TOPOLOGY PROBLEM ANSWERS

NEIL STRICKLAND

(1)
(2) (a) The sets

Un,b) = {br} x {ba} x ... {bn} x [] 2
m>n

are elements of the standard basis for the product topology, and so are certainly open.
The complement of U(n, b) is the union of the sets U(n, ¢) for all the elements ¢ € 2"
for which ¢ # b. This complement is thus open, so U(n,b) is also closed.
Consider two sets V = U(n,b) and W = U(m,¢), say. Suppose wlog that n < m. If
c[n] =bthen W CV soVNW =W; otherwise VW = 0.
Suppose that V' is one of the sets in the standard subbasis for the product topology,
so V = 7, 1(b) say, for some b € 2. Then V is the union of those sets U(n,b) for
which b,, = b:

v ={J0n.b) [ b, =)

This is enough to show that the sets U(n,b) form a basis.
(b) If this were false, then we would have

U0 c |

i€Jo

ieJy
for some finite subsets Jy and J; of I. Then J = JyUJ; would be finite and we would
have
X=U(0,0uU1,1)<c|JU
icJ

contrary to the hypothesis that X is not covered by any finite subfamily of /. For
the rest of this question I shall abbreviate this to “is not finitely covered”.

(c) Suppose we have chosen (ay,...a,) € 2" such that U(n, (a1,...ay)) is not finitely
covered. By the same logic as above, one of the two sets Vy = U(n, (a1, . ..a,,0)) and
Vi =U(n, (a1,...an,1)) is not finitely covered. If Vj is finitely covered, then we take
an+1 = 1, and otherwise we take a,4+1 = 0. Continuing in this way, we choose a,, for
all n. Note that we have a definite rule for choosing a,1, so we are not using the
axiom of choice here (not that it would worry me if we were).

(d) Suppose we have chosen g as above. As U is a covering of X, we have g € U; for
some i. As U; is open and the sets U(n,b) form a basis, we have

a€U(n,b) CU;

for some n and b. As a € U(n,b), we must have b = a[n]. Thus U(n, a[n]) is contained
in the single set U;, hence certainly finitely covered, contrary to the construction.
(3) Suppose that X C R™ is such that X is disconnected. There are then subsets U and V of
R™ such that:
(a) XCcUUV
(b) XNUNV =0
() XNU#0D#AXNV
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The claim is that the corresponding statements hold when X is replaced by X. In the
first two cases, this follows trivially from the fact that X C X. For the third case, choose
z € XNU. Then z € U, so U is a neighbourhood of z. Also, € X, which means that
every neighbourhood of x meets X, so that U N X # () as required. Similarly, V N X # 0.
All this implies that X is also disconnected.

We have proved that X disconnected implies X disconnected. Equivalently, X con-
nected implies X connected.
Write ¢ for the quotient map X — Y. First, ¥ = ¢(X) is a continuous image of X and
therefore compact. Next, suppose y and y’ are distinct points of Y. Then y = ¢(x) and
y' = q(2) say, where & ¢ 2’. This means that there is a function f € A with f(z) # f(2'),
say a = f(z) < o’ = f(2). Clearly (by the definition of ~)

2~ 2 = f(2) = f(2)
so f induces a continuous map f: Y — R with fo q = f. In particular,

fy) = fla@) = f(z) =a <d = f(a) = f(a(z")) = f(y)
Thus ~
U= f"'((~o00,(a+a")/2))
and
U' = [ ((a+d')/2,00))
are disjoint neighbourhoods of 4 and 3’. Thus Y is Hausdorff.
Consider 3 R
A={flfeAtcC(Y)
This is a subalgebra, and it separates Y by the definition of ~. Because ¢ is surjective,
we have

I1£Il = sup fy)l = sup |f(q(x))| = sup|f(@)] = /]

This shows that the map f — f is an isometric isomorphism A — A. Now, A is closed in
the complete space C'(X) so A is complete. Moreover, Ais isometrically isomorphic to A
and hence complete, and hence closed in C(Y). Thus, by Stone-Weierstrass, A= C(Y).
We conclude that C(Y) is isometrically isomorphic to A.

Define a (discontinuous) function

S: C(N) — P(N) = { subsets of N}

S(f)=A{n|f(n) <1/2}
Recall that P(N) is uncountable. Suppose that A C C(N) is countable, so S(A) is also
countable and thus not the whole of P(N). Choose a set T' C N such that T # S(f) for

any f € A, and write
0 ifneT
g(n) =

1 otherwise

I claim that d(f,g) > 1/2 for any f € A, so that g ¢ A and thus A is not dense. Indeed,
if f € A then S(f) # T so either

(a) In € S(f)\T so f(n) < 1/2 and g(n) = 1.

or

(b) Ine T\ S(f)so f(n)>1/2and g(n) = 0.

