Categories and functors

In various courses you will have studied different kinds of mathematical struc-
tures: groups, rings, modules, vector spaces (with or without inner products), met-
ric spaces, surfaces and so on. Generically we refer to these structures as objects.
You will have noticed various parallels between these structures:

e In each case we have a notion of structure-preserving maps: homomor-
phisms between groups, rings or modules, linear maps between vector spaces,
continuous maps between metric spaces, diffeomorphisms between surfaces,
and so on. Generically we refer to structure-preserving maps as morphisms.

e In all cases, we can consider the image of a morphism as a new object (the
image of a group homomorphism is a group, for example). In some of the
cases we can also consider the kernel of a morphism as a new object, but
this does not make sense for metric spaces or surfaces.

e In most cases, we can take the product of two objects X and Y to get a new
object called X x Y. This does not work for surfaces, because the product
of two surfaces is 4-dimensional and so is not itself a surface.

The main purpose of category theory is to organise and study these similarities
and differences. A category is a system of objects and morphisms satisfying various
axioms. For example, we have a category of finite groups, a category of commutative
rings, a category of compact metric spaces, and so on. Categories are a basic part
of the language of much research in pure mathematics, and are also important in
logic and theoretical computer science.

One of the central concepts is that of a functor, which is a construction that
converts objects in one category to objects in another category. For example, given
a group G we let G’ denote the subgroup generated by all elements of the form
ghg~'h~! and put Gy, = G/G’. This is an abelian group, called the abelianisation
of G. Abelianisation is a functor from the category of all groups to the category of
abelian groups. Similarly, in algebraic topology, for any based space X we have a
fundamental group 71 (X). It turns out that 7 defines a functor from based spaces
to groups.

The project should start by defining categories, functors and natural transforma-
tions, and showing how various topics from earlier courses fit into this framework.
There are various ways one could continue from that point, which the supervisor
will be happy to discuss.
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