Rings, Modules and Linear Algebra — Exam solutions

(1) (i) [similar examples seen]

(a) The characteristic polynomial of A is the determinant of the matrix on the left
below. The matrix on the right is obtained by adding ¢ — 1 times the second
row to the first row and ¢ — 1 times the fourth row to the third row, so it has
the same determinant.

t—1 -1 -1 -1 0 t2—-2t —t —t
-1 t-1 -1 -1 | _ (-1 t-1 -1 -1
0 0 t—1 -1 0 0 0 -2t
0 0 -1 t-1 0 0 -1 t-1

We now expand the determinant repeatedly along the first column to get

2 —2t —t —t
0 0 t>-2t :(t2—2t)‘
0 -1 t-1

0 t2-—2t

1 -1 ‘:(tQ—Qt)Q:tQ(t—2)2.[4]

(b) The reduced echelon form of A is clearly given by

1100
0 0 11
0 0 0 0
0 0 0 0

so rank(A) = 2 [2]. Below we display the row-reduction of A — 21:

—11 11%% 1-11 1 1-11 1 1-100
- 00 2 2 0011 0010
0 0-11 )] 7\oo0o1-1)~{ooo-2)—~"\oo0o01

0 0 1 —1 0000 0000 0000

This makes it clear that rank(A — 2I) = 3 [2].

(¢) By looking at the characteristic polynomial, we see that M, is a direct sum
of modules of the form B(0,k) or B(2,k), with 1 < k < 2. Each B(0,k)
contributes t¥ to the characteristic polynomial, and each B(2,k) contributes
(t — 2)*. The number of blocks of eigenvalue 0 is 4 — rank(A) = 2, and the
number of blocks with eigenvalue 1 is 4 —rank(A—2I) = 1. The only possibility
is to have M4 = B(0,1) @ B(0,1) & B(2,2) [4].

(ii) [similar examples seen]We first observe that 1296 = 243, so M must be a direct
sum of groups of the form Zy; or Zgx, with 1 < j k <4 [2]. As 18m = 2132m = 0 for
allm € M, we must in fact have j = 1 and 1 < k < 2, so the possible building blocks
are Zs, Z3 and Zg [2]. Thus, the 2-primary part must be (Z,)*, and the 3-primary
part could be (Zg)? or (Z3)? ® Zg or (Z3)*. Thus, there are thus 3 possibilities for

M:
o (Z2)' @ (Zo)* 1]
o (7o) @ (Z3)* @ Zg [1]
o (Zo)' @ (Z3)* 1]

(iii) [The case A =1 was on a problem sheet]
I claim that
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for all n > 0. Indeed, this is clear when n = 0, and if it holds for n = k we have
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so it also holds for n = k + 1. It therefore holds for all k by induction [3]. It follows

that
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(i) [similar examples seen]
We can simplify B by row and column operations as follows:

200 100 108 0 100 8 0 100 8
36 0 7|53 o 72)2(36 —900 o]
0 0 36 0 0 36 0 —400 4

0 900 O 0 900 0 4 0 0

36 -900 0] & (36 0o o]l 20 36 o

0 —400 4 0 0 4 0 0 900

(In step 1 we subtracted Cs from Cs5, and 2C5 from C;. In step 2 we subtracted 9R;
from Ry, and 4R, from R3. In step 3 we subtracted 2R3 from R;, and in step 4 we
added 25C 4+ 100C5 to Cs. Finally, in step 5 we permuted the rows and columns in
an obvious way.) [6] [ 3 marks will be awarded for a broadly correct method,
with one mark deducted from this if the answer is not in normal form.
The remaining 3 marks are for accuracy; one mark will be deducted for
each error.]

This shows that Z3 /N ~ Z, & Z3zs & Zooo [2]-

(ii) [similar examples seen]We can apply column operations as follows:

a 1 0 O 0 1 0 0 0 1 0 0
0 b 1 0 _ —ab b 1 0 0 0 1 0
0 0 ¢ 1 0 0 ¢ 1 abc —bc ¢ 1
0 0 0 d 0 0 0 d 0 0 0 d
0 1 0 0 1 0 0 0
. 0 0 1 0 _ 0 1 0 0 3]
0 0 0 1 0 0 1 0
—abed bed —cd d bed —cd d —abed
We then apply row operations as follows
1 0 O 0 1 0 0 0 1 0 0 0
0 1 0 0 _ 0 1 0 0 _ 01 0 0 2]
0 0 1 0 0 0 1 0 0 0 1 0 ’
bed —cd d —abed 0 0 0 —abed 0 0 O abed