This immediately implies the claim.
Write
o' ={S(K,U) | K C X compact ,U open in Y}
Let 7 and 7’ be the topologies generated by o and ¢’, so 7/ is by definition the compact-
open topology. We are required to show that 7 = 7/. Clearly o C ¢’ and therefore 7 C 7'.
We need only show that ¢’ C 7; for then 7/, being the smallest topology containing o”,
will be contained in 7.
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Consider f € S(K,U) € o/, 50 f(K) CU and K C f~1(U). As U C Y is open, it can
be written as U = |J, U; with U; € 5. The open sets f~1(U;) cover the compact set K, so
KCfYU,)u...fY(Us,)
say. By the shrinking lemma we can cover K by compact sets Ki,..., K, with K} C
fﬁl(Uik). Write
V= ﬂS(KkaUzk) eT

k
so feV.If geV then

9(K) = g JEw) = Jo(Kx) C|JUi CU
k k k

so g € S(K,U). Thus f € V C S(K,U) and V € 7, which shows that S(K,U) is a
T-neighbourhood of f. As f was an arbitary point of S(K,U) we see that S(K,U) is
7-open. Thus ¢’ C 7 as required.

Let X be a complete metric space and Y C X. Write ¢ for the isometric embedding of Y
in its canonical completion Y. The inclusion j: ¥ — X is an isometric embedding and X
is complete so there is a unique isometric embedding j : Y — X with joi=1j.

As j is continuous, j~1(Y) C Y is closed and it contains i(Y). However, i(Y) is dense
inY soj '(Y)=Y andso j(Y)CY.

On the other hand, j(?) is isometrically isomorphic to the complete metric space Y,
so it is complete. However, a complete subspace of a metric space is closed and 5(}7) oY
s0 j(Y) =Y. Thus j: Y — Y is an isometric isomorphism and thus a homeomorphism.
Fix a with 0 < a < 1 and let X be the set of contraction mappings f: [0,1] — [0,1] of
ratio a.

We want to prove that X C C[0,1] is compact, so by Arzela-Ascoli it is enough to
check that it is bounded, closed and equicontinuous. Boundedness is trivial. Moreover, X
is equilipschitz (with K = «) and hence equicontinuous.

We now need to prove that X is closed. Suppose 0 <z <y < 1. Write r =y —x. The
evaluation map

ev,: C[0,1] - R eve(f) = f(x)
is continuous. Thus
Agy =evy —evy: C[0,1] = R
is continuous and the set
Fuy = {f € CI0,1] | |f(2) = f(y)| < alz —y[} = AL, ([~ar,ar))
is closed in C[0,1]. Thus
X =A{f1 Ifl €130 () Fay
Ty
is also closed, as required.
Now consider the function
F: X —0,1]
F(f) = the unique fixed point of f
Suppose f,g € X and F(f) =z and F(g) = y. By the inequality in the last question,

d(z,z) < d(z, f(2))/(1 - )
for any z. In particular (using g(y) = y) we have,
d(z,y) <d(y, f)/(1 —a)=dg(y), f)/(1—a) < llg— fI/(1-a)

In other words,

d(F(f), F(g)) <d(f,9)/(1 —a)

This shows that F' is continuous.
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Let X be a nonempty complete metric space, and let f: X — X be a contraction mapping
with ratio a < 1, so that

d(f(x), f(y)) < ad(z,y)
Choose a = ap € X and write r = d(a, f(a)) and an41 = f(an). I claim that the
sequence (ay,,) is Cauchy. Indeed, by induction we see that

d(an7 an+1) = d(f(anfl)a f(a’n)> <ar

so if m < n we have

d(am, an) d(@pm, amy1) + - - d(an—1,an)
(@™ 4...a" Hyr
= (" =a")r/(1-a)
which easily implies the claim. Thus, as X is complete, the sequence converges to a limit
b. Moreover

<
<

f(b) = f(hm an) = hmf(an) =liman41 =b
So b is a fixed point. Suppose that ¢ is another fixed point. Then

d(b,c) = d(f(b), f(c)) < ad(b,c)
As «a < 1, this implies d(b, ¢) = 0 and thus b = ¢. Thus b is the unique fixed point.

Finally,
3 . 1—a” d a, a
d(a,b) :hﬁnd(ao,an) Shrrln — r = (1 ;f(a))

(10) As 0 lies in the interior of A, there exists € > 0 such that B(0,¢) C A.

Suppose 0 # a € A and 0 < t < 1. The claim is that B(ta, (1 —t)e) C A, so that
ta € int(A). Indeed, any point b € B(ta, (1 —t)e) can be written as b = ta+ (1 — t)u,
where |lu]| < € and so u € A. By convexity, b € A also, as claimed.

(b) The map f sending u to u/||ul is continuous except at u = 0, which by hypothesis
does not lie on the boundary of A. If we can show that it gives a bijection from
bdy(A) to S~ ! then we will be done, as a continuous bijection from a compact to
a Hausdorff space is a homeomorphism. Consider a unit vector v € S"~!. Write
B ={t>0|tve A}. This can easily be seen to be bounded, closed, convex, and
to contain [0,€). If we write b = sup B, then we conclude that B = [0,b]. Write
u =bv,so0#u € A As b is maximal, u cannot lie in the interior so it must be
on the boundary. As u/||u|| = v, our map f is surjective. All other points w with
w/||w|| = v lie on the same half-line as u. Thus, to prove injectivity we must show
that u is the unique point of intersection of this half-line with the boundary of A.
This follows immediately from the previous part of the question.

