[
\begin{pmatrix}
a & 1 & 0 & 0 \\
b & 1 & 0 \\
c & 0 & 1 & 0 \\
d & 0 & 0 & 1
\end{pmatrix} \rightarrow
\begin{pmatrix}
0 & 1 & 0 & 0 \\
-ab & b & 1 & 0 \\
0 & 0 & c & 1 \\
0 & 0 & 0 & d
\end{pmatrix} \rightarrow
\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-abcd & bcd & -cd & d
\end{pmatrix} \rightarrow
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-bcd & -cd & d & -abcd
\end{pmatrix}.
\]

We then apply row operations as follows:

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-bcd & -cd & d & -abcd
\end{pmatrix} \rightarrow
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & abcd
\end{pmatrix} \rightarrow
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & abcd
\end{pmatrix}.
\]

We conclude that $R^4/M \simeq R/1 \oplus R/1 \oplus R/1 \oplus R/abcd = R/abcd$, so R is cyclic and we can take $x = abcd$. [3]

(iii) [There is one similar example in the lecture notes] Put $w_1 = u_1 - u_2 = (1, 1, 0)$ and $w_2 = u_2 - u_3 = (0, 2, 2)$ and $w_3 = u_3 = (0, 0, 4)$ [3]. These give a new basis for L. If we put

\[
d_1 = 1 \quad v_1 = (1, 1, 0) \\
d_2 = 2 \quad v_2 = (0, 1, 1) \\
d_3 = 4 \quad v_3 = (0, 0, 1)[3]
\]

then clearly $w_i = d_i v_i$ and $\{v_1, v_2, v_3\}$ is a basis for \mathbb{Z}^3 over \mathbb{Z} [3].
(3) (i) [bookwork]

As \(M \) is finitely generated, there is a list \(m_1, \ldots, m_d \) of elements of \(M \) such that an arbitrary element \(m \in M \) can be written in the form \(u_1m_1 + \ldots + u_dm_d \) [1]. Define \(\phi: R^d \rightarrow M \) by \(\phi(u_1, \ldots, u_d) = u_1m_1 + \ldots + u_dm_d \); this is clearly a surjective homomorphism [1]. Put \(L = \{ u \in R^d \mid \phi(u) \in N \} \) [1]. I claim that this is a submodule of \(R^d \). Indeed, if \(u, v \in L \) then \(\phi(u), \phi(v) \in N \) so \(\phi(u+v) = \phi(u)+\phi(v) \in N \) so \(u+v \in L \). Similarly, if \(u \in L \) and \(a \in R \) then \(\phi(u) \in N \) so \(\phi(au) = a\phi(u) \in N \) so \(au \in L \), so \(L \) is a submodule as claimed [1]. Submodules of \(R^d \) are finite free modules, so we can choose a basis \(\{ p_1, \ldots, p_r \} \) for \(L \) [1]. Put \(n_i = \phi(p_i) \) [1]: as \(p_i \in L \) we have \(n_i \in N \) [1]. I claim that the elements \(n_1, \ldots, n_r \) generate \(N \). Indeed, suppose \(n \in N \). Then \(n \in M \) and the homomorphism \(\phi: R^d \rightarrow M \) is surjective so we have \(n = \phi(u) \) for some \(u \in R^d \) [1]. As \(\phi(u) = n \in N \) we see that \(u \in L \) [1], so \(u \) can be written in the form \(u = v_1p_1 + \ldots + v_rp_r \) for some \(v_1, \ldots, v_r \in R \) [1]. It follows that

\[
n = \phi(u) = v_1\phi(p_1) + \ldots + v_r\phi(p_r) = v_1n_1 + \ldots + v rn_r,[1]
\]

This shows that the elements \(n_1, \ldots, n_r \) generate \(N \) as claimed, so \(N \) is finitely generated. [1]

(ii) [unseen]

