
Rings, Modules and Linear Algebra — Exam solutions

(1) (i) [similar examples seen]
(a) The characteristic polynomial of A is the determinant of the matrix on the left

below. The matrix on the right is obtained by adding t − 1 times the second
row to the first row and t − 1 times the fourth row to the third row, so it has
the same determinant.
t− 1 −1 −1 −1
−1 t− 1 −1 −1
0 0 t− 1 −1
0 0 −1 t− 1

 −→


0 t2 − 2t −t −t
−1 t− 1 −1 −1
0 0 0 t2 − 2t
0 0 −1 t− 1


We now expand the determinant repeatedly along the first column to get∣∣∣∣∣∣

t2 − 2t −t −t
0 0 t2 − 2t
0 −1 t− 1

∣∣∣∣∣∣ = (t2 − 2t)
∣∣∣∣ 0 t2 − 2t
−1 t− 1

∣∣∣∣ = (t2 − 2t)2 = t2(t− 2)2.[4]

(b) The reduced echelon form of A is clearly given by
1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0


so rank(A) = 2 [2]. Below we display the row-reduction of A− 2I:(−1 1 1 1

1 −1 1 1
0 0 −1 1
0 0 1 −1

)
−→

(
1 −1 1 1
0 0 2 2
0 0 1 −1
0 0 0 0

)
−→

(
1 −1 1 1
0 0 1 1
0 0 0 −2
0 0 0 0

)
−→

(
1 −1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

)
This makes it clear that rank(A− 2I) = 3 [2].

(c) By looking at the characteristic polynomial, we see that MA is a direct sum
of modules of the form B(0, k) or B(2, k), with 1 ≤ k ≤ 2. Each B(0, k)
contributes tk to the characteristic polynomial, and each B(2, k) contributes
(t − 2)k. The number of blocks of eigenvalue 0 is 4 − rank(A) = 2, and the
number of blocks with eigenvalue 1 is 4−rank(A−2I) = 1. The only possibility
is to have MA = B(0, 1)⊕B(0, 1)⊕B(2, 2) [4].

(ii) [similar examples seen]We first observe that 1296 = 2434, so M must be a direct
sum of groups of the form Z2j or Z3k , with 1 ≤ j, k ≤ 4 [2]. As 18m = 2132m = 0 for
all m ∈ M , we must in fact have j = 1 and 1 ≤ k ≤ 2, so the possible building blocks
are Z2, Z3 and Z9 [2]. Thus, the 2-primary part must be (Z2)4, and the 3-primary
part could be (Z9)2 or (Z3)2 ⊕ Z9 or (Z3)4. Thus, there are thus 3 possibilities for
M :
• (Z2)4 ⊕ (Z9)2 [1]
• (Z2)4 ⊕ (Z3)2 ⊕ Z9 [1]
• (Z2)4 ⊕ (Z3)4 [1]

(iii) [The case λ = 1 was on a problem sheet]
I claim that

An =
(

λn nλn−1

0 λn

)
for all n ≥ 0. Indeed, this is clear when n = 0, and if it holds for n = k we have

Ak+1 = AAk =
(

λ 1
0 λ

) (
λk kλk−1

0 λk

)
=

(
λk+1 (k + 1)λk

0 λk+1

)
1
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so it also holds for n = k + 1. It therefore holds for all k by induction [3]. It follows
that

f(A) =
∑

i

ai

(
λi iλi−1

0 λi

)
=

(∑
i aiλ

i
∑

i iaiλ
i−1

0
∑

i aiλ
i

)
=

(
f(λ) f ′(λ)

0 f(λ)

)
[3].
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(2) (i) [similar examples seen]
We can simplify B by row and column operations as follows:200 100 108

36 0 72
0 0 36

 1−→

 0 100 8
36 0 72
0 0 36

 2−→

 0 100 8
36 −900 0
0 −400 4

 3−→

 0 900 0
36 −900 0
0 −400 4

 4−→

 0 900 0
36 0 0
0 0 4

 5−→

4 0 0
0 36 0
0 0 900

 .

(In step 1 we subtracted C2 from C3, and 2C2 from C1. In step 2 we subtracted 9R1

from R2, and 4R1 from R3. In step 3 we subtracted 2R3 from R1, and in step 4 we
added 25C1 +100C3 to C2. Finally, in step 5 we permuted the rows and columns in
an obvious way.) [6] [ 3 marks will be awarded for a broadly correct method,
with one mark deducted from this if the answer is not in normal form.
The remaining 3 marks are for accuracy; one mark will be deducted for
each error.]
This shows that Z3/N ' Z4 ⊕ Z36 ⊕ Z900 [2].