We conclude that R*/M ~ R/1® R/1® R/1& R/abed = R/abed, so R is cyclic and
we can take z = abed. [3]

(iii) [ There is one similar example in the lecture notes] Put w; = u; — us =
(1,1,0) and wg = ug — uz = (0,2,2) and ws = uz = (0,0,4) [3]. These give a new
basis for L. If we put

d1:1 ’U1:(171,0)
d2:2 ’U2:<0,1,1)
d3 =4 V3 = (O,O7 1)[3]

then clearly w; = d;v; and {v1,v2,v3} is a basis for Z3 over Z [3].



(3)

(i) [bookwork]

As M is finitely generated, there is a list my,...,mg of elements of M such that
an arbitrary element m € M can be written in the form uym; + ... + ugmg [1].
Define ¢: R — M by d(u1, ..., uq) = uymy +...+ugmg; this is clearly a surjective
homomorphism [1]. Put L = {u € R | ¢(u) € N} [1]. I claim that this is a
submodule of RY. Indeed, if u,v € L then ¢(u), ¢(v) € N so ¢p(u+v) = ¢(u)+¢(v) €
N sou+v € L. Similarly, if u € L and a € R then ¢(u) € N so ¢(au) = ap(u) € N
so au € L, so L is a submodule as claimed [1]. Submodules of R? are finite free
modules, so we can choose a basis {pi,...,p,} for L [1]. Put n; = é(p;) [1]; as
p; € L we have n; € N [1]. I claim that the elements ni,...,n, generate N.
Indeed, suppose n € N. Then n € M and the homomorphism ¢: R — M is
surjective so we have n = ¢(u) for some u € R? [1]. As ¢(u) = n € N we see
that v € L [1], so u can be written in the form u = v1p; + ... + v.p, for some
vy, ..., € R [1]. Tt follows that

n=¢u) =vid(p1) + ...+ vd(pr) =ving + ... + v [1]

This shows that the elements nq,...,n, generate N as claimed, so N is finitely
generated. [1]

(ii) [unseen)]

(a) For v € Mp we have (2® — 27)v = (B3 — 27 I)v, but
0 0 3 0 0 3 09 0
B*=13 0 0|3 0 0]=([0 09
0 3 0 0 3 0 9 0 0
0 0 3 0 9 0 27 0 0
B3=13 0 0 00 9l=10 27 0] =271,
0 3 0 9 0 0 0 0 27
so (x® — 27)v = 0 as claimed [2]. Similarly, we have
1 1 1 1 11 3 3 3
A’=[1 1 1|1 1 1|=(3 3 3| =34,
1 1 1 1 1 1 3 3 3
so for u € My we have z(z — 3)u = (A? — 3A)u = 0 [1]. We can now multiply

by (z + 3) to deduce that (23 — 9z)u = (z + 3)z(z — 3)u = 0. [1]

(b) Now consider a homomorphism ~v: M4 — Mp, given by v(u) = Cu say. As
v(u) € Mp we have (2® — 27)y(u) = 0 [1]. We can also apply v to the relation
(3 — 92)u = 0 to see that (z3 — 9x)y(u) = 0 [2]. Subtracting these two
equations gives (9x — 27)v(u) = 0, and we can divide by 9 to deduce that
(2 — 3)7(u) = 0 [2].

(¢) Suppose we have v = (x,y, z) € im(y). The v = y(u) for some u, so (x —3)v =
(x — 3)y(u) = 0 [2]. However, v € Mp so zv = Bv, so

-3 0 3 x 3(z —x)
(x—3)w=(B-3NHv=[3 -3 0 y| =1|3x—-y)][1]
0o 3 -3 z 3y —2)

As this is zero, we must have © = y = z and so v = (z,z,2) € V [1].
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(4) (i) [bookwork]As a and b are coprime, there exist elements z, y € R such that za+yb =
1 [1]. Consider a homomorphism «: M — N. For each m € M we have am = 0
and so aa(m) = a(am) = 0 [1]. On the other hand, we also have a(m) € N and
bN = {0} so ba(m) =0 [2]. Tt follows that

a(m) = L.a(m) = (za + yb)a(m)[1] = z(aa(m)) + y(ba(m)) =0+ 0 = 0[1],

so a = 0 as required.
(ii) [unseen)]