The Baire category theorem:

Let X be a compact Hausdorff space or a complete metric space. Suppose that for each

n € N the set F,, C X is closed and has empty interior. Then |J,, F;, has empty interior.

Suppose that f: [a,b] — R is continuous and injective. Write X = f([a,b]), which is
a subspace of R? and therefore Hausdorff. The map f: [a,b] — X is thus a continuous
bijection from a compact to a Hausdorff space, and hence a homeomorphism. It follows
that f gives a homeomorphism

fila, )]\ {c} — X\ {f(c)}
for any ¢ € [a,b]. Observe that [a,b] \ {c} is disconnected except when ¢ = a or ¢ = b. It
follows that X \ {z} is disconnected except when = = f(a) or = f(b).

Suppose that X has an interior point xz, so the disc B(z,e) C X for some € > 0. It
follows that X has more than two (indeed infinitely many) interior points, so it has an
interior point y # f(a), f(b). However, by the given fact, this means that X \ {y} is
connected, which contradicts what we proved above. Thus the interior of X is empty.
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Now suppose that f: R — R? is continuous. By the above, f([—n,n]) has empty
interior. By the Baire category theorem (noting that R is a complete metric space) we see

that
FR) = J f([=n,n))
has empty interior. In particular, f is not surjective. Thus, there is no continuous bijection
f: R —R2
(12) (a) Suppose that z € Y. Then 0 = d(, r) is an element of the set D = {d(z,y) | y € Y}
of nonnegative reals whose inf is d(x,Y"). Thus d(z,Y) = 0. Conversely, suppose that
d(z,Y) = 0. Then any € > 0 is not a lower bound for D (as 0 is the greatest lower
bound). This means that d(z,y) < € for some y € Y, so B(z,e) NY # (. As this
holds for all € > 0, we find that z € Y =Y.
(b) First, for each u,v € X and y € Y we have
d(u,y) < d(u,v) + d(v,y)
Taking the inf over all y € Y we obtain
d(u,Y) < d(u,v) +d(v,Y)
S0 B B
d(uv Y) - d(’U, Y) < d(u7 U)
Similarly, starting with d(v,y) < d(v,u) + d(u,y) we get
E(vv Y) - E(ua Y) < d(v,u) = d(u,v)
S0 B B
|d(u7 Y) - d(’U, Y)| < d(uv U)
This shows that the function f(u) = d(u,Y) is (Lipschitz and therefore) continuous.
(c) Tt is immediate that e(a,a) = 0 and e(a,b) = e(b,a). Thus we need only show that

e(a,c) <e(a,b)+e(b,c)

We need to separate four cases. For brevity we write P(a,b) to mean that d(a,b) <
d(a,Y) +d(b,Y) and Q(a,b) to mean that d(a,b) > d(a,Y) + d(b,Y). Note that
P(a,b) implies that e(a,b) = d(a,b), and so on.

(i) Suppose that P(a,b) and P(b,c) hold. Then

e(a,c) <d(a,c) <d(a,b) + d(b,c) = e(a,b) + e(b,c)
(ii) Suppose P(a,b) and Q(b,c). Using
d(a,Y) < d(a,b) +d(b,Y)
we get
d(a,Y) +d(c,Y)
d(a,b) +d(b,Y) +d(c,Y)
e(a,b) +e(b,c)

(iii) The case when Q(a,b) and P(b,c) hold is similar.
(iv) Suppose Q(a,b) and Q(b,c). Then

e(a,c) < d(a,Y)+d(cY)
< d(a,Y)+d(b,Y)+db,Y)+d(c,Y)
e(a,b) + e(a,c)

(d) Suppose that Y and Y are disjoint closed subsets of X. By part (b), the function
g(x) =d(x,Y) — d(z,Y”) is continuous, so the sets

U={z|g(x) <0} =g '((~00,0))
U ={z|g(z) >0} = g7 ((0,00))

e(a,c)

IN A
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are open. They are clearly disjoint, and using part (a) we see that ¥ C U and
Y'CU'.

(a) Q is a countable dense subset of R.

(b) Suppose that X C R is dense, and that we are given two continuous functions f and g
from R to R which agree on X. Write U = {z | f(x) # g(x)}. Suppose a € U. Write
€ = |f(a)—g(a)|/3. By continuity we can choose § > 0 such that |f(z) — f(a)| < € and
lg(x) — g(a)| < € whenever |z — a| < d. It is then easy to see that (a —d,a+0) C U.
This shows that U is open, and hence that F' = {z | f(z) = g(z)} is closed. As
XCFwehave X=RCF,so F=Rand f =g.

Alternatively: as R is Hausdorff, the diagonal A is closed, and f X g is continuous so
F=(fxg)~YA) is closed.

