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(1)
(2) (a) The sets

U(n, b) = {b1} × {b2} × . . . {bn} ×
∏

m>n

2

are elements of the standard basis for the product topology, and so are certainly open.
The complement of U(n, b) is the union of the sets U(n, c) for all the elements c ∈ 2n

for which c 6= b. This complement is thus open, so U(n, b) is also closed.
Consider two sets V = U(n, b) and W = U(m, c), say. Suppose wlog that n ≤ m. If
c[n] = b then W ⊆ V so V ∩W = W ; otherwise V ∩W = ∅.
Suppose that V is one of the sets in the standard subbasis for the product topology,
so V = π−1

n (b) say, for some b ∈ 2. Then V is the union of those sets U(n, b) for
which bn = b:

V =
⋃
{U(n, b) | bn = b}

This is enough to show that the sets U(n, b) form a basis.
(b) If this were false, then we would have

U(1, 0) ⊆
⋃

i∈J0

Ui

U(1, 1) ⊆
⋃

i∈J1

Ui

for some finite subsets J0 and J1 of I. Then J = J0∪J1 would be finite and we would
have

X = U(0, 0) ∪ U(1, 1) ⊆
⋃
i∈J

Ui

contrary to the hypothesis that X is not covered by any finite subfamily of U . For
the rest of this question I shall abbreviate this to “is not finitely covered”.

(c) Suppose we have chosen (a1, . . . an) ∈ 2n such that U(n, (a1, . . . an)) is not finitely
covered. By the same logic as above, one of the two sets V0 = U(n, (a1, . . . an, 0)) and
V1 = U(n, (a1, . . . an, 1)) is not finitely covered. If V0 is finitely covered, then we take
an+1 = 1, and otherwise we take an+1 = 0. Continuing in this way, we choose an for
all n. Note that we have a definite rule for choosing an+1, so we are not using the
axiom of choice here (not that it would worry me if we were).

(d) Suppose we have chosen a as above. As U is a covering of X, we have a ∈ Ui for
some i. As Ui is open and the sets U(n, b) form a basis, we have

a ∈ U(n, b) ⊆ Ui

for some n and b. As a ∈ U(n, b), we must have b = a[n]. Thus U(n, a[n]) is contained
in the single set Ui, hence certainly finitely covered, contrary to the construction.

(3) Suppose that X ⊂ Rn is such that X is disconnected. There are then subsets U and V of
Rn such that:
(a) X ⊂ U ∪ V
(b) X ∩ U ∩ V = ∅
(c) X ∩ U 6= ∅ 6= X ∩ V

1
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The claim is that the corresponding statements hold when X is replaced by X. In the
first two cases, this follows trivially from the fact that X ⊆ X. For the third case, choose
x ∈ X ∩ U . Then x ∈ U , so U is a neighbourhood of x. Also, x ∈ X, which means that
every neighbourhood of x meets X, so that U ∩X 6= ∅ as required. Similarly, V ∩X 6= ∅.
All this implies that X is also disconnected.

We have proved that X disconnected implies X disconnected. Equivalently, X con-
nected implies X connected.

(4) Write q for the quotient map X −→ Y . First, Y = q(X) is a continuous image of X and
therefore compact. Next, suppose y and y′ are distinct points of Y . Then y = q(x) and
y′ = q(x′) say, where x 6∼ x′. This means that there is a function f ∈ A with f(x) 6= f(x′),
say a = f(x) < a′ = f(x′). Clearly (by the definition of ∼)

z ∼ z′ ⇒ f(z) = f(z′)

so f induces a continuous map f̃ : Y −→ R with f̃ ◦ q = f . In particular,

f̃(y) = f̃(q(x)) = f(x) = a < a′ = f(x′) = f̃(q(x′)) = f̃(y)

Thus
U = f̃−1((−∞, (a + a′)/2))

and
U ′ = f̃−1((a + a′)/2,∞))

are disjoint neighbourhoods of y and y′. Thus Y is Hausdorff.
Consider

Ã = {f̃ | f ∈ A} ⊆ C(Y )
This is a subalgebra, and it separates Y by the definition of ∼. Because q is surjective,
we have

‖f̃‖ = sup
y
|f̃(y)| = sup

x
|f̃(q(x))| = sup

x
|f(x)| = ‖f‖

This shows that the map f 7→ f̃ is an isometric isomorphism A −→ Ã. Now, A is closed in
the complete space C(X) so A is complete. Moreover, Ã is isometrically isomorphic to A

and hence complete, and hence closed in C(Y ). Thus, by Stone-Weierstrass, Ã = C(Y ).
We conclude that C(Y ) is isometrically isomorphic to A.

(5) Define a (discontinuous) function

S : C(N) −→ P(N) = { subsets of N}
S(f) = {n | f(n) < 1/2}

Recall that P(N) is uncountable. Suppose that A ⊂ C(N) is countable, so S(A) is also
countable and thus not the whole of P(N). Choose a set T ⊆ N such that T 6= S(f) for
any f ∈ A, and write

g(n) =

{
0 if n ∈ T

1 otherwise

I claim that d(f, g) ≥ 1/2 for any f ∈ A, so that g 6∈ A and thus A is not dense. Indeed,
if f ∈ A then S(f) 6= T so either
(a) ∃n ∈ S(f) \ T so f(n) < 1/2 and g(n) = 1.
or
(b) ∃n ∈ T \ S(f) so f(n) ≥ 1/2 and g(n) = 0.

This immediately implies the claim.
(6) Write

σ′ = {S(K, U) | K ⊆ X compact , U open in Y }
Let τ and τ ′ be the topologies generated by σ and σ′, so τ ′ is by definition the compact-
open topology. We are required to show that τ = τ ′. Clearly σ ⊆ σ′ and therefore τ ⊆ τ ′.
We need only show that σ′ ⊆ τ ; for then τ ′, being the smallest topology containing σ′,
will be contained in τ .
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Consider f ∈ S(K, U) ∈ σ′, so f(K) ⊆ U and K ⊆ f−1(U). As U ⊆ Y is open, it can
be written as U =

⋃
i Ui with Ui ∈ β. The open sets f−1(Ui) cover the compact set K, so

K ⊆ f−1(Ui1) ∪ . . . f−1(Uin)

say. By the shrinking lemma we can cover K by compact sets K1, . . . ,Kn with Kk ⊆
f−1(Uik

). Write
V =

⋂
k

S(Kk, Uik
) ∈ τ

so f ∈ V . If g ∈ V then

g(K) = g(
⋃
k

Kk) =
⋃
k

g(Kk) ⊆
⋃
k

Uik
⊆ U

so g ∈ S(K, U). Thus f ∈ V ⊆ S(K, U) and V ∈ τ , which shows that S(K, U) is a
τ -neighbourhood of f . As f was an arbitary point of S(K, U) we see that S(K, U) is
τ -open. Thus σ′ ⊆ τ as required.

(7) Let X be a complete metric space and Y ⊆ X. Write i for the isometric embedding of Y

in its canonical completion Ỹ . The inclusion j : Y −→ X is an isometric embedding and X
is complete so there is a unique isometric embedding j̃ : Ỹ −→ X with j̃ ◦ i = j.

As j̃ is continuous, j̃−1(Y ) ⊆ Ỹ is closed and it contains i(Y ). However, i(Y ) is dense
in Ỹ so j̃−1(Y ) = Ỹ and so j̃(Ỹ ) ⊆ Y .

On the other hand, j̃(Ỹ ) is isometrically isomorphic to the complete metric space Ỹ ,
so it is complete. However, a complete subspace of a metric space is closed and j̃(Ỹ ) ⊇ Y

so j̃(Ỹ ) = Y . Thus j̃ : Ỹ −→ Y is an isometric isomorphism and thus a homeomorphism.
(8) Fix α with 0 < α < 1 and let X be the set of contraction mappings f : [0, 1] −→ [0, 1] of

ratio α.
We want to prove that X ⊆ C[0, 1] is compact, so by Arzela-Ascoli it is enough to

check that it is bounded, closed and equicontinuous. Boundedness is trivial. Moreover, X
is equilipschitz (with K = α) and hence equicontinuous.

We now need to prove that X is closed. Suppose 0 ≤ x < y ≤ 1. Write r = y − x. The
evaluation map

evx : C[0, 1] −→ R evx(f) = f(x)
is continuous. Thus

∆xy = evx − evy : C[0, 1] −→ R
is continuous and the set

Fxy = {f ∈ C[0, 1] | |f(x)− f(y)| ≤ α|x− y|} = ∆−1
xy ([−αr, αr])

is closed in C[0, 1]. Thus

X = {f | ‖f‖ ≤ 1} ∩
⋂
x,y

Fxy

is also closed, as required.
Now consider the function

F : X −→ [0, 1]
F (f) = the unique fixed point of f

Suppose f, g ∈ X and F (f) = x and F (g) = y. By the inequality in the last question,

d(x, z) ≤ d(z, f(z))/(1− α)

for any z. In particular (using g(y) = y) we have,

d(x, y) ≤ d(y, f(y))/(1− α) = d(g(y), f(y))/(1− α) ≤ ‖g − f‖/(1− α)

In other words,
d(F (f), F (g)) ≤ d(f, g)/(1− α)

This shows that F is continuous.
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(9) Let X be a nonempty complete metric space, and let f : X −→ X be a contraction mapping
with ratio α < 1, so that

d(f(x), f(y)) ≤ αd(x, y)

Choose a = a0 ∈ X and write r = d(a, f(a)) and an+1 = f(an). I claim that the
sequence (an) is Cauchy. Indeed, by induction we see that

d(an, an+1) = d(f(an−1), f(an)) ≤ αnr

so if m ≤ n we have

d(am, an) ≤ d(am, am+1) + . . . d(an−1, an)
≤ (αm + . . . αn−1)r
= (αm − αn)r/(1− α)

which easily implies the claim. Thus, as X is complete, the sequence converges to a limit
b. Moreover

f(b) = f(lim
n

an) = lim
n

f(an) = lim
n

an+1 = b

So b is a fixed point. Suppose that c is another fixed point. Then

d(b, c) = d(f(b), f(c)) ≤ αd(b, c)

As α < 1, this implies d(b, c) = 0 and thus b = c. Thus b is the unique fixed point.
Finally,

d(a, b) = lim
n

d(a0, an) ≤ lim
n

1− αn

1− α
r =

d(a, f(a))
1− α

(10) As 0 lies in the interior of A, there exists ε > 0 such that B(0, ε) ⊆ A.