(a) Put @ = |L| and b = [M/N|. By Lagrange’s theorem, we have ax = 0 for
all z € L and by = 0 for all y € M/N. It follows from the above that any
homomorphism from L to M/N is zero. [2]

(b) Now counsider a homomorphism «: L — M. By the above, we must have
mo = 0: L — M/N [2]. This means that for all z € L we have 7(a(z)) =
a(x)+ N =0+ N, so a(z) € N. It follows that a(L) C N as claimed. [2]

(iii) (a) [similar examples seen]The function f(t) = 3 —t gives an element of U, but
D.(t? —t) = 3t? — 1 takes the value —1 at ¢ = 0, so it does not lie in U. Thus,
U is not closed under multiplication by D, so it is not an R[D]-submodule. [3]

(b) [This was on a probem sheet] I claim that Wy is generated by the element

t¢. Indeed, we have

d!
(d— k)
Thus, for any element f(t) = Z?:o a;t’ € Wy we can put p(D) =, (d!/i!)a; D4~
and we find that p(D)t? = f(t), so f(t) € R[D].t? as required [2].
(c) [similar examples seen]For g(t) = psin(t) + qcos(t) € V, we have
g'(t) = pcos(t) — gcos(t)
g"(t) = —psin(t) — gcos(t) = —g(t)
so (D? +1)g(t) = 0 [2]. On the other hand, if f(t) € Wy then the (d + 1)’st

derivative of f(t) is zero, so D1 f(t) = 0 [3]. As D! and D? + 1 are
coprime, we deduce that the only homomorphism from Wy to V is zero. [1]

DMt =d(d—1)...(d—k+ 1)t " = t (2],
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(i) [bookwork]

Suppose that a and b are coprime. We can then find z,y € R with xa + yb =1 [1].
Given an element (v + Ra,w + Rb) € R/a x R/b, put t = ybv + xaw € R [2]. We
find that

t=(1—2za)v+zaw=v+ (2w —2zv)a=v (mod a)[1]

t=ybv+ (1 —yb)w=w+ (yv —yw)b =w (mod b)[1]
so

¢(t + Rab) = (u+ Ra,u + Rb) = (v + Ra,w + Rb).
This shows that ¢ is surjective. [1]
Now suppose we have an element u + Rab € R/ab with ¢(u + Rab) = (u + Ra,u +
Rb) = (0 + Ra,0+ Rb). This means that « € Ra and u € Rb, so u = pa = ¢b for
some p,q € R [1]. Tt follows that
u = (za + yb)u = zau + ybu = xagb + ybpa = (xq + yp)ab,

so u € Rab and u + Rab = 0+ Rab [2]. This shows that ¢ is injective, and thus an
isomorphism [1].

(ii) [unseen]Conversely, suppose that ¢ is surjective, so we can find an element u € R

with ¢(u 4+ Rab) = (14 Ra,0+ Rb) [2]. This means that u =1 (mod a) and u =0
(mod b), so u = 14 za and u = yb for some x,y € R [2]. As 1+ za = yb we have
(—z)a + yb =1, showing that a and b are coprime [2]

(iii) [bookwork]We can define a ring homomorphism «: C[z] — C by a(f) = f(A) [1].

For any z € C, we can regard z as a constant polynomial and then we have a(z) = z;
this shows that « is surjective [1]. We have a(f) = 0 iff f(\) = 0 iff f(x) is divisible
by x — A, so ker(a) = C[z](xz — A) [1]. The first isomorphism theorem for rings thus
gives an isomorphism @: Clz]/(z — \) = Clz]/ ker(al) — im(a) = C [1].

(iv) [The isomorphism Clz]/(z — \)(x — u) ~ C x C will be discussed in lectures]

Note that if A and p are complex numbers with A # p, then (z—X\) —(z—p) = A—p
is invertible in C[z], so £ — A and « — p are coprime [1]. Thus, if we choose any
four distinct [1]complex numbers Aq,..., s and put f(z) = [],(x — A;) [1]then the
Chinese Remainder Theorem gives

Clal/f @) = [[ €)@~ A ~ [ €

as required [2].