(c) Suppose that f: R — R is continuous and that f(z)+ f(y) = f(x +y) for all z and

y in R. First note that

f(0) = £(0+0) = f(0) + f(0) = £(0) = 0
f@)+ f(=z) = flz—2) = f(0) = 0= f(-2) = —f(z)

For nonnegative integers n we see by induction that

fnz) = f((n =Dz +z)=(n—-1)f(z) + f(z) = nf(z)
In fact this holds for n < 0 also, by the previous equation. Applying this with x = 1/n
we get
f(A/n) = f(1)/n

and thus, for all integers m

f(m/n) =mf(1)/n

This means that the continuous functions f and g(x) = xf(1) agree on the dense
subset Q of R, so they are the same.
Suppose X is a metric space and A C C(X). Suppose that A is equilipschitz, so there is
a constant K such that

[f(x) = f(y)| < Kd(z,y)

for all z,y € X and f € A. The claim is that A is equicontinuous. Indeed, suppose that
z € X and € > 0. Write U = B(z,¢/K) € N,. Then for f € A and y € U we have

[f(x) = f(y)] < Kd(z,y) < Ke/K =€
as required.
Let X be a space, A a subset of C(X). Write
U= U{open V C X | Aly is equicontinuous }

This is clearly an open subset of X. I claim that A|y is equicontinuous. Indeed, suppose
z € U and € > 0. Then (by the definition of U) there is an open set V' on which A|y is
equicontinuous, such that x € V' C U. Thus (by equicontinuity on V') there is a set W
open in V with x € W C V such that

feAyeW=|fy)— flz)|<e

Moreover, as W is open in V which is open in X, we see that W is open in X. This is
precisely what is required for equicontinuity on U.

Given that Aly is equicontinuous, it is clear that V is the largest open set with the
property that Aly is equicontinuous.

Consider the case X =R and A = {f,, | n > 2} where f,(x) = 2™. First, I claim that
Aly is equicontinuous where V' = (—r,r) and 0 < r < 1. Indeed, if 2,y € (—r,r) where
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r < 1 then

2" — y"| le —ylla™ "t +a" Py + .y
lz —y|(J2" |+ .y )

& — ylnr !

20z —yl/(r~t = 1)

This estimate is independent of n. It shows that A is equilipschitz and hence equicontinu-

ous on V = (—7,7). It follows that A[_; 1) is equicontinuous (as (—1,1) = {J,,(—7,7)).
Now suppose that > 1. I claim that there is no neighbourhood V' of x such that A|y

is equicontinuous. To see this, suppose y =  + u > x. Then (by the binomial expansion)

ININ A

Yyt — 2" = (x4 u)" — 2" > na" "ty
Note that nz"~! — oo as n — oo. Thus, we can only have y" — 2" < € for all n if
u = 0, i.e. if y = x. Thus, there is no neighbourhood W of x such that y € W implies
| fn(x)— fn(y)] < €for all n. In other words, A is not equicontinuous in any neighbourhood
of z. A similar argument works if z < —1.
We can prove the inequality nr"=! < 2/(r=! — 1) as follows. Write e = 771 — 1 so
r = (14 ¢)~!. Then, by the binomial expansion, we have

(1+e)" > (n—1)e

1 < 1
(I+e)» 1 = (n—1)e
Also, we assume n > 2 so n/(n — 1) < 2. Thus

Tn—l _

n
nrtTl< — <
“(n—1)

[N

Find examples of the following situations:
(a) X =Zor X ={0} or X = 0.
X =(0,1)or X =7Z.
X =(0,1) or X = 0.
X = (—oo,m)NQor {z€Q|z? <2}
{1/n|n € Z;}U{0} or the Cantor set.
X = (-00,0),Y = (0,00).
(8) Un = (—277,277).
Consider a point x € X. By Arzela-Ascoli, A is equicontinuous, so there is a neigh-
bourhood U of z such that

yeU feAd =|f(r)-fy)l<l1

I claim that U = {z}. Indeed, suppose not. Then there would be a point y # = with
y € U. By Urysohn, we could choose a continuous function f: X — [0,1] with f(z) =0
and f(y) = 1, violating the equicontinuity estimate. Thus U = {x} is open for each
x € X, so the sets {x} form an open cover of X. By compactness there is a finite subcover
{{z1},.. . {xn}}, s0 X = {x1,...2,} is finite.

(18) (a)

ccA = A
kkA kA
1WA = A
cicA = kA
ckcA = iA

Further explanation is available on request.
(b) AsU C A and U is open, we have U C iA. This implies that A = kU C kiA. On the
other hand, we have i4A C A so kiA C kA = kkU = kU = A. Thus kiA = A.
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(c) Applying the above to the case U = iB, we find that kikiB = kiB for any B.
Applying this in turn with B = ¢C we get cikikC = kikicC = kicC = cikC and thus

ikikC = ikC.
(d)

A typical set obtained from A by applying the operations i, k and c is something like

kkciccikkkciA. We use the equations ¢i = kc and ck = ic to sweep the ¢’s to the
right, and then cancel them using ¢? = identity. This leaves kkkkiiiiA. We then use
k? = k and %2 = i to eliminate repetitions, giving kiA. In the general case, we are left
with a string of alternating i’s and k’s, followed either by A or by cA. If the string
of i’s and k’s has length > 3, then we can use kiki = ki or ikik = ik to shorten it.