Suppose 0 6= a ∈ A and 0 < t < 1. The claim is that B(ta, (1 − t)ε) ⊆ A, so that
ta ∈ int(A). Indeed, any point b ∈ B(ta, (1− t)ε) can be written as b = ta + (1− t)u,
where ‖u‖ < ε and so u ∈ A. By convexity, b ∈ A also, as claimed.

(a)(b) The map f sending u to u/‖u‖ is continuous except at u = 0, which by hypothesis
does not lie on the boundary of A. If we can show that it gives a bijection from
bdy(A) to Sn−1 then we will be done, as a continuous bijection from a compact to
a Hausdorff space is a homeomorphism. Consider a unit vector v ∈ Sn−1. Write
B = {t ≥ 0 | tv ∈ A}. This can easily be seen to be bounded, closed, convex, and
to contain [0, ε). If we write b = sup B, then we conclude that B = [0, b]. Write
u = bv, so 0 6= u ∈ A. As b is maximal, u cannot lie in the interior so it must be
on the boundary. As u/‖u‖ = v, our map f is surjective. All other points w with
w/‖w‖ = v lie on the same half-line as u. Thus, to prove injectivity we must show
that u is the unique point of intersection of this half-line with the boundary of A.
This follows immediately from the previous part of the question.

(11) The Baire category theorem:
Let X be a compact Hausdorff space or a complete metric space. Suppose that for each
n ∈ N the set Fn ⊆ X is closed and has empty interior. Then

⋃
n Fn has empty interior.

Suppose that f : [a, b] −→ R is continuous and injective. Write X = f([a, b]), which is
a subspace of R2 and therefore Hausdorff. The map f : [a, b] −→ X is thus a continuous
bijection from a compact to a Hausdorff space, and hence a homeomorphism. It follows
that f gives a homeomorphism

f : [a, b] \ {c} −→ X \ {f(c)}
for any c ∈ [a, b]. Observe that [a, b] \ {c} is disconnected except when c = a or c = b. It
follows that X \ {x} is disconnected except when x = f(a) or x = f(b).

Suppose that X has an interior point x, so the disc B(x, ε) ⊂ X for some ε > 0. It
follows that X has more than two (indeed infinitely many) interior points, so it has an
interior point y 6= f(a), f(b). However, by the given fact, this means that X \ {y} is
connected, which contradicts what we proved above. Thus the interior of X is empty.
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Now suppose that f : R −→ R2 is continuous. By the above, f([−n, n]) has empty
interior. By the Baire category theorem (noting that R is a complete metric space) we see
that

f(R) =
⋃
n

f([−n, n])

has empty interior. In particular, f is not surjective. Thus, there is no continuous bijection
f : R −→ R2.

(12) (a) Suppose that x ∈ Y . Then 0 = d(x, x) is an element of the set D = {d(x, y) | y ∈ Y }
of nonnegative reals whose inf is d(x, Y ). Thus d(x, Y ) = 0. Conversely, suppose that
d(x, Y ) = 0. Then any ε > 0 is not a lower bound for D (as 0 is the greatest lower
bound). This means that d(x, y) < ε for some y ∈ Y , so B(x, ε) ∩ Y 6= ∅. As this
holds for all ε > 0, we find that x ∈ Y = Y .

(b) First, for each u, v ∈ X and y ∈ Y we have

d(u, y) ≤ d(u, v) + d(v, y)

Taking the inf over all y ∈ Y we obtain

d(u, Y ) ≤ d(u, v) + d(v, Y )

so
d(u, Y )− d(v, Y ) ≤ d(u, v)

Similarly, starting with d(v, y) ≤ d(v, u) + d(u, y) we get

d(v, Y )− d(u, Y ) ≤ d(v, u) = d(u, v)

so
|d(u, Y )− d(v, Y )| ≤ d(u, v)

This shows that the function f(u) = d(u, Y ) is (Lipschitz and therefore) continuous.
(c) It is immediate that e(a, a) = 0 and e(a, b) = e(b, a). Thus we need only show that

e(a, c) ≤ e(a, b) + e(b, c)

We need to separate four cases. For brevity we write P (a, b) to mean that d(a, b) ≤
d(a, Y ) + d(b, Y ) and Q(a, b) to mean that d(a, b) ≥ d(a, Y ) + d(b, Y ). Note that
P (a, b) implies that e(a, b) = d(a, b), and so on.

(i) Suppose that P (a, b) and P (b, c) hold. Then

e(a, c) ≤ d(a, c) ≤ d(a, b) + d(b, c) = e(a, b) + e(b, c)

(ii) Suppose P (a, b) and Q(b, c). Using

d(a, Y ) ≤ d(a, b) + d(b, Y )

we get

e(a, c) ≤ d(a, Y ) + d(c, Y )

≤ d(a, b) + d(b, Y ) + d(c, Y )
= e(a, b) + e(b, c)

(iii) The case when Q(a, b) and P (b, c) hold is similar.
(iv) Suppose Q(a, b) and Q(b, c). Then

e(a, c) ≤ d(a, Y ) + d(c, Y )

≤ d(a, Y ) + d(b, Y ) + d(b, Y ) + d(c, Y )
= e(a, b) + e(a, c)

(d) Suppose that Y and Y ′ are disjoint closed subsets of X. By part (b), the function
g(x) = d(x, Y )− d(x, Y ′) is continuous, so the sets

U = {x | g(x) < 0} = g−1((−∞, 0))

U ′ = {x | g(x) > 0} = g−1((0,∞))
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are open. They are clearly disjoint, and using part (a) we see that Y ⊆ U and
Y ′ ⊆ U ′.

(13) (a) Q is a countable dense subset of R.
(b) Suppose that X ⊆ R is dense, and that we are given two continuous functions f and g

from R to R which agree on X. Write U = {x | f(x) 6= g(x)}. Suppose a ∈ U . Write
ε = |f(a)−g(a)|/3. By continuity we can choose δ > 0 such that |f(x)−f(a)| < ε and
|g(x)− g(a)| < ε whenever |x− a| < δ. It is then easy to see that (a− δ, a + δ) ⊆ U .
This shows that U is open, and hence that F = {x | f(x) = g(x)} is closed. As
X ⊆ F we have X = R ⊆ F , so F = R and f = g.
Alternatively: as R is Hausdorff, the diagonal ∆ is closed, and f × g is continuous so
F = (f × g)−1(∆) is closed.

(c) Suppose that f : R −→ R is continuous and that f(x) + f(y) = f(x + y) for all x and
y in R. First note that

f(0) = f(0 + 0) = f(0) + f(0) ⇒ f(0) = 0

f(x) + f(−x) = f(x− x) = f(0) = 0 ⇒ f(−x) = −f(x)

For nonnegative integers n we see by induction that

f(nx) = f((n− 1)x + x) = (n− 1)f(x) + f(x) = nf(x)

In fact this holds for n < 0 also, by the previous equation. Applying this with x = 1/n
we get

f(1/n) = f(1)/n

and thus, for all integers m

f(m/n) = mf(1)/n

This means that the continuous functions f and g(x) = xf(1) agree on the dense
subset Q of R, so they are the same.

(14) Suppose X is a metric space and A ⊆ C(X). Suppose that A is equilipschitz, so there is
a constant K such that

|f(x)− f(y)| ≤ Kd(x, y)

for all x, y ∈ X and f ∈ A. The claim is that A is equicontinuous. Indeed, suppose that
x ∈ X and ε > 0. Write U = B(x, ε/K) ∈ Nx. Then for f ∈ A and y ∈ U we have

|f(x)− f(y)| ≤ Kd(x, y) < Kε/K = ε

as required.

(15) Let X be a space, A a subset of C(X). Write

U =
⋃
{open V ⊆ X | A|V is equicontinuous }

This is clearly an open subset of X. I claim that A|U is equicontinuous. Indeed, suppose
x ∈ U and ε > 0. Then (by the definition of U) there is an open set V on which A|V is
equicontinuous, such that x ∈ V ⊆ U . Thus (by equicontinuity on V ) there is a set W
open in V with x ∈ W ⊆ V such that

f ∈ A, y ∈ W ⇒ |f(y)− f(x)| < ε

Moreover, as W is open in V which is open in X, we see that W is open in X. This is
precisely what is required for equicontinuity on U .

Given that A|V is equicontinuous, it is clear that V is the largest open set with the
property that A|V is equicontinuous.

Consider the case X = R and A = {fn | n ≥ 2} where fn(x) = xn. First, I claim that
A|V is equicontinuous where V = (−r, r) and 0 < r < 1. Indeed, if x, y ∈ (−r, r) where
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r < 1 then

|xn − yn| = |x− y||xn−1 + xn−2y + . . . yn−1|
≤ |x− y|(|xn−1|+ . . . |yn−1|)
≤ |x− y|nrn−1

≤ 2|x− y|/(r−1 − 1)

This estimate is independent of n. It shows that A is equilipschitz and hence equicontinu-
ous on V = (−r, r). It follows that A|(−1,1) is equicontinuous (as (−1, 1) =

⋃
r<1(−r, r)).

Now suppose that x ≥ 1. I claim that there is no neighbourhood V of x such that A|V
is equicontinuous. To see this, suppose y = x + u ≥ x. Then (by the binomial expansion)

yn − xn = (x + u)n − xn ≥ nxn−1u

Note that nxn−1 −→ ∞ as n −→ ∞. Thus, we can only have yn − xn < ε for all n if
u = 0, i.e. if y = x. Thus, there is no neighbourhood W of x such that y ∈ W implies
|fn(x)−fn(y)| < ε for all n. In other words, A is not equicontinuous in any neighbourhood
of x. A similar argument works if x ≤ −1.