(ii) [similar examples seen]We can apply column operations as follows:
a 1 0 0
0 b 1 0
0 0 c 1
0 0 0 d

 −→


0 1 0 0
−ab b 1 0
0 0 c 1
0 0 0 d

 −→


0 1 0 0
0 0 1 0

abc −bc c 1
0 0 0 d



−→


0 1 0 0
0 0 1 0
0 0 0 1

−abcd bcd −cd d

 −→


1 0 0 0
0 1 0 0
0 0 1 0

bcd −cd d −abcd

 [3]

We then apply row operations as follows
1 0 0 0
0 1 0 0
0 0 1 0

bcd −cd d −abcd

 −→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −abcd

 −→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 abcd

 .[2]

We conclude that R4/M ' R/1⊕R/1⊕R/1⊕R/abcd = R/abcd, so R is cyclic and
we can take x = abcd. [3]

(iii) [ There is one similar example in the lecture notes] Put w1 = u1 − u2 =
(1, 1, 0) and w2 = u2 − u3 = (0, 2, 2) and w3 = u3 = (0, 0, 4) [3]. These give a new
basis for L. If we put

d1 = 1 v1 = (1, 1, 0)
d2 = 2 v2 = (0, 1, 1)
d3 = 4 v3 = (0, 0, 1)[3]

then clearly wi = divi and {v1, v2, v3} is a basis for Z3 over Z [3].
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(3) (i) [bookwork]
As M is finitely generated, there is a list m1, . . . ,md of elements of M such that
an arbitrary element m ∈ M can be written in the form u1m1 + . . . + udmd [1].
Define φ : Rd −→ M by φ(u1, . . . , ud) = u1m1 + . . .+udmd; this is clearly a surjective
homomorphism [1]. Put L = {u ∈ Rd | φ(u) ∈ N} [1]. I claim that this is a
submodule of Rd. Indeed, if u, v ∈ L then φ(u), φ(v) ∈ N so φ(u+v) = φ(u)+φ(v) ∈
N so u + v ∈ L. Similarly, if u ∈ L and a ∈ R then φ(u) ∈ N so φ(au) = aφ(u) ∈ N
so au ∈ L, so L is a submodule as claimed [1]. Submodules of Rd are finite free
modules, so we can choose a basis {p1, . . . , pr} for L [1]. Put ni = φ(pi) [1]; as
pi ∈ L we have ni ∈ N [1]. I claim that the elements n1, . . . , nr generate N .
Indeed, suppose n ∈ N . Then n ∈ M and the homomorphism φ : Rd −→ M is
surjective so we have n = φ(u) for some u ∈ Rd [1]. As φ(u) = n ∈ N we see
that u ∈ L [1], so u can be written in the form u = v1p1 + . . . + vrpr for some
v1, . . . , vr ∈ R [1]. It follows that

n = φ(u) = v1φ(p1) + . . . + vrφ(pr) = v1n1 + . . . + vrnr.[1]

This shows that the elements n1, . . . , nr generate N as claimed, so N is finitely
generated. [1]

(ii) [unseen]
(a) For v ∈ MB we have (x3 − 27)v = (B3 − 27 I)v, but

B2 =

0 0 3
3 0 0
0 3 0

 0 0 3
3 0 0
0 3 0

 =

0 9 0
0 0 9
9 0 0


B3 =

0 0 3
3 0 0
0 3 0

 0 9 0
0 0 9
9 0 0

 =

27 0 0
0 27 0
0 0 27

 = 27 I,

so (x3 − 27)v = 0 as claimed [2]. Similarly, we have

A2 =

1 1 1
1 1 1
1 1 1

 1 1 1
1 1 1
1 1 1

 =

3 3 3
3 3 3
3 3 3

 = 3A,

so for u ∈ MA we have x(x− 3)u = (A2 − 3A)u = 0 [1]. We can now multiply
by (x + 3) to deduce that (x3 − 9x)u = (x + 3)x(x− 3)u = 0. [1]

(b) Now consider a homomorphism γ : MA −→ MB , given by γ(u) = Cu say. As
γ(u) ∈ MB we have (x3 − 27)γ(u) = 0 [1]. We can also apply γ to the relation
(x3 − 9x)u = 0 to see that (x3 − 9x)γ(u) = 0 [2]. Subtracting these two
equations gives (9x − 27)γ(u) = 0, and we can divide by 9 to deduce that
(x− 3)γ(u) = 0 [2].

(c) Suppose we have v = (x, y, z) ∈ im(γ). The v = γ(u) for some u, so (x− 3)v =
(x− 3)γ(u) = 0 [2]. However, v ∈ MB so xv = Bv, so

(x− 3)v = (B − 3I)v =

−3 0 3
3 −3 0
0 3 −3

 x
y
z

 =

3(z − x)
3(x− y)
3(y − z)

 [1].