This leaves us with 14 possibilities:

A

iA
kA
ikA
kiA
kikA
1kiA

cA
icA
kcA
ikcA
kicA
kikcA
ikicA

The sets on the left are in some sense roughly the same size as A; they are at least
bounded if A is bounded, for example. The ones on the right are roughly the same
size as cA.

(e)
A = AgUA UAyU Ay

Ao = Qn(0,1)
A = 25\ (@N(3,4)
Ay = {6+1/n|neZy}
As = [810]\{9+1/n|neZi}
T'll draw a diagram by hand.
(19) (a)
k(AUB) = kAUkB
i(ANB) = iANiB
¢c(ANB) = cAUcB
AN(BUC) = (ANnB)U(ANC)
bcA = 0bA
kbA = bA

(b) Suppose A is closed. Then bA = ANkcA C A, so ibA CiA. On the other hand,
1bA C bA = ANkcA C kcA = ciA

Thus ibA C tANciA = 0, so ibA = (). This implies that bbA = kbA N kcbA =
bA N cibA = bA.
(c) For general A, we know that B = bA is closed so by part (b) b>B = bB, in other
words b3 A = b2 A.
(d)
A=Q DbA=R b’A=0

(e) For any A we have bA = kANciA = kA\iA, and it is always the case that iA C A C
kA. From this we deduce that bA = () iff iA = A = kA iff A is both open and closed.
If X = R, this in turn implies that A = §) or A = R — this will be proved in class.
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Suppose X is Hausdorff, and € X. Suppose y # x. Then there are disjoint neighbour-
hoods U and V of  and y. In particular, V N {z} = 0, so that y is not a closure point of
{z}. Tt follows that {z} is closed. If F C X is finite, then it is a finite union of one point
sets (which are closed) and so is closed.

The space Y described in the problem is a metric space, and thus Hausdorff. If f, g €
Y and f # g then d = d(f,g) > 0 and the sets B(f,d/2) and B(g,d/2) are disjoint
neighbourhoods of f and g.

Given 0 < § < 1, consider the function

1 if 2 <6/2
fs(@)=¢2-2t/5 if§/2<x<$
0 ifo<zx

This is continuous, and satisfies f5 ~ 1 but

dfs0) = [ 1fstoldt = 35/4 <8

Now write X = Y/ ~ and let ¢: Y — X be the usual quotient map. Suppose that
U CY is a neighbourhood of ¢(0). Then U’ = ¢~*(U) is a neighbourhood of 0 in Y, so it
contains a ball B(0,0) ={f €Y | [|f| <d}. In particular, f5 € U’, so q(f) € U. On the
other hand, as f ~ 1 we have ¢(1) = ¢(f). Thus, every neighbourhood of ¢(0) contains
q(1). Tt clearly follows that we cannot have disjoint neighbourhoods of ¢(0) and ¢(1), so
that X is not Hausdorff.

The set X is called the set of germs of continuous functions on [0, 1] at 0. It is a very
useful set to consider, although the topology used in this question is of course perverse,
immoral and contrary to reason.

If 7 denotes the identity function on Y, then

fxi: XxY—->YxY
is continuous. As Y is Hausdorff, the diagonal A = {(y,y) |y € Y} is closed in Y x Y.
The preimage (f x i)7*(A) is thus closed in X x Y. This preimage is just
{(z,9) | f(z) =i(y) =y} ={(z, f(z) | v € X} =T(f)
This shows that a continuous map to a Hausdorff space has closed graph. For a coun-
terexample to the converse, define f: R — R by

1/zifx #0
€Tr) =
/(@) {0 ifx=0
This is clearly not continuous. The graph can also be described as

I'(f) =Y U{(0,0)} Y ={(z,y) | oy =1}
The multiplication map p: R? — R is continuous, so Y = p~1{1} is closed, so ['(f) is
closed.
First, note that f(f(z)) = z for all 2, so f has inverse f and is a bijection.
We need only check continuity of f at 0 and co — we are allowed to assume it elsewhere.
The basic neighbourhoods of f(0) = oo are the sets

Ve={z€C||z| > R} U{co}
The preimage is
fYVr)={weC||lw <R}
which is certainly a neighbourhood of 0. Similarly, the preimage of a basic neighbourhood
{z | |z| < €} of 0 is the neighbourhood V; /. of co. It follows that f is continuous, and thus

that f~' = f is continuous, and thus that f is a homeomorphism.
Next, we define two open subsets of S3:

Uo = {(z,w) € 8 | w # 0}
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Uso = {(z,w) € S® | 2 # 0}

Because

(z,w) €SP = 2P+ |wP=1=2#00rw#0
we see that Uy UU; = S3. Tt is thus enough to check that the restrictions g|y, and g|r,
are continuous. If we write 1 for the identity map of C and suppress mention of inclusion
maps, we have

glu, =mo (1 x h)
glu, = fomo(hx1)

which shows that the restrictions of g are continuous as required.