We can prove the inequality nrn−1 ≤ 2/(r−1 − 1) as follows. Write ε = r−1 − 1 so
r = (1 + ε)−1. Then, by the binomial expansion, we have

(1 + ε)n−1 ≥ (n− 1)ε

rn−1 =
1

(1 + ε)n−1
≤ 1

(n− 1)ε
Also, we assume n ≥ 2 so n/(n− 1) ≤ 2. Thus

nrn−1 ≤ n

(n− 1)ε
≤ 2

ε

(16) Find examples of the following situations:
(a) X = Z or X = {0} or X = ∅.
(b) X = (0, 1) or X = Z.
(c) X = (0, 1) or X = ∅.
(d) X = (−∞, π) ∩Q or {x ∈ Q | x2 < 2}.
(e) {1/n | n ∈ Z+} ∪ {0} or the Cantor set.
(f) X = (−∞, 0), Y = (0,∞).
(g) Un = (−2−n, 2−n).

Consider a point x ∈ X. By Arzela-Ascoli, A is equicontinuous, so there is a neigh-
bourhood U of x such that

y ∈ U, f ∈ A ⇒ |f(x)− f(y)| < 1

I claim that U = {x}. Indeed, suppose not. Then there would be a point y 6= x with
y ∈ U . By Urysohn, we could choose a continuous function f : X −→ [0, 1] with f(x) = 0
and f(y) = 1, violating the equicontinuity estimate. Thus U = {x} is open for each
x ∈ X, so the sets {x} form an open cover of X. By compactness there is a finite subcover
{{x1}, . . . {xn}}, so X = {x1, . . . xn} is finite.

(17)(18) (a)

ccA = A

kkA = kA

iiA = iA

cicA = kA

ckcA = iA

Further explanation is available on request.
(b) As U ⊆ A and U is open, we have U ⊆ iA. This implies that A = kU ⊆ kiA. On the

other hand, we have iA ⊆ A so kiA ⊆ kA = kkU = kU = A. Thus kiA = A.
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(c) Applying the above to the case U = iB, we find that kikiB = kiB for any B.
Applying this in turn with B = cC we get cikikC = kikicC = kicC = cikC and thus
ikikC = ikC.

(d) A typical set obtained from A by applying the operations i, k and c is something like
kkciccikkkciA. We use the equations ci = kc and ck = ic to sweep the c’s to the
right, and then cancel them using c2 = identity. This leaves kkkkiiiiA. We then use
k2 = k and i2 = i to eliminate repetitions, giving kiA. In the general case, we are left
with a string of alternating i’s and k’s, followed either by A or by cA. If the string
of i’s and k’s has length > 3, then we can use kiki = ki or ikik = ik to shorten it.
This leaves us with 14 possibilities:

A cA

iA icA

kA kcA

ikA ikcA

kiA kicA

kikA kikcA

ikiA ikicA

The sets on the left are in some sense roughly the same size as A; they are at least
bounded if A is bounded, for example. The ones on the right are roughly the same
size as cA.

(e)

A = A0 ∪A1 ∪A2 ∪A3

A0 = Q ∩ (0, 1)
A1 = [2, 5] \ (Q ∩ (3, 4))
A2 = {6 + 1/n | n ∈ Z+}
A3 = [8, 10] \ {9 + 1/n | n ∈ Z+}

I’ll draw a diagram by hand.
(19) (a)

k(A ∪B) = kA ∪ kB

i(A ∩B) = iA ∩ iB

c(A ∩B) = cA ∪ cB

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
bcA = bA

kbA = bA

(b) Suppose A is closed. Then bA = A ∩ kcA ⊆ A, so ibA ⊆ iA. On the other hand,

ibA ⊆ bA = A ∩ kcA ⊆ kcA = ciA

Thus ibA ⊆ iA ∩ ciA = ∅, so ibA = ∅. This implies that bbA = kbA ∩ kcbA =
bA ∩ cibA = bA.

(c) For general A, we know that B = bA is closed so by part (b) b2B = bB, in other
words b3A = b2A.

(d)
A = Q bA = R b2A = ∅

(e) For any A we have bA = kA∩ ciA = kA\ iA, and it is always the case that iA ⊆ A ⊆
kA. From this we deduce that bA = ∅ iff iA = A = kA iff A is both open and closed.
If X = R, this in turn implies that A = ∅ or A = R — this will be proved in class.
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(20) Suppose X is Hausdorff, and x ∈ X. Suppose y 6= x. Then there are disjoint neighbour-
hoods U and V of x and y. In particular, V ∩ {x} = ∅, so that y is not a closure point of
{x}. It follows that {x} is closed. If F ⊆ X is finite, then it is a finite union of one point
sets (which are closed) and so is closed.

The space Y described in the problem is a metric space, and thus Hausdorff. If f, g ∈
Y and f 6= g then d = d(f, g) > 0 and the sets B(f, d/2) and B(g, d/2) are disjoint
neighbourhoods of f and g.

Given 0 < δ ≤ 1, consider the function

fδ(x) =


1 if x ≤ δ/2
2− 2t/δ if δ/2 ≤ x ≤ δ

0 if δ ≤ x

This is continuous, and satisfies fδ ∼ 1 but

d(fδ, 0) =
∫ 1

0

|fδ(t)|dt = 3δ/4 < δ

Now write X = Y/ ∼ and let q : Y −→ X be the usual quotient map. Suppose that
U ⊆ Y is a neighbourhood of q(0). Then U ′ = q−1(U) is a neighbourhood of 0 in Y , so it
contains a ball B(0, δ) = {f ∈ Y |

∫
|f | < δ}. In particular, fδ ∈ U ′, so q(f) ∈ U . On the

other hand, as f ∼ 1 we have q(1) = q(f). Thus, every neighbourhood of q(0) contains
q(1). It clearly follows that we cannot have disjoint neighbourhoods of q(0) and q(1), so
that X is not Hausdorff.

The set X is called the set of germs of continuous functions on [0, 1] at 0. It is a very
useful set to consider, although the topology used in this question is of course perverse,
immoral and contrary to reason.

(21) If i denotes the identity function on Y , then

f × i : X × Y −→ Y × Y

is continuous. As Y is Hausdorff, the diagonal ∆ = {(y, y) | y ∈ Y } is closed in Y × Y .
The preimage (f × i)−1(∆) is thus closed in X × Y . This preimage is just

{(x, y) | f(x) = i(y) = y} = {(x, f(x) | x ∈ X} = Γ(f)

This shows that a continuous map to a Hausdorff space has closed graph. For a coun-
terexample to the converse, define f : R −→ R by

f(x) =

{
1/x if x 6= 0
0 if x = 0

This is clearly not continuous. The graph can also be described as

Γ(f) = Y ∪ {(0, 0)} Y = {(x, y) | xy = 1}
The multiplication map µ : R2 −→ R is continuous, so Y = µ−1{1} is closed, so Γ(f) is
closed.

(22) First, note that f(f(z)) = z for all z, so f has inverse f and is a bijection.
We need only check continuity of f at 0 and∞— we are allowed to assume it elsewhere.

The basic neighbourhoods of f(0) = ∞ are the sets

VR = {z ∈ C | |z| > R} ∪ {∞}
The preimage is

f−1(VR) = {w ∈ C | |w| < R−1}
which is certainly a neighbourhood of 0. Similarly, the preimage of a basic neighbourhood
{z | |z| < ε} of 0 is the neighbourhood V1/ε of ∞. It follows that f is continuous, and thus
that f−1 = f is continuous, and thus that f is a homeomorphism.

Next, we define two open subsets of S3:

U0 = {(z, w) ∈ S3 | w 6= 0}
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U∞ = {(z, w) ∈ S3 | z 6= 0}
Because

(z, w) ∈ S3 ⇒ |z|2 + |w|2 = 1 ⇒ z 6= 0 or w 6= 0
we see that U0 ∪ U1 = S3. It is thus enough to check that the restrictions g|U0 and g|U1

are continuous. If we write 1 for the identity map of C and suppress mention of inclusion
maps, we have

g|U0 = m ◦ (1× h)
g|U1 = f ◦m ◦ (h× 1)

which shows that the restrictions of g are continuous as required.
(23)
(24) First, the map ix : y 7→ (x, y) is clearly continuous, so k#(x) = k ◦ ix is continuous.

Next, suppose given x ∈ [0, 1] and ε > 0. Write

U = {(y, z) ∈ [0, 1]2 | |k(y, z)− k(x, z)| < ε}
Clearly {x} × [0, 1] ⊆ U . Thus, by the tube lemma, there is a neighbourhood V of x such
that V × [0, 1] ⊆ U . Thus, for y ∈ V and any z we have

|k#(y)(z)− k#(x)(z)| = |k(y, z)− k(x, z)| < ε

so ‖k#(x)− k#(y)‖ < ε. This shows that k# is continuous.
Now define

K : C[0, 1] −→ C[0, 1]

(Ku)(x) =
∫ 1

0

k(x, y)u(y)dy

We have

|(Ku)(x)− (Ku)(y)| =
∣∣∣∣∫ 1

0

k(x, z)u(z)− k(y, z)u(z)dz

∣∣∣∣
≤

∫ 1

0

|k#(x)(z)− k#(y)(z)||u(z)|dz

≤ ‖k#(x)− k#(y)‖‖u‖
Fix u ∈ C[0, 1]. Given x and ε > 0 we can find a neighbourhood V of x such that

y ∈ V ⇒ ‖k#(x)− k#(y)‖ < ε/‖u‖ ⇒ |(Ku)(x)− (Ku)(y)| < ε

This shows that Ku is continuous.
Now let u vary. Write

‖k‖ = max{|k(x, y)| | x, y ∈ [0, 1]}
which is well-defined and finite because [0, 1]2 is compact and k is continuous. We have

|(Ku)(x)− (Kv)(x)| ≤
∫ 1

0

|k(x, y)||u(y)− v(y)|dy ≤ ‖k‖‖u− v‖

This shows that K is Lipschitz and thus continuous.
(25)

|Kf(t)−Kg(t)| =
∣∣∣∣∫ 1

0

(f(s)− g(s))(s + t)2ds

∣∣∣∣
≤

∫ 1

0

|f(s)− g(s)|(s + t)2ds

≤
∫ 1

0

4|f(s)− g(s)|ds

≤ 4‖f − g‖
This shows that ‖Kf −Kg‖ ≤ 4‖f − g‖, so K is lipschitz and thus continuous.
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Next, write
B = {f ∈ X | ‖f‖ ≤ 1}

We need to prove that V ∩ B is closed, bounded and equicontinuous, so we can apply
the Arzela-Ascoli theorem to show that it is compact.