(a) For \(v \in M_B \) we have \((x^3 - 27)v = (B^3 - 27 I)v, \) but

\[
B^2 = \begin{pmatrix} 0 & 0 & 3 \\ 3 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}, \quad B^3 = \begin{pmatrix} 0 & 0 & 3 \\ 3 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}
\]

so \((x^3 - 27)v = 0 \) as claimed [2]. Similarly, we have

\[
A^2 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad A^3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}
\]

so for \(u \in M_A \) we have \(x(x-3)u = (A^2 - 3A)u = 0 \) [1]. We can now multiply by \((x+3) \) to deduce that \((x^3 - 9x)u = (x+3)x(x-3)u = 0 \) [1]

(b) Now consider a homomorphism \(\gamma: M_A \rightarrow M_B \), given by \(\gamma(u) = Cu \) say. As \(\gamma(u) \in M_B \) we have \((x^3 - 27)\gamma(u) = 0 \) [1]. We can also apply \(\gamma \) to the relation \((x^3 - 9x)u = 0 \) to see that \((x^3 - 9x)\gamma(u) = 0 \) [2]. Subtracting these two equations gives \((9x - 27)\gamma(u) = 0 \), and we can divide by 9 to deduce that \((x - 3)\gamma(u) = 0 \) [2].

(c) Suppose we have \(v = (x, y, z) \in \text{im}(\gamma) \). The \(v = \gamma(u) \) for some \(u \), so \((x - 3)v = \gamma(u) = 0 \) [2]. However, \(v \in M_B \) so \(xv = Bv \), so \((x - 3)v = (B - 3I)v = \begin{pmatrix} -3 & 0 & 3 \\ 3 & -3 & 0 \\ 0 & 3 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3(z - x) \\ 3(x - y) \\ 3(y - z) \end{pmatrix} \) [1].

As this is zero, we must have \(x = y = z \) and so \(v = (x, x, x) \in V \) [1].
(4) (i) [bookwork] As \(a \) and \(b \) are coprime, there exist elements \(x, y \in R \) such that \(xa + yb = 1 \) [1]. Consider a homomorphism \(\alpha : M \rightarrow N \). For each \(m \in M \) we have \(am = 0 \) and so \(a\alpha(m) = \alpha(am) = 0 \) [1]. On the other hand, we also have \(\alpha(m) = N \) and \(bN = \{0\} \) so \(b\alpha(m) = 0 \) [2]. It follows that
\[
\alpha(m) = \frac{(xa + yb)\alpha(m)}{[1]} = x(a\alpha(m)) + y(b\alpha(m)) = 0 + 0 = 0 [1],
\]
so \(\alpha = 0 \) as required.

(ii) [unseen]
(a) Put \(a = |L| \) and \(b = |M/N| \). By Lagrange’s theorem, we have \(ax = 0 \) for all \(x \in L \) and \(by = 0 \) for all \(y \in M/N \). It follows from the above that any homomorphism from \(L \) to \(M/N \) is zero. [2]

(b) Now consider a homomorphism \(\alpha : L \rightarrow M \). By the above, we must have \(\pi\alpha = 0: L \rightarrow M/N \) [2]. This means that for all \(x \in L \) we have \(\pi(\alpha(x)) = \alpha(x) + N = 0 + N \), so \(\alpha(x) \in N \). It follows that \(\alpha(L) \subseteq N \) as claimed. [2]

(iii) (a) [similar examples seen] The function \(f(t) = t^3 - t \) gives an element of \(U \), but \(D(t^3 - t) = 3t^2 - 1 \) takes the value \(-1\) at \(t = 0 \), so it does not lie in \(U \). Thus, \(U \) is not closed under multiplication by \(D \), so it is not an \(\mathbb{R}[D] \)-submodule. [3]

(b) [This was on a problem sheet] I claim that \(W_d \) is generated by the element \(t^d \). Indeed, we have
\[
Dk^d = d(d - 1) \ldots (d - k + 1)t^{d-k} = \frac{d!}{(d-k)!}t^{d-k} [2].
\]
 Thus, for any element \(f(t) = \sum_{i=0}^{d} a_it^i \in W_d \) we can put \(p(D) = \sum_{i=0}^{d} (d!/i!)a_iD^{d-i} \) and we find that \(p(D)t^d = f(t) \), so \(f(t) \in \mathbb{R}[D].t^d \) as required [2].