As this is zero, we must have x = y = z and so v = (x, x, x) ∈ V [1].
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(4) (i) [bookwork]As a and b are coprime, there exist elements x, y ∈ R such that xa+yb =
1 [1]. Consider a homomorphism α : M −→ N . For each m ∈ M we have am = 0
and so aα(m) = α(am) = 0 [1]. On the other hand, we also have α(m) ∈ N and
bN = {0} so bα(m) = 0 [2]. It follows that

α(m) = 1.α(m) = (xa + yb)α(m)[1] = x(aα(m)) + y(bα(m)) = 0 + 0 = 0[1],

so α = 0 as required.
(ii) [unseen]

(a) Put a = |L| and b = |M/N |. By Lagrange’s theorem, we have ax = 0 for
all x ∈ L and by = 0 for all y ∈ M/N . It follows from the above that any
homomorphism from L to M/N is zero. [2]

(b) Now consider a homomorphism α : L −→ M . By the above, we must have
πα = 0: L −→ M/N [2]. This means that for all x ∈ L we have π(α(x)) =
α(x) + N = 0 + N , so α(x) ∈ N . It follows that α(L) ⊆ N as claimed. [2]

(iii) (a) [similar examples seen]The function f(t) = t3− t gives an element of U , but
D.(t3 − t) = 3t2 − 1 takes the value −1 at t = 0, so it does not lie in U . Thus,
U is not closed under multiplication by D, so it is not an R[D]-submodule. [3]

(b) [This was on a probem sheet] I claim that Wd is generated by the element
td. Indeed, we have

Dktd = d(d− 1) . . . (d− k + 1)td−k =
d!

(d− k)!
td−k[2].

Thus, for any element f(t) =
∑d

i=0 ait
i ∈ Wd we can put p(D) =

∑
i(d!/i!)aiD

d−i

and we find that p(D)td = f(t), so f(t) ∈ R[D].td as required [2].
(c) [similar examples seen]For g(t) = p sin(t) + q cos(t) ∈ V , we have

g′(t) = p cos(t)− q cos(t)

g′′(t) = −p sin(t)− q cos(t) = −g(t)

so (D2 + 1)g(t) = 0 [2]. On the other hand, if f(t) ∈ Wd then the (d + 1)’st
derivative of f(t) is zero, so Dd+1.f(t) = 0 [3]. As Dd+1 and D2 + 1 are
coprime, we deduce that the only homomorphism from Wd to V is zero. [1]
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(5) (i) [bookwork]
Suppose that a and b are coprime. We can then find x, y ∈ R with xa + yb = 1 [1].
Given an element (v + Ra,w + Rb) ∈ R/a × R/b, put t = ybv + xaw ∈ R [2]. We
find that

t = (1− xa)v + xaw = v + (xw − xv)a = v (mod a)[1]

t = ybv + (1− yb)w = w + (yv − yw)b = w (mod b)[1]

so
φ(t + Rab) = (u + Ra, u + Rb) = (v + Ra,w + Rb).

This shows that φ is surjective. [1]
Now suppose we have an element u + Rab ∈ R/ab with φ(u + Rab) = (u + Ra, u +
Rb) = (0 + Ra, 0 + Rb). This means that u ∈ Ra and u ∈ Rb, so u = pa = qb for
some p, q ∈ R [1]. It follows that

u = (xa + yb)u = xau + ybu = xaqb + ybpa = (xq + yp)ab,

so u ∈ Rab and u + Rab = 0 + Rab [2]. This shows that φ is injective, and thus an
isomorphism [1].

(ii) [unseen]Conversely, suppose that φ is surjective, so we can find an element u ∈ R
with φ(u + Rab) = (1 + Ra, 0 + Rb) [2]. This means that u = 1 (mod a) and u = 0
(mod b), so u = 1 + xa and u = yb for some x, y ∈ R [2]. As 1 + xa = yb we have
(−x)a + yb = 1, showing that a and b are coprime [2]

(iii) [bookwork]We can define a ring homomorphism α : C[x] −→ C by α(f) = f(λ) [1].
For any z ∈ C, we can regard z as a constant polynomial and then we have α(z) = z;
this shows that α is surjective [1]. We have α(f) = 0 iff f(λ) = 0 iff f(x) is divisible
by x− λ, so ker(α) = C[x](x− λ) [1]. The first isomorphism theorem for rings thus
gives an isomorphism α : C[x]/(x− λ) = C[x]/ ker(al) −→ im(α) = C [1].

(iv) [The isomorphism C[x]/(x− λ)(x−µ) ' C×C will be discussed in lectures]
Note that if λ and µ are complex numbers with λ 6= µ, then (x−λ)−(x−µ) = λ−µ
is invertible in C[x], so x − λ and x − µ are coprime [1]. Thus, if we choose any
four distinct [1]complex numbers λ1, . . . , λ4 and put f(x) =

∏
i(x− λi) [1]then the

Chinese Remainder Theorem gives

C[x]/f(x) '
∏

i

C[x]/(x− λi) '
∏

i

C

as required [2].