The set B is clearly closed and bounded. The set V is also closed, because it is the
preimage of the closed set {0} under the continuous map K − id. Thus V ∩ B is closed
and bounded.

Next, observe that

|(s + t)2 − (s + t′)2| = |2t + t2 − 2t′ − t′
2| = |2 + t + t′||t− t′| ≤ 4|t− t′|

so

|Kf(t)−Kf(t′)| ≤
∫ 1

0

|(s + t)2 − (s + t′)2||f(s)|ds ≤ 4|t− t′|
∫ 1

0

|f(s)|ds ≤ 4|t− t′|‖f‖

In particular, for f ∈ B we have

|Kf(t)−Kf(t′)| ≤ 4|t− t′|

Thus for f ∈ V ∩B (so f = Kf) we have

|f(t)− f(t′)| ≤ 4|t− t′|

This shows that the family V ∩B is equilipschitz and thus equicontinuous.
(26) No. Let X be the discrete space N, which is locally connected ({n} is a connected neigh-

bourhood of n contained in every neighbourhood of n). Let Y be {1/n | n ∈ Z+} ∪ {0}.
The map f : X −→ Y defined by

f(n) =

{
0 if n = 0
1/n if n > 0

is surjective and continuous (trivially, because N is discrete). The point 0 ∈ Y has no
connected neighbourhoods, so Y is not locally connected.

(27) (a) Suppose that U ⊆ Rn is open. Any subspace of a Hausdorff space is Hausdorff,
and any subspace of a second countable space is second countable, so the first two
conditions are trivial. Suppose x ∈ U , so there is some basic neighbourhood

x ∈ V = (x1 − ε, x1 + ε)× . . .× (xn − ε, xn + ε) ⊆ U

There is then a homeomorphism V −→ Rn constructed in the obvious way from the
homeomorphism

(−ε, ε) −→ R y 7→ y/(ε2 − y2)

Now suppose that M is a manifold and N ⊆ M is open. Then N is again Hausdorff
and second countable for the same reasons. Suppose x ∈ N . Choose a neighbourhood
U of x in M homeomorphic to Rn, so N ∩ U is homeomorphic to an open subset of
Rn and thus contains a neighbourhood V of x homeomorphic to all of Rn. Thus N
is a manifold.

(b) Suppose that M is a manifold and N ⊆ M is a component. First, note that M is
locally euclidean and hence locally path-connected and hence locally connected. It
follows that the components (such as N) are open, so they are manifolds by the last
part. Moreover, N is connected because it is a component. However, a connected
and locally path connected space is path connected. Thus N is a path connected
manifold.

(c) Suppose x ∈ M . Choose a neighbourhood U of x and a homeomorphism f : Rn −→ U .
We may assume f(0) = x (else consider g(u) = f(a + u) where f(a) = x). Write
B = {x ∈ Rn | ‖x‖ < 1} and W = f(B). As f : Rn −→ U is a homeomorphism, W is
open in U and hence open in M (as U is).
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Note that B is compact so f(B) is compact and thus closed. It also contains W =
f(B), so f(B) ⊇ f(B) = W . This shows that W is compact. Thus W is a precompact
neighbourhood of x. Thus M is locally compact.
It follows that M is locally compact, Hausdorff and second countable. Such a space
is always paracompact.

(d) The space Q is Hausdorff and second countable but not locally euclidean (because
not locally connected, for example).
Consider an uncountable set X with the discrete topology. Then X is Hausdorff and
locally homeomorphic to R0, but is not second countable. If you don’t like n = 0,
take X × R.
Finally, consider the “line with two zeros”:

Y = R× {−1, 1}/ ∼

(s,−1) ∼ (s, 1) unless s = 0

The points consist of equivalence classes [(s,−1)] = [(s, 1)] for s 6= 0 (which I’ll just
write as s) and the points 0+ = [(0, 1)] and 0− = [(0,−1)]. I proved in class that Y
is not Hausdorff (because 0+ and 0− cannot be separated). However, you can check
that

q : (a, b)× {1} −→ q((a, b)× {1})
and

q : (a, b)× {−1} −→ q((a, b)× {−1})
are homeomorphisms and that the images are open in Y . It follows easily from this
that Y is second countable (take a, b ∈ Q) and locally euclidean.

(28) (a) Given a matrix M = {mkl}, we write πkl(M) = mkl. We topologise the space Mn

as a product of n2 copies of R, so the projections πkl : Mn −→ R are continuous.
As sums, products and constant multiples of continuous functions are again so, it
follows that any function we can build from the projections by such steps will be
continuous. The determinant is certainly such a function (in the case n = 2, we have
det = π11π22 − π12π21, for example).

(b) A matrix M is invertible iff det(M) 6= 0. We define

GL+
n = {M | det(M) > 0}

GL−n = {M | det(M) < 0}
These sets are open because det is continuous, and GL+ ∪ GL− = GL. Moreover,
both are nonempty — the identity matrix is in GL+ and the matrix which is like the
identity but with a single 1 changed to a −1 is in GL−.
Here is a sketch proof that the complex matrix group GLn(C) is connected; a similar
proof can be given that GL+

n is connected. Suppose that M is an n × n invertible
complex matrix. Suppose first for simplicity that M has n distinct eigenvalues, which
are neccessarily nonzero as det(M) 6= 0. They can thus be written as eαk for k =
1 . . . n. By the usual results of linear algebra, M can be written as A−1D(1)A for
some matrix A, where D(t) is the diagonal matrix with entries etαk . The matrices
A−1D(t)A form a path between the identity matrix and M as t varies from 0 to
1. If M does not have n distinct eigenvalues, then we can still find a matrix D in
Jordan canonical form and another matrix A with M = A−1DA. By looking at the
definition of a Jordan canonical form, we see that we can change D (and hence M)
by an arbitarily small amount and make it have distinct eigenvalues. This shows that
the set of matrices with distinct nonzero eigenvalues is dense in GLn(C). Using the
fact that the closure of a connected set is connected, we can complete the proof.

(c) Suppose that M =
(

a b
c d

)
∈ SO2. Then

( 1 0
0 1 ) = MMT =

(
a b
c d

)
( a c

b d ) =
(

a2+b2 ac+bd
ac+bd c2+d2

)
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and
det(M) = ad− bc = 1

Using the resulting relations a2 + b2 = 1 and c2 + d2 = 1 we get

(a− d)2 + (b + c)2 = a2 + d2 + b2 + c2 − 2(ad− bc) = 0

This implies that d = a and c = −b, so M =
(

a b
−b a

)
. We can now use the criteria for

maps to products and subspaces to see that the map SO2 −→ S1 = {(x, y) | x2 + y2 =
1} sending M to (a, b) is a homeomorphism.

(d) The map f : Mn −→ Mn defined by f(A) = AT A is continuous. Indeed, the composites
πkl ◦ f are given by

(πkl ◦ f)(M) =
∑

i

mikmil =

(∑
i

πikπil

)
(M)

This is continuous by the usual argument about continuity of algebraic operations. By
the criterion for maps to a product space, f itself is continuous. Thus On = f−1{I} is
closed. Moreover, by looking at the diagonal entries in AT A we see that

∑
i m2

ik = 1
so |mik| ≤ 1 for all i and k. Thus On is compact.

(e) Suppose ‖x‖ ≤ 1. Write a = max{Akl} and y = Ax, so

yk =
∑

k

Aklxl

|yk| ≤
∑

k

|Akl||xl| ≤ namax{xl} ≤ na

‖y‖2 =
∑

y2
k ≤ n(na)2 = n3a2

‖y‖ ≤ n3/2a

so ‖A‖op ≤ n3/2‖A‖∞. This is all terribly crude, but it will do.
(f) Given two matrices A and B, we have

‖(A + B)x‖ = ‖Ax + Bx‖ ≤ ‖Ax‖+ ‖Bx‖
Taking the least upper bound as x ranges over vectors of norm at most one, we find
that

‖A + B‖op ≤ ‖A‖op + ‖B‖op

so
‖A‖op = ‖A−B + B‖op ≤ ‖A−B‖op + ‖B‖op

hence (using also the inequality with A and B exchanged)

| ‖A‖op − ‖B‖op | ≤ ‖A−B‖op ≤ n3/2‖A−B‖∞
This shows that ‖A‖op is a continuous function of A.

(g) First, recall a statement of Rouché’s theorem: if f and g are entire analytic functions
and |f(z)− g(z)| < |f(z)| for all z on some closed contour Γ, then f and g have the
same number of zeros (counted by multiplicity) inside Γ.
Let p(M, t) denote the characteristic polynomial det(M−tI) of M . The function from
Mn × C to C sending (M, z) to p(M, z) is continuous. Suppose that the eigenvalues
of M are λ1, . . . λm, with multiplicities v1, . . . vm. Given ε > 0, construct a contour Γ
consisting of small circles of radius less than epsilon, with one circle surrounding each
eigenvalue and not touching any other circle or winding around any other eigenvalue.
Let U denote the set of pairs (N, z) such that |p(N, z)− p(M, z)| < |p(M, z)|. This is
open and contains {M}×Γ. Note that Γ is compact. By “Step 1” on p.168, there is a
neighbourhood V of M such that V ×γ ⊆ U . This implies via Rouché’s theorem that
for each N ∈ V , the matrix N has the same number of eigenvalues inside each circle
of Γ as M has. This implies in turn that each eigenvalue of N lies within distance ε
of an eigenvalue of M , and vice versa. It follows that |r(M)− r(N)| < ε.
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(29) Suppose that f(z) = a0 + . . . anzn is a nonconstant complex polynomial of degree n (so
n > 0 and an 6= 0).
(a) Let D ⊆ C be open. The collection of those balls

B(z, ε) = {w ∈ C | |z − w| < ε}
which happen to be contained in D form a basis for the topology on D. These balls
are all convex hence path connected hence connected. Thus D is locally connected.
This implies that the components of D are open in D (and hence open in C, although
this is not immediately relevant). The complement of a component is the union of all
the other components, hence open in D. Thus each component is also closed in D.