(c) [similar examples seen] For \(g(t) = p\sin(t) + q\cos(t) \in V \), we have
\[
g'(t) = p\cos(t) - q\sin(t) \\
g''(t) = -p\sin(t) - q\cos(t) = -g(t)
\]
so \((D^2 + 1)g(t) = 0 \) [2]. On the other hand, if \(f(t) \in W_d \) then the \((d + 1)'th \) derivative of \(f(t) \) is zero, so \(D^{d+1}f(t) = 0 \) [3]. As \(D^{d+1} \) and \(D^2 + 1 \) are coprime, we deduce that the only homomorphism from \(W_d \) to \(V \) is zero. [1]
(5) (i) [bookwork]
Suppose that a and b are coprime. We can then find $x, y \in R$ with $xa + yb = 1$ \[^1\].

Given an element $(v + Ra, w + Rb) \in R/a \times R/b$, put $t = ybv + xaw \in R$ \[^2\]. We find that

$$
t = (1 - xa)v + xaw = v + (xw - xv)a = v \pmod{a} \tag{1}
$$
$$
t = ybv + (1 - yb)w = w + (yv - yw)b = w \pmod{b} \tag{1}
$$

so

$$
\phi(t + Rab) = (u + Ra, u + Rb) = (v + Ra, w + Rb).
$$

This shows that ϕ is surjective. \[^1\]

Now suppose we have an element $u + Rab \in R/ab$ with $\phi(u + Rab) = (u + Ra, u + Rb) = (0 + Ra, 0 + Rb)$. This means that $u \in Ra$ and $u \in Rb$, so $u = pa = qb$ for some $p, q \in R$ \[^1\]. It follows that

$$
u = (xa + yb)u = xau + ybu = xaqb + ybpa = (xq + yp)ab,
$$

so $u \in Rab$ and $u + Rab = 0 + Rab$ \[^2\]. This shows that ϕ is injective, and thus an isomorphism \[^1\].

(ii) [unseen] Conversely, suppose that ϕ is surjective, so we can find an element $u \in R$ with $\phi(u + Rab) = (1 + Ra, 0 + Rb)$ \[^2\]. This means that $u = 1 \pmod{a}$ and $u = 0 \pmod{b}$, so $u = 1 + xa$ and $u = yb$ for some $x, y \in R$ \[^2\]. As $1 + xa = yb$ we have $(-x)a + yb = 1$, showing that a and b are coprime \[^2\].

(iii) [bookwork] We can define a ring homomorphism $\alpha : \mathbb{C}[x] \to \mathbb{C}$ by $\alpha(f) = f(\lambda)$ \[^1\]. For any $z \in \mathbb{C}$, we can regard z as a constant polynomial and then we have $\alpha(z) = z$; this shows that α is surjective \[^1\]. We have $\alpha(f) = 0 \iff f(\lambda) = 0 \iff f(x)$ is divisible by $x - \lambda$, so $\ker(\alpha) = \mathbb{C}[x]/(x - \lambda)$ \[^1\]. The first isomorphism theorem for rings thus gives an isomorphism $\sigma : \mathbb{C}[x]/(x - \lambda) \to \mathbb{C}$.

(iv) [The isomorphism] $\mathbb{C}[x]/(x - \lambda) = \mathbb{C} \times \mathbb{C}$ \[^1\] will be discussed in lectures

Note that if λ and μ are complex numbers with $\lambda \neq \mu$, then $(x - \lambda)(x - \mu) = \lambda - \mu$ is invertible in $\mathbb{C}[x]$, so $x - \lambda$ and $x - \mu$ are coprime \[^1\]. Thus, if we choose any four distinct \[^1\] complex numbers $\lambda_1, \ldots, \lambda_4$ and put $f(x) = \prod_i(x - \lambda_i)$ \[^1\] then the Chinese Remainder Theorem gives

$$
\mathbb{C}[x]/f(x) \simeq \prod_i \mathbb{C}[x]/(x - \lambda_i) \simeq \prod_i \mathbb{C}
$$

as required \[^2\].