First, the map i,: y — (z,v) is clearly continuous, so k#(z) = k o i, is continuous.
Next, suppose given z € [0,1] and € > 0. Write

U={(y,2) € 0,1 | |k(y, 2) — k(z,2)| < ¢}
Clearly {x} x [0,1] C U. Thus, by the tube lemma, there is a neighbourhood V" of  such
that V' x [0,1] C U. Thus, for y € V and any z we have

K (y)(2) — K (2)(2)] = |k(y, 2) — (@, 2)| < e
so ||k¥ (x) — k¥ (y)|| < e. This shows that k% is continuous.
Now define
K: C[0,1] — CI0,1]

/kxy

1
/0 k(z, 2)u(z) — k(y, 2)u(z)dz

We have
[(Ku)(z) — (Ku)(y)| =

IN

1
/O [k# (2)(2) = k* (y)(2)[Ju(2)|dz
1K% () = &% () [l

Fix u € C[0,1]. Given = and € > 0 we can find a neighbourhood V of = such that
y eV = [Ik* (@) — k¥ (y)]| < e/llull = |[(Ku)(@) - (Ku)(y)| < e

This shows that Ku is continuous.
Now let u vary. Write

[kl = max{[k(z,y)| | =,y € [0,1]}

IN

which is well-defined and finite because [0, 1]? is compact and k is continuous. We have

|(Ku)(z) — (Kv)(z)| < /0 [k (2, y)lluly) — v(y)|dy < [|k][[lu —of

This shows that K is Lipschitz and thus continuous.

1

(f(S) —g(s))(s +1)*ds

[Kf(t) — Kg(t)|

IN

/|f 9)l(s + t)2ds

< / 41£(s) — g(s)|ds

< A4[f =yl
This shows that ||[Kf — Kg| < 4]||f — ¢gl|, so K is lipschitz and thus continuous.
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Next, write
B={feX | |fll<1}

We need to prove that V' N B is closed, bounded and equicontinuous, so we can apply
the Arzela-Ascoli theorem to show that it is compact.

The set B is clearly closed and bounded. The set V is also closed, because it is the
preimage of the closed set {0} under the continuous map K — id. Thus V N B is closed
and bounded.

Next, observe that

(s+8)2—(s+t)2|=2t+2 =2 —t°| =2+t + 1|t —t/| <4lt — |

SO

K f() — Kf(t)] < / (5 1)% — (s + )2 f(s)|ds < 4]t — ¢/ / F(s)lds < 4l — ¢ f]

(26)

(27)

In particular, for f € B we have
(K f(t) = Kf()] <4t =]
Thus for f € VN B (so f = Kf) we have
[f(t) = fE)] < 4ft —#']

This shows that the family V' N B is equilipschitz and thus equicontinuous.

No. Let X be the discrete space N, which is locally connected ({n} is a connected neigh-
bourhood of n contained in every neighbourhood of n). Let Y be {1/n | n € Z+} U {0}.
The map f: X — Y defined by

f(n):{o ifn=0

1/n ifn>0

is surjective and continuous (trivially, because N is discrete). The point 0 € Y has no

connected neighbourhoods, so Y is not locally connected.

(a) Suppose that U C R"™ is open. Any subspace of a Hausdorff space is Hausdorff,
and any subspace of a second countable space is second countable, so the first two
conditions are trivial. Suppose x € U, so there is some basic neighbourhood

zeV=(x1—€ex14+€¢)X...x(xy, —€,2, +€) CU

There is then a homeomorphism V' — R™ constructed in the obvious way from the
homeomorphism

(—e,6) = R y—y/(€—y°)

Now suppose that M is a manifold and N C M is open. Then N is again Hausdorff
and second countable for the same reasons. Suppose x € N. Choose a neighbourhood
U of x in M homeomorphic to R™, so N N U is homeomorphic to an open subset of
R™ and thus contains a neighbourhood V' of z homeomorphic to all of R™. Thus N
is a manifold.

(b) Suppose that M is a manifold and N C M is a component. First, note that M is
locally euclidean and hence locally path-connected and hence locally connected. It
follows that the components (such as N) are open, so they are manifolds by the last
part. Moreover, N is connected because it is a component. However, a connected
and locally path connected space is path connected. Thus N is a path connected
manifold.

(¢) Suppose x € M. Choose a neighbourhood U of  and a homeomorphism f: R" — U.
We may assume f(0) = x (else consider g(u) = f(a + u) where f(a) = x). Write
B={zeR"||z| <1} and W = f(B). As f: R — U is a homeomorphism, W is
open in U and hence open in M (as U is).
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Note that B is compact so f(B) is compact and thus closed. It also contains W =
f(B),so f(B) 2 f(B) = W. This shows that W is compact. Thus W is a precompact
neighbourhood of z. Thus M is locally compact.