(b) K closed and bounded ⇔ K compact ⇒ f(K) compact ⇔ f(K) closed and bounded.
(c) Write

K = max(1, (2|an|)1/n, 2|an|−1
∑
k<n

|ak|)

For |z| > max(1, 2|an|−1
∑

k<n |ak|) we have

|f(z)| ≥ |an||z|n −
∑
k<n

|ak||z|k ≥ |an||z|n/2

and so for |z| > K we have |f(z)| > 1, as required.
On the other hand, by part (b) we know that f({z | |z| ≤ K}) is bounded, so that
there exists L > 0 such that |z| ≤ K ⇒ |f(z)| ≤ L and thus

|f(z)| > L ⇒ |z| > K

again as required.
(d) By the previous part, V contains the set E = {z ∈ C | |z| > K}. As E is connected,

it is contained in one of the components of V . As E is unbounded, this means that
V has at least one unbounded component.
Next, suppose that W and W ′ are unbounded components of V . Then W ∩ E 6= ∅
because W is unbounded. As E is connected, this implies E ⊆ W . Similarly E ⊆ W ′,
and thus W∩W ′ ⊇ E 6= ∅. As the components of V form a partition of V , this implies
that W = W ′. Thus V has precisely one unbounded component.

(e) Suppose that W is a bounded component of V . Then by (a), W is open and closed
in V .
W is contained in the closed set f−1

(
f(W )

)
, so W is also contained in this set, so

f(W ) ⊆ f(W ).

On the other hand, W is compact, so f(W ) is closed and contains f(W ), so f(W ) ⊆
f(W ). Thus

f(W ) = f(W )
You can check that

f(W ) ∩ U = f(W ∩ f−1(U)) = f(W ∩ V )

(this is purely set theoretic, not involving any topology). On the other hand, W is
closed in V so W ∩ V = W . We conclude that

f(W ) ∩ U = f(W )

as required.
This shows that f(W ) is closed in U . Also, W is open in V and thus in C, and
f : C −→ C is an open mapping, so f(W ) is open in U . On the other hand, U =
{z | |z| > 1} is easily seen to be connected, so the open and closed set f(W )
can only be ∅ or U . The former is excluded because W is a component and therefore
nonempty. Thus f(W ) = U . However, f(W ) ⊆ f(W ) which we have seen is bounded.
This contradiction shows that V cannot have any bounded components. Combining
this with (d), we see that V has precisely one component and is therefore connected.
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(f) Write Vn = {z | |fn(z)| > 2}, so that M c =
⋃

n Vn. By the above, Vn is connected
for each n. Moreover, there are constants Kn such that |z| > Kn ⇒ z ∈ Vn. From
this we see that Vn ∩ Vm 6= ∅ for each n and m. Thus M c is the union of a family of
connected sets, any pair of which intersect, so it is itself connected.

(30) Given a complex number c, define qc(z) = z2 + c and

fn(c) = qc(qc(qc . . . (0) . . .))

where qc is applied n times. In other words:

f0(c) = 0

fn+1(c) = qc(fn(c)) = fn(c)2 + c

In particular:

f1(c) = c

f2(c) = c2 + c

f3(c) = c4 + 2c3 + c2 + c

We see by induction using the formula fn+1(c) = fn(c)2 + c that fn is continuous for all
n. It is also true that the function

gc,n(z) = qc(qc(. . . (z) . . .))

is a continuous function of z, but this is a different thing.
The Mandelbrot set M is defined as

M = {c ∈ C | |fn(c)| ≤ 2 for all n}
This is bounded because if c ∈ M then (by the case n = 1) we have |c| ≤ 2. If we write
B = {z | |z| ≤ 2} then M can also be described as

M =
⋂
n

f−1
n (B)

As B is closed and fn is continuous, we see that f−1
n (B) is closed. Thus M is an intersection

of closed sets and hence closed.
(31)
(32) (a) Yes.

(b) No. The triangle inequality M2 fails for x = −1, y = 0, z = 1 for example.
(c) Yes. To prove this, it helps to show first that

d(x, y) = min(|x− y|, 1)

gives a metric on R (in fact, it induces the same topology as the usual metric). This
is theorem 9.1 in the book.

(d) This is certainly not a metric space, as we have

d((1, 0), (0, 1)) = 0 but (1, 0) 6= (0, 1)

contrary to axiom M3. It is not even a pseudometric space, as the triangle inequality
fails for x = (0, 0), y = (1, 0) and z = (1, 1).

(e) Yes.
(f) No. The triangle inequality fails for x = 0, y = 1 and z = 3.

(33) Let ek be the k’th basis vector (0, . . . , 1, . . . 0) and write ak = ‖ek‖. Then

‖x‖ = ‖
∑

xkek‖ ≤
∑

|xk|‖ek‖ =
∑

|xk|ak

| ‖x‖ − ‖y‖| ≤ ‖x− y‖ ≤
∑

k

|xk − yk|ak

It follows that |n(y)− n(x)| < ε provided that

y ∈
∏
k

(xk − δ, xk + δ)
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where
δ = ε/

∑
k

ak

This shows that n is continuous for the product topology.
Next, recall that the sphere Sn−1 = {x | ‖x‖2 = 1} is compact in the product topology.

It follows that n is bounded on Sn−1, say n(x) ≤ K for x ∈ Sn−1. More generally, if x 6= 0
then x/‖x‖2 ∈ Sn−1 so

n(x)/‖x‖2 = n(x/‖x‖2) ≤ K

so
n(x) ≤ K‖x‖2

This also holds for x = 0, of course.
Moreover, n(x) > 0 for x ∈ Sn−1 (because ‖x‖ = 0 ⇒ x = 0) so 1/n(x) is also

continuous and thus bounded on Sn−1. We deduce that

n(x)−1 ≤ k−1 for x ∈ Sn−1

k‖x‖2 ≤ n(x) for all x

It follows that the identity maps

(Rn, d) −→ (Rn, d2) −→ (Rn, d)

are both Lipschitz and therefore continuous, in other words that the two topologies are
the same.

(34) Suppose X is compact Hausdorff, and K, L are disjoint closed subsets. For x ∈ K write

Vx = {V ∈ τ | x 6∈ V }
Suppose y ∈ L, so y 6= x. As X is Hausdorff, there are disjoint neighbourhoods U and V
of x and y. As U ∩V = ∅, we see that x 6∈ V and thus V ∈ Vx. Note also that y ∈ V ; this
shows that

L ⊆
⋃

V ∈Vx

V

It follows that there are sets V1, . . . Vr ∈ Vx such that

L ⊆ V =
r⋃

k=1

Vk

moreover

x ∈ U =
r⋂

k=1

(X \ Vk) = X \
⋃

Vk = X \ V

Also, if y ∈ L then V is a neighbourhood of y and V ∩ U = ∅; thus U ∩ L = ∅.
Next, we define

U = {U ∈ τ | U ∩ L = ∅}
The above shows that U covers K, so

K ⊆ U =
s⋃

l=1

Ul Ul ∈ U

say. We can then take

V =
s⋂

l=1

(X \ Ul)

We find that K ⊆ U , L ⊆ V and U ∩ V = ∅ as required.
(35) In these cases Y is open in X:

(a) X = R, Y = R \ Z = {x ∈ R | x 6∈ Z}
(b) X = Q, Y = Q ∩ [−

√
2,
√

2]
(c) X = {1/n | n ∈ Z+}, Y = {1/(n + 1) | n ∈ Z+}
(d) X = [0, 1] ∪ [2, 3], Y = [0, 1]
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Note that in the second case Y = (−
√

2,
√

2) ∩Q.
In these cases Y is not open in X:

(a) X = [−1, 1], Y = [0, 1]
(b) X = R, Y = {x ∈ R | x 6= 1/n for any n ∈ Z+}
In both cases 0 is a non-interior point of Y .

(36) (a) No. If the range of a function f : R −→ R is finite then f(F ) is finite and hence closed
for every closed set F ⊆ R (indeed, for every subset F ⊆ R whatsoever). However, f
certainly need not be continuous; take for example f(x) = 0 for x < 0 and f(x) = 1
for x ≥ 0.

(b) No. For example if f(x) = sin(x) then f(R) is not open, so f is not open.
(c) Yes. If f : X −→ Y is a homeomorphism, then g = f−1 : Y −→ X is continuous. Thus,

if F ⊆ X is closed then f(F ) = g−1(F ) is closed in Y .
(d) No. If f(x) = e−x then f(R) = (0,∞) is not closed in R, so f : R −→ R is not a closed

mapping.
(e) Yes. Suppose that X and Y are compact Hausdorff and that f : X −→ Y is continuous.

Then, if F ⊆ X is closed then it is compact, so f(F ) is compact. As a compact subset
of a Hausdorff space, f(F ) must be closed.

(37) The metric is derived from the norm

‖u‖ = ‖u‖∞ = sup{|u(x)| | x ∈ X}

Thus, if u ∈ C(Y ) then

‖f∗(u)‖ = sup{|f∗(u)(x)| | x ∈ X}
= sup{|u(f(x))| | x ∈ X}
≤ sup{|u(y)| | y ∈ Y } = ‖u‖

Noting also that f∗(u − v) = f∗(u) − f∗(v), we find that d(f∗(u), f∗(v)) ≤ d(u, v). This
implies that f∗ is continuous.

It is also easy to see that the norm function

n : C(X) −→ R n(u) = ‖u‖

is continuous. This follows from the reversed triangle inequality:

|n(u)− n(v)| ≤ d(u, v)

Now consider Y = {(x, x′) ∈ X2 | d(x, x′) < ε}. There are two continuous projection
maps π0, π1 : Y −→ X. We have

oscε(u) = n(π∗0(u)− π∗1(u))

which shows that oscε is continuous.
We next want to show that

⋃
ε>0 U(ε, δ) = C(X). Consider u ∈ C(X); we need to find

ε > 0 such that oscε(u) < δ. This just means that u is uniformly continuous. A proof in
the spirit of this problem is as follows. Write

K = {(x, x′) ∈ X2 | |u(x)− u(x′)| ≥ δ}

The image d(K) under the distance map d : X2 −→ R is compact and does not contain 0, so
d(K)∩ [0, ε) = ∅ for some ε > 0. Thus d(x, x′) < ε implies |u(x)− u(x′)| < δ as required.

(38) (a) First, Zp is a metric space and therefore Hausdorff. The subspace Z is dense, so for
compactness it is sufficient to prove that Z is totally bounded, in other words that it
has a finite ε-net for every ε > 0. For this, choose n such that p−n < ε. Any integer
m is congruent modulo pn to a number l with 0 ≤ l < pn:

m = kpn + l k ∈ Z 0 ≤ l < pn

Thus d(m, l) = |kpn| ≤ p−n < ε. This shows that {0, 1, 2, . . . pn − 1} is an ε-net.
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(b) First, we must prove that ∼k is an equivalence relation. This is trivial once we remark
that

n ∼k m ⇔ n−m is divisible by pk

Consider the space Z/ ∼k= Z/pk. If a = [n]k ∈ Z/pk then

q−1
k {a} = {m ∈ Z | m ∼k n} = B(n, p1−k)

This shows that q−1
k {a} is open, so {a} is open in the quotient topology. As the

points are open, the space is discrete. By the argument of the previous question,

Z/pk = {[0]k, . . . [pk − 1]k}

which is finite.

(c) The apparent problem with the definition rk([n]k) = [n]k−1 is that we might have
a = [n]k = [m]k ∈ Z/pk and then we would have two potentially different definitions
rk(a) = [n]k−1 and rk(a) = [m]k−1. Of course, they are not really different:

[n]k = [m]k ⇔ v(n−m) ≥ k ⇒ v(n−m) ≥ k − 1 ⇔ [n]k−1 = [m]k−1

(d) We next consider the space

X = {a | ∀k > 0 rk(ak) = ak−1} ⊂
∏
k∈N

Z/pk

If a, b ∈ X and a 6= b then for some k we have ak 6= bk. Thus π−1
k {ak} ∩ X

and π−1
k {bk} ∩ X are disjoint neighbourhoods of a and b. Thus X is Hausdorff.

Alternatively, we could just quote the fact that products and subspaces of Hausdorff
spaces are Hausdorff.
The infinite product is compact by Tychonov, so we need only show that the subspace
X is closed. Suppose a ∈

∏
k Z/pk but a 6∈ X. Then rk(ak) 6= ak−1 for some k. Write

U = π−1
k {ak} ∩ π−1

k−1{ak−1}

This is a neighbourhood of a. Moreover, if b ∈ U then

rk(bk) = rk(ak) 6= ak−1 = bk−1

so b 6∈ X. Thus X is closed in a compact space and thus compact.

(e) Next, we consider the sets

Uk(c) = π−1
k {c} ∩X = {a ∈ X | ak = c}

As the sets π−1
k {c} form (by definition) a subbasis for the product topology, it is

immediate that the sets Uk(c) form a subbasis for the topology on X as a subspace
of the product. The claim is that they are not merely a subbasis but a basis.
Consider V = Uk(c) ∩ Ul(b), with k ≤ l say. Note that a ∈ V iff ak = c and al = b.
For a ∈ X we have

ak = rk+1(ak+1) = rk+1rk+2 . . . rl(al)

This shows that V = Ul(b) if rk+1rk+2 . . . rl(b) = c and V = ∅ otherwise. Thus, a
finite intersection of sets in our subbasis either lies again in the subbasis or is empty.
It follows easily that the subbasis is really a basis.

(f) Suppose a, b ∈ X and that ak = bk. Working downwards using ak−1 = rk(ak) etc.
we deduce that al = bl for all l ≤ k.
Suppose that a ∈ X and p−n < ε ≤ p1−n. It is immediate from the definitions and
the above remark that

b ∈ B(a, ε) < ε ⇔ ∃m ≥ n bm = am ⇔ bn = an ⇔ b ∈ Un(an)
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This shows that B(a, ε) = Un(an), and thus that the basis constructed previously is
precisely the set of open balls. It follows that the metric topology is the same as the
previous one.

(g) Define f : Z −→ X by f(n) = ([n]k)k∈N. We then have

v(f(n)) = v(n)

|f(n)| = |n|
d(f(n), f(m)) = d(n, m)

so f is an isometric embedding. Moreover, X is compact and thus complete. By gen-
eral results about completion, there is an isometric embedding f̃ : Zp −→ X extending
f .
Consider a basic open set V = Uk(c), where c = [n]k ∈ Z/pk say. Then f(n) ∈ V . It
follows that f(Z) is dense in Zp. A fortiori, f̃(Zp) is dense. On the other hand, Zp is
compact so f̃(Zp) is compact and thus closed. This means that f̃(Zp) = X, so f̃ is
surjective. As it is isometric, it is injective:

x 6= y ⇔ 0 6= d(x, y) = d(f̃(x), f̃(y)) ⇔ f̃(x) 6= f̃(y)

it also follows easily that the inverse is an isometry:

d(f̃−1(x), f̃−1(y)) = d(f̃ f̃−1(x), f̃ f̃−1(y)) = d(x, y)

It follows that the inverse is continuous and thus f̃ is a homeomorphism.
(39) The set V = (0, ε)×[−π, π] is connected, because intervals in R are connected and products

of connected sets are connected.
The set U is the image of V under the continuous map (r, θ) 7→ a + (r cos θ, r sin θ).

Continuous images of connected sets are connected, so U is connected.
Suppose that X ⊆ R2 is connected and a ∈ int(X). Write Y = X \ {a}, and choose

ε > 0 such that
U ′ = {b | d(a, b) < ε} ⊆ X

so
U = {b | 0 < d(a, b) < ε} ⊆ Y

Suppose that (A,B) is a separation of Y , so A and B are open in Y and are disjoint,
and A ∪ B = Y . Then (A ∩ U,B ∩ U) is a separation of the connected set U , hence
is trivial. Without loss of generality, we may assume U ⊆ A and U ∩ B = ∅. Write
A′ = A ∪ U ′ = A ∪ {a}. Note that Y is open in X and thus A,B and A′ are open in
X. Moreover, A′ ∩ B = ∅ and A′ ∪ B = X, so (A′, B) is a separation of X. As X is
connected and A′ ⊇ U ′ 6= ∅ we see that B = ∅. Thus, every separation of Y is trivial and
Y is connected.

(40) Suppose that X is locally compact Hausdorff and second countable, with a countable basis
β say. Write

β′ = {U ∈ β | U is compact }
This is a countable collection of precompact open sets; I claim it covers X. Indeed, suppose
x ∈ X. Then as X is locally compact, there is a neighbourhood W of x such that W is
compact. As β is a basis, there is a set U ∈ β with x ∈ U ⊆ W . As U is closed in W , it
is compact, so U ∈ β′. Thus, for any x there is a set U ∈ β′ with x ∈ U as claimed.

Now enumerate β′ as β′ = {Vn | n > 0}. We shall define recursively precompact open
sets Un such that

Vn ⊆ Un ⊆ Un ⊆ Un+1

Indeed, we can take U0 = ∅. Suppose we have defined sets U0, . . . Un satisfying the
requirements. Then Un is compact and covered by β′ (as the whole space is) so

Un ⊆ Vk1 ∪ . . . Vkm

say. We take
Un+1 = Vn+1 ∪ Vk1 ∪ . . . Vkm
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and observe that this is precompact because each Vk is.
This procedure gives us Un for all n. As Vn ⊆ Un and the Vn cover X, we see that⋃

n Un = X as required. �
We next quote the theorem that X is paracompact and hence normal.
We define the narrow and wide bands

Yn = Un \ Un−1

Zn = Un+1 \ Un−2

Note that Zn ∩ Zm = ∅ if |n −m| ≥ 3. We also choose (using normality) open sets Z ′
n

with Yn ⊆ Z ′
n ⊆ Z ′

n ⊆ Zn.
As X is normal, Urysohn’s lemma applies. This gives us a function

φn : X −→ [0, n]

with φn = 0 on Z ′
n

c and φn = n on Yn. This means that supp(φn) ⊆ Z ′
n ⊆ Zn, and in

particular that the family of supports is locally finite. This means that

φ =
∑

n

φn

is continuous. I claim that it is also proper. Indeed, suppose that K ⊆ R is compact,
so K ⊆ [−n, n] say. As φ ≥ φm = m on Ym, we see that φ−1(K) ⊆ Y1 ∪ . . . Yn which is
compact. Moreover, φ−1(K) is closed by continuity. As a closed subset of a compact set,
it is itself compact.

(41) Contemplate the construction which assigns to a set C ⊆ C(X) the set

C ′ = C ∪ {f + g | f, g ∈ C} ∪ {fg | f, g ∈ C}
Note in particular that C ′ is countable if C is.

Suppose B ⊆ C(X) is countable. Define recursively

C0 = Q ∪B

Cn+1 = C ′
n ⊇ Cn

A =
∞⋃

n=0

Cn

I claim that A is a Q-algebra. Indeed, Q ⊆ C0 ⊆ A. Moreover, if f, g ∈ A then f, g ∈ Cn

for some n and so f + g, fg ∈ Cn+1 ⊆ A. Also, each Cn is countable (by induction) so A
is countable. Thus A is a countable Q-algebra containing B, as required.

Now let X be a compact metric space which has a countable dense subset Y . Write
dy(x) = d(y, x), so dy ∈ C(X). Write

B = {dy | y ∈ Y }
(so B is a countable subset of C(X)).

I claim that B ⊆ C(X) is separating. Indeed, suppose u, v ∈ X and u 6= v, so
ε = d(u, v)/2 > 0. As Y is dense, there is a point y ∈ Y ∩B(u, ε). Then

dy(u) = d(y, u) < ε

dy(v) = d(v, y) ≥ d(v, u)− d(u, y) = 2ε− d(u, y) > ε

so dy(u) 6= dy(v) as required.
Let A be a countable Q-algebra containing B. Then A is a ring (see the proof that the

closure of a R-algebra is a R-algebra) and contains Q = R. Thus A is a closed separating
R-algebra. By Stone-Weierstrass, it is all of C(X). Thus A is a countable dense subset of
C(X).