It follows that M is locally compact, Hausdorff and second countable. Such a space
is always paracompact.

The space Q is Hausdorff and second countable but not locally euclidean (because
not locally connected, for example).

Consider an uncountable set X with the discrete topology. Then X is Hausdorff and
locally homeomorphic to R?, but is not second countable. If you don’t like n = 0,
take X x R.

Finally, consider the “line with two zeros”:

Y =Rx {-1,1}/ ~

(s,—1) ~ (s,1) unless s =0

The points consist of equivalence classes [(s,—1)] = [(s,1)] for s # 0 (which I'll just
write as s) and the points 04 = [(0,1)] and 0_ = [(0,—1)]. I proved in class that YV’
is not Hausdorff (because 04 and 0_ cannot be separated). However, you can check
that
q: (a,0) x {1} — q((a,b) x {1})

and

q: (a,b) x {=1} — q((a,b) x {-1})
are homeomorphisms and that the images are open in Y. It follows easily from this
that Y is second countable (take a,b € Q) and locally euclidean.
Given a matrix M = {my;}, we write 75 (M) = my;. We topologise the space M,
as a product of n? copies of R, so the projections m;: M, — R are continuous.
As sums, products and constant multiples of continuous functions are again so, it
follows that any function we can build from the projections by such steps will be
continuous. The determinant is certainly such a function (in the case n = 2, we have
det = 11722 — 12721, for example).

A matrix M is invertible iff det(M) # 0. We define
GL} = {M | det(M) > 0}
GL,, = {M | det(M) < 0}

These sets are open because det is continuous, and GLT U GL~ = GL. Moreover,
both are nonempty — the identity matrix is in GLT and the matrix which is like the
identity but with a single 1 changed to a —1 is in GL™.

Here is a sketch proof that the complex matrix group GL, (C) is connected; a similar
proof can be given that GL; is connected. Suppose that M is an n X n invertible
complex matrix. Suppose first for simplicity that M has n distinct eigenvalues, which
are neccessarily nonzero as det(M) # 0. They can thus be written as e** for k =
1...n. By the usual results of linear algebra, M can be written as A=1D(1)A for
some matrix A, where D(t) is the diagonal matrix with entries e!®*. The matrices
A7ID(t)A form a path between the identity matrix and M as t varies from 0 to
1. If M does not have n distinct eigenvalues, then we can still find a matrix D in
Jordan canonical form and another matrix A with M = A='DA. By looking at the
definition of a Jordan canonical form, we see that we can change D (and hence M)
by an arbitarily small amount and make it have distinct eigenvalues. This shows that
the set of matrices with distinct nonzero eigenvalues is dense in GL,,(C). Using the
fact that the closure of a connected set is connected, we can complete the proof.
Suppose that M = (24) € SO;. Then

_ T _ _ [ a®+b* actbd
(39 =mM"=(2) (0) = (s 5T
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and
det(M) =ad —bc=1
Using the resulting relations a? + b? = 1 and ¢? 4+ d? = 1 we get
(a—d?+(b+c))=a> +d>+b>+c* —2(ad — bc) =0

This implies that d = a and ¢ = —b, so M = (_“b Z) We can now use the criteria for
maps to products and subspaces to see that the map SOy — S' = {(z,y) | 22+ =
1} sending M to (a,b) is a homeomorphism.

The map f: M,, — M,, defined by f(A) = AT A is continuous. Indeed, the composites
g o f are given by

(mr o f)(M) = Zmikmil = (Z mmu) (M)

This is continuous by the usual argument about continuity of algebraic operations. By
the criterion for maps to a product space, f itself is continuous. Thus O,, = f~1{I} is
closed. Moreover, by looking at the diagonal entries in AT A we see that > m2, =1
so |myk| <1 for all ¢ and k. Thus O,, is compact.

Suppose ||z|]| < 1. Write @ = max{Ay } and y = Az, so

Yk = Z Apa
3

lyi| < Z |Aizi| < namax{z;} < na
k

lyl* = vk < n(na)® =na®
lyll < n*a

50 ||Allop < n?/?||Al|oe. This is all terribly crude, but it will do.
Given two matrices A and B, we have

I(A+ B)z| = || Az + Bz|| < || Az + || Bz||

Taking the least upper bound as x ranges over vectors of norm at most one, we find
that
[A+ Bllop < [|Allop + | Bllop
SO
[Allop = A = B+ Bllop < [|A = Bllop + | Bllop
hence (using also the inequality with A and B exchanged)

| 14llop = 1Bllop | < |A = Bllop < n*/?[|A — Bl

This shows that || Al|sp is a continuous function of A.

First, recall a statement of Rouché’s theorem: if f and g are entire analytic functions
and |f(z) — g(z)| < |f(2)| for all z on some closed contour I', then f and g have the
same number of zeros (counted by multiplicity) inside T'.