A popular error is to suppose that X need not be a metric space. One chooses a
countable dense subset Y , uses Urysohn’s lemma to choose a countable set B of functions
separating any pair of points in Y and then argues as above. However, B need not separate
the points of X. For example, take X = [0, 1] and B = {f ∈ C[0, 1] | f(0) = f(1)}. Then B
separates the points of the dense subset (0, 1), but does not separate 0 from 1. This shows
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that we need to use functions of the special form indicated above. The result is false for
non-metric spaces, the simplest example being X = βN, the Stone-Čech compactification
of the discrete space N. You can read about this in the book if you are interested.

(42) We need to prove that the relation ∼ is reflexive, symmetric and transitive. The first two
are immediate. For transitivity, suppose that x ∼ y and y ∼ z. Suppose that X = A ∪B
is a separation into disjoint open sets. By assumption either x, y ∈ A or x, y ∈ B, and also
either y, z ∈ A or y, z ∈ B. On the other hand, A and B are disjoint so it cannot happen
that y ∈ A and y ∈ B; thus the only possibilities are x, y, z ∈ A or x, y, z ∈ B. In either
case, x and z lie in the same half of the partition. Thus x ∼ z as required.

The quasicomponent C containing x is the set of points y such that for every open and
closed set A containing x, we also have y ∈ A. In other words,

C =
⋂
{A | x ∈ A and A is open and closed}

This is the intersection of a family of closed sets, hence is closed.
Now write x ≈ y if there is a connected set containing x and y, so the ≈-equivalence

classes are by definition the components. Suppose that x ∼ y, say x, y ∈ Z with Z ⊆ X
connected. Consider a separation X = A ∪ B as before. Then the separation Z =
(Z ∩ A) ∪ (Z ∩ B) is trivial, so wlog Z ∩ B = ∅ and so Z ⊆ A. Thus x, y ∈ A. As this
happens for every separation X = A∪B, we see that x ∼ y. It follows that the component
D = {y | y ≈ x} containing x is a subset of the quasicomponent C = {y | y ∼ x}. Thus
every component is contained in a quasicomponent, as claimed.

I know of no natural examples in which the components and quasicomponents are
different, but I can show you a contrived example if you insist. You can show that if the
components are open then they are the same as the quasicomponents, and that this in
turn holds whenever the space is locally connected or has only finitely many components.

(43)
(44) (a) The function f(x) = x/(1− x2) is an order preserving bijection between the interval

(−1, 1) and the real line (see p. 105). By defining f(−1) = −∞ and f(1) = ∞ we
obtain an order preserving bijection between [−1, 1] and X. Both spaces have the
order topology, so this is a homeomorphism. Thus X is compact and Hausdorff.

(b) Suppose that F ⊆ R is closed. Note that the subspace topology on R as a subspace
of X is the usual topology. Write F for the closure of F in X. Then the closure of
F in R (which is just F ) is F ∩ R. This shows that F ⊆ F ∪ {±∞}, and hence that
F ∪{±∞} = F ∪{±∞} is closed. As a closed subspace of a compact Hausdorff space,
it is thus compact.

(c) Suppose that p(x) =
∑n

k=0 akxk is a polynomial function. If p is constant then the
question is trivial, so we may assume that n > 0 and that an 6= 0. For definiteness,
suppose that n is odd and an > 0; the other three cases are treated similarly. We
define p(−∞) = −∞ and p(+∞) = +∞, and of course p(x) = p(x) for finite x.
Because p is continuous and p(x) −→ ∞ as x −→ ∞, we see that for every K > 0 the
preimage U = p−1(K,∞) is open in R and contains some set (L,∞). This implies
that

p−1((K,∞]) = U ∪ (L,∞]
which is open in X. Similarly for p−1([−∞,K)). As the sets [K,∞) and [−∞,K)
form a subbasis for the order topology, this means that p is continuous.

(d) Suppose F ⊆ R is closed. Write G = F ∪ {±∞}, which we have shown is compact.
It follows that p(G) is compact, and thus that p(G) ∩R is closed in R. On the other
hand, it is easy to see that p(G) ∩ R = p(F ).

(45) (a) It is trivial that ∅ and R∞ are closed. Suppose that Fi is closed for all i ∈ I, and
that F =

⋂
i∈I Fi. For each n, we know that the intersections Fi ∩ Rn are closed in

the usual topology on Rn. The same is thus true of the intersection of this family of
sets, which is just F ∩ Rn. As this holds for all n, we see that F is closed in R∞ as
required. A similar argument shows that finite unions of closed sets are closed.
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(b) The closed sets in the subspace topology are the sets G = F ∩ Rn where F is closed
in R∞. By definition of the topology on R∞, these sets G are closed in the usual
topology on Rn. Conversely, if a set F ⊂ Rn is closed in the usual topology then it
is easy to see that it is also closed in R∞ and hence in the subspace topology on Rn.

(c) Suppose that x, y ∈ R∞ and x 6= y. For some k we have xk 6= yk, say xk < a < yk.
The sets U = {z ∈ R∞ | zk < a} and V = {z ∈ R∞ | zk > a} are open and disjoint,
and x ∈ U and y ∈ V . Thus R∞ is Hausdorff.

(d) Suppose F ⊂ R∞ is such that F ∩ Rn is finite for each n. It is clear from the
definitions that F is closed in R∞. The same applies by the same argument to any
subset G ⊆ F . Thus, every subset of F is closed in F , so also every subset is open in
F . That is, F is discrete.

(e) Suppose X ⊂ R∞ is compact. Consider a subset F of X as described. By construc-
tion, F ∩Rn contains at most n points. Thus, by the previous part, F is discrete. It
is also a closed subset of the compact set X, and thus compact. The one point sets
{x} for x ∈ F thus form an open cover of F , so compactness implies that F is finite.
Looking back at the definition of F , this implies that X ⊂ Rn for some n.

(46) Let X be a space and ∼ an equivalence realtion on X. Consider the map q : X −→ X/ ∼
defined by q(x) = [x]. The quotient topology on X/ ∼ is defined by specifying that
U ⊆ X/ ∼ is open iff q−1(U) is open in X.

A function f : X/ ∼−→ Y is continuous iff the composite f ◦ q is continuous.
The one-point compactification of a space X is the set X t {∞}, in which a set U is

declared to be open iff
(a) U ∩X is open in X.
(b) If ∞ ∈ U then X \ U is compact.

Consider f and X as in the given problem. First, note that f(f(z)) = z for all z, so f
has inverse f and is a bijection.

We need only check continuity of f at 0 and∞— we are allowed to assume it elsewhere.
The basic neighbourhoods of f(0) = ∞ are the sets

VR = {z ∈ C | |z| > R} ∪ {∞}
The preimage is

f−1(VR) = {w ∈ C | |w| < R−1}
which is certainly a neighbourhood of 0. Similarly, the preimage of a basic neighbourhood
{z | |z| < ε} of 0 is the neighbourhood V1/ε of ∞. It follows that f is continuous, and thus
that f−1 = f is continuous, and thus that f is a homeomorphism.

Now consider the space
X = (∆ t∆)/ ∼

where
ι0(z) ∼ ι1(w) ⇔ zw = 1

Define continuous maps g0, g1 : ∆ −→ C∞ by

g0(z) = z g1(z) = f(z) = 1/z

Note that
image(g0) = {z | |z| ≤ 1}

image(g1) = {z | |z| ≥ 1} ∪ {∞}
and g0(z) = g1(w) iff zw = 1 iff i0(z) ∼ i1(w).

These maps combine to give a map

g : ∆ t∆ −→ C∞ g ◦ i0 = g0 g ◦ i1 = g1

It is clear that a ∼ b ⇔ g(a) = g(b) so g induces a continuous injective map

g̃ : X = (∆ t∆)/ ∼−→ C∞
Moreover,

image(g) = image(g0) ∪ image(g1) = C∞



TOPOLOGY PROBLEM ANSWERS 23

Thus g is surjective, hence a continuous bijection of compact Hausdorff spaces, hence a
homeomorphism.

(47) We choose recursively open sets Vk such that Vk ⊆ Uk and

K =
⋃
l≤k

Vl ∪
⋃
l>k

Ul

Having chosen Vl for l < k we set

U ′
k =

⋃
l<k

Vl ∪
⋃
l>k

Ul

so by the recursion hypothesis K = U ′
k ∪ Uk. In other words, (U ′

k)c ⊆ Uk. As (U ′
k)c is

closed and Uk is open and compact Hausdorff spaces are normal, there is an open set Vk

with
(U ′

k)c ⊆ Vk ⊆ Vk ⊆ Uk

As (U ′
k)c ⊆ Vk, we have

K = U ′
k ∪ Vk =

⋃
l≤k

Vl ∪
⋃
l>k

Ul

as required for the recursion. After n steps we have

K =
⋃
k

Vk

(48) (a) We shall say that a set U ⊆ X is τα-open iff U ∈ τα. The definition τ =
⋂

α τα simply
means that a set U is τ -open iff it is τα-open for every α. For example, for every α
we are given that τα is a topology so ∅ and X are τα-open. This means that ∅ and
X are τ -open, so that τ satisfies T0. Now suppose that {Ui}i∈I is a family of τ -open
sets. We need to show that U =

⋃
I Ui is τ -open. For each α, we note that each Ui

is τα-open so (by T1 for τα) U is τα-open. As this holds for all α, we see that U is
τ -open. This shows that τ satisfies T1. The proof for T2 is similar.

(b) Take
τ0 = {(a,∞) | a ∈ R} ∪ {∅, R}

τ1 = {(−∞, b) | b ∈ R} ∪ {∅, R}
These are both topologies on R, but τ = τ0 ∪ τ1 is not. Indeed, the sets U = (−1,∞)
and V = (−∞, 1) both lie in τ , but U∩V = (−1, 1) does not, contradicting the axiom
T2.

(c) There was a misprint in this question; it should have defined σ to be the topology
on X with subbase υ =

⋃
α τα. By an exercise which I left to you in class, this is

the intersection of the family of all topologies which contain υ. In other words, a
topology ρ contains σ iff ρ contains υ; but ρ contains υ iff ρ contains τα for every α.

(d) The largest and smallest topologies on X are respectively the discrete and indiscrete
topologies:

τdis = P(X) = { all subsets of X}

τind = {∅, X}
(49) In the following answers we denote the collection of subsets of R offered as a possible

topology by the letter σ.
(a) No. R 6∈ σ, so axiom T0 fails.
(b) Yes.
(c) No. The sets [ε,∞) for ε > 0 lie in σ, but their union does not:⋃

ε>0

[ε,∞) = (0,∞) 6∈ σ

This contradicts axiom T1.
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(d) Yes. T0 holds by definition. T1 holds essentially because⋃
I

(ai,∞) = (inf
I

ai,∞)

Suppose I have a family {Ui}i∈I of sets in σ. We want to know that U =
⋃

I Ui ∈ σ.
For some i we may have Ui = ∅; these terms can be discarded without affecting the
union. For other i we may have Ui = X; if so then U = X ∈ σ. If there are no i for
which Ui = X then the question reduces to the equation above. Similarly, T2 holds
because of the equation

(a,∞) ∩ (b,∞) = (max(a, b),∞)

apart from a little fiddling with exceptional cases.
(e) No. ∅ 6∈ σ, so T0 fails.
(f) Yes.
(g) Yes.

Let Y ⊆ Q be connected. According to my definition (and that in the book) the empty
set is not connected, so suppose y ∈ Y . I claim that Y = {y}. If not, then there is some
z ∈ Y with z 6= y and then x = y +(z− y)/

√
2 is irrational and lies strictly between y and

z. This means that (−∞, x)∩Y and (x,∞)∩Y form a nontrivial partition of Y , contrary
to the assumption. Thus Y = {y} and Q is totally disconnected.

Now let X denote the space Z with the 2-adic metric and the resulting topology. I
claim that the balls

B(n, 2−k) = {m ∈ Z | n−m is divisible by 2k+1}
are both open and closed. They are open essentially by definition. To see that they are
closed, consider a closure point m ∈ B(n, 2−k). The ball B(m, 2−k) meets B(n, 2−k), so
there is some integer l with say m − l = 2k+1u and n − l = 2k+1v. This implies that
m− n = 2k+1(u− v), so m ∈ B(n, 2−k) as required.

Now suppose that n and m are distinct integers, say n − m = 2kl with l odd. The
ball B = B(n, 2−k) is then an open and closed set containing n but not m, so that no
connected set can contain both n and m. It follows that Z is totally disconnected with
this topology.

(50)(51) Recall the basic properties of ultrafilters (proved in the notes):

Proposition 0.0.1. Let W be an ultrafilter.
UP0 If S ∈ W and T ⊇ S then T ∈ W.
UP1 If Sk ∈ W for each k then S1 ∩ . . . Sn ∈ W.
UP2 If S ⊆ X then either S ∈ W or Sc ∈ W (but not both).
UP3 If T ⊆ X and T ∩ S 6= ∅ for every S ∈ W then T ∈ W.
UP4 If S1 ∪ . . . Sn ∈ W then Sk ∈ W for some k.
UP5 X ∈ W

(a) Suppose W = Wx is fixed. Then the finite set {x} is an element of W. Conversely,
suppose

S = {x0, . . . xn} = {x0} ∪ . . . {xn} ∈ W
By UP4, {xk} ∈ W for some k. Write x = xk. Using UP0 we find that

S ∈ Wx ⇔ x ∈ S ⇔ {x} ⊆ S ⇒ S ∈ W
Thus Wx ⊆ W. By maximality of Wx, we conclude that Wx = W as required.

(b) Suppose S1, . . . Sn ∈ f#(W), so that f−1(Sk) ∈ W. By FIP for W, we have

∅ 6=
⋂
k

f−1(Sk) = f−1

(⋂
k

Sk

)
This means that

⋂
k Sk 6= ∅ (indeed, if x ∈ f−1

⋂
Sk then f(x) ∈

⋂
Sk). Thus f#(W)

at least has FIP.
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Suppose S ⊆ Y . By UP2 for W, we know that either f−1(S) or f−1(S)c = f−1(Sc)
is an element of W. This means that either S or Sc is an element of f#(W). By
proposition 0.2 of the ultrafilter notes, we deduce that f#(W) is an ultrafilter as
required.

(c) Suppose f : X −→ Y is continuous. Suppose Z ⊆ Y . As Z ⊆ Z, we have f−1(Z) ⊆
f−1(Z). By continuity, f−1(Z) is closed. As f−1(Z) is the smallest closed set con-
taining f−1(Z), we deduce that

f−1(Z) ⊆ f−1(Z)

as required.
Conversely, suppose we are told that f−1(Z) ⊆ f−1(Z) for each Z ⊆ Y . In the case
when Z is closed, we find that f−1(Z) ⊆ f−1(Z), which means that f−1(Z) is closed.
Thus preimages of closed sets are closed, which means that f is continuous.

(d)

x ∈ Z ⇔ ∀U ∈ Nx U ∩ Z 6= ∅
⇔ Nx ∪ {Z} has FIP
⇔ ∃ an ultrafilter W Nx ∪ {Z} ⊆ W
⇔ ∃W Z ∈ W and Nx ⊆ W
⇔ ∃W Z ∈ W and W −→ x

(e) Suppose that f is continuous, and that W −→ x. Then

f−1(Nf(x)) ⊆ Nx ⊆ W

so by definition of f# we have

Nf(x) ⊆ f#(W)

so
f#(W) −→ f(x)

To be a bit more explicit, suppose that U ∈ Nf(x). By continuity f−1(U) ∈ Nx. As
W −→ x we have Nx ⊆ W, so f−1(U) ∈ W. By the definition of f# this means that
U ∈ f#(W). This holds for every neighbourhood U of f(x) so Nf(x) ⊆ f#(W).
Conversely, suppose we know that

W −→ x ⇒ f#(W) −→ f(x)

Suppose Z ⊆ Y is closed; we want to show that f−1(Z) is closed. Suppose that x is a
closure point of f−1(Z). By question (51d) above, we know that there is an ultrafilter
W on X such that f−1(Z) ∈ W and W −→ x. By hypothesis, f#(W) −→ f(x).
Moreover, from the definition of f# we see that Z ∈ f#(W). Applying the other half
of (51d), we find that f(x) ∈ Z = Z. Thus x ∈ f−1(Z). This shows that f−1(Z) is
closed, as required.

(52) Let me first try to demystify this topology a little. If X is a metric space then it can be
shown (indeed, you can show) that the Vietoris topology is derived from the metric

d(K, L) = max(sup
x∈K

d(x, L), sup
y∈L

d(y, K))

where
d(x, L) = inf

y∈L
d(x, y) d(y, K) = inf

x∈K
d(x, y)

(a)

K ∈ s(U) ∩ s(V ) ⇔ (K ⊆ U and K ⊆ V ) ⇔ K ⊆ U ∩ V ⇔ K ∈ s(U ∩ V )
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(b) Suppose U ⊆ V . Then

K ∈ m(U) ⇔ ∅ 6= K ∩ U ⊆ K ∩ V ⇒ K ∈ m(V )

so m(U) ⊆ m(V ) and m(U) ∩m(V ) = m(U).
(c) We have K ∈ s(U) ∩m(V ) iff K ⊆ U and there is a point x ∈ K ∩ V . If so, then

x ∈ K ⊆ U and so x ∈ U ∩ V . Thus K ∈ s(U) ∩m(U ∩ V ). The opposite inclusion
is trivial.

(d) Suppose K ∈ s(U ∪ V ), so K ⊆ U ∪ V . Then either K ⊆ U , or K ∩ V 6= ∅. Thus

s(U ∪ V ) ⊆ s(U) ∪m(V )

It follows easily that

s(U ∪ V ) = s(U) ∪ (s(U ∪ V ) ∩m(V ))

(indeed, if B ⊆ A ⊆ B ∪ C then A = B ∪ (A ∩ C) for any sets A,B and C).
By definition, a basic open set has the form

s(U1) ∩ . . . ∩ s(Ut) ∩m(V1) ∩ . . . ∩m(Vr)

(we allow the cases t = 0 or r = 0 in which there are no s’s or m’s). However

s(U1) ∩ . . . s(Ut) = s(U) U =
⋂
k

Uk

here we interpret U as X if r = 0; note that s(X) = Z. Next,

s(U) ∩m(V1) ∩ . . .m(Vr) = s(U) ∩m(V1 ∩ U) ∩ . . .m(Vr ∩ U)

so we may assume that Vk ⊆ U for each k. Finally, if Vk ⊆ Vl then m(Vk) ⊆ m(Vl) so
we can forget about Vl without affecting the union. By doing this repeatedly, we obtain a
representation in which the V ’s are pairwise incomparable.

We next prove that Z is compact, using Alexander’s subbasis theorem. Consider a
covering of Z by subbasic open sets:

Z =
⋃
i∈I

s(Ui) ∪
⋃
j∈J

m(Vj)

Write
K = X \

⋃
j∈J

Vj

Note that K ∈ Z, but K 6∈ m(Vj) for any j ∈ J so we must instead have K ∈ s(Ua) for
some a ∈ I. Thus K ⊆ Ua. Next, consider K ′ = X \ Ua ∈ Z. Note that K ′ ⊆ X \K =⋃

J Vj and K ′ is compact so K ′ ⊆
⋃

J′ Vj for some finite J ′ ⊆ J .
Now consider an arbitary element L ∈ Z. Either L ⊆ U (so L ∈ s(U)) or L ∩K ′ 6= ∅.

In the latter case we have L ∩
⋃

J′ Vj 6= ∅ so L ∩ Vj 6= ∅ for some j ∈ J ′, so L ∈ m(Vj).
Either way, we have

L ∈ s(U) ∪
⋃
J′

m(Vj)

so
s(U) ∪

⋃
J′

m(Vj) = Z

This is the required finite subcover.
Finally, we prove that Z is Hausdorff. Suppose K, L ∈ Z with K 6= L. Without loss of

generality, there is an element x ∈ K \ L. Choose disjoint open sets U and V with x ∈ U
and L ⊆ V — there was a lemma telling us that this is possible. Then K ∈ m(U) and
L ∈ s(V ) and m(U) ∩ s(V ) = ∅. Thus Z is Hausdorff.