Let p(M, t) denote the characteristic polynomial det(M —tI) of M. The function from
M, x C to C sending (M, z) to p(M, z) is continuous. Suppose that the eigenvalues
of M are \q,... A\, with multiplicities vy, ...v,,. Given € > 0, construct a contour I'
consisting of small circles of radius less than epsilon, with one circle surrounding each
eigenvalue and not touching any other circle or winding around any other eigenvalue.
Let U denote the set of pairs (N, z) such that [p(N, z) —p(M, z)| < |[p(M, z)|. This is
open and contains {M } xI". Note that I" is compact. By “Step 1”7 on p.168, there is a
neighbourhood V' of M such that V' x~y C U. This implies via Rouché’s theorem that
for each NV € V, the matrix N has the same number of eigenvalues inside each circle
of I' as M has. This implies in turn that each eigenvalue of N lies within distance e
of an eigenvalue of M, and vice versa. It follows that |[r(M) — r(N)| < e.
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’ﬂ

(29) Suppose that f(z) = ag + ...a,2™ is a nonconstant complex polynomial of degree n (so
n > 0 and a, # 0).

(a)

Let D C C be open. The collection of those balls
B(z,e) ={weC| |z—w|<¢€}

which happen to be contained in D form a basis for the topology on D. These balls
are all convex hence path connected hence connected. Thus D is locally connected.
This implies that the components of D are open in D (and hence open in C, although
this is not immediately relevant). The complement of a component is the union of all
the other components, hence open in D. Thus each component is also closed in D.
K closed and bounded < K compact = f(K) compact < f(K) closed and bounded.
Write

K = max(1, (2|a, )"/, 2|a,|~ Z lak])

k<n

For |z| > max(1,2[a,|~' ", _,, lak|) we have

@) 2 lanll=” = laxl2]* > Jan]|2["/2
k<n
and so for |z| > K we have |f(z)| > 1, as required.
On the other hand, by part (b) we know that f({z | |z| < K}) is bounded, so that
there exists L > 0 such that |z] < K = |f(z)| < L and thus

lf(2)| > L=|z| >K

again as required.

By the previous part, V contains the set E = {z € C| |z| > K}. As F is connected,
it is contained in one of the components of V. As E is unbounded, this means that
V has at least one unbounded component.

Next, suppose that W and W’ are unbounded components of V. Then W NE #
because W is unbounded. As E is connected, this implies £ C W. Similarly E C W',
and thus WNW’ D E # (. As the components of V' form a partition of V, this implies
that W = W’. Thus V has precisely one unbounded component.

Suppose that W is a bounded component of V. Then by (a), W is open and closed
in V.

W is contained in the closed set f~! ( f (VV))7 so W is also contained in this set, so

fW) C fW).

On the other hand, W is compact, so f(W) is closed and contains f(W), so f(W) C
f(W). Thus

fW)=fw)
You can check that

fW)NU = fWnf i U)=fwnv)

(this is purely set theoretic, not involving any topology). On the other hand, W is
closed in V so W NV =W. We conclude that

fW)nU = f(W)

as required.

This shows that f(W) is closed in U. Also, W is open in V and thus in C, and
f: € — C is an open mapping, so f(W) is open in U. On the other hand, U =
{#z | |2| > 1} is easily seen to be connected, so the open and closed set f(WW)
can only be () or U. The former is excluded because W is a component and therefore
nonempty. Thus f(W) = U. However, f(W) C f(W) which we have seen is bounded.
This contradiction shows that V' cannot have any bounded components. Combining
this with (d), we see that V' has precisely one component and is therefore connected.
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(f) Write V, = {2z | |fa(2)| > 2}, so that M¢ =J,, V,,. By the above, V,, is connected
for each n. Moreover, there are constants K, such that |z| > K,, = z € V,,. From
this we see that V;,, NV, # () for each n and m. Thus M€ is the union of a family of
connected sets, any pair of which intersect, so it is itself connected.

(30) Given a complex number c, define ¢q.(z) = 22 + ¢ and

fn(e) = qege(ge - - - (0)...))
where ¢, is applied n times. In other words:
fo(C) =0
frt1(e) = ge(fule)) = fn(c)2 +c

In particular:

file) = ¢
o) = e
fa(e) = 42+ +ec

We see by induction using the formula f,1(c) = f.(c)? + ¢ that f, is continuous for all
n. It is also true that the function

Gen(2) = qelge(. - (2)--.))
is a continuous function of z, but this is a different thing.
The Mandelbrot set M is defined as
M ={ceC||fn(c)| <2 for all n}

This is bounded because if ¢ € M then (by the case n = 1) we have |c¢| < 2. If we write
B ={z||z] <2} then M can also be described as

M=(\f"(B)

As B is closed and f,, is continuous, we see that f,,1(B) is closed. Thus M is an intersection
of closed sets and hence closed.

(32) (a) Yes.
(b) No. The triangle inequality M2 fails for x = —1, y = 0, z = 1 for example.
(¢) Yes. To prove this, it helps to show first that

d(z,y) = min(|lz — y[, 1)

gives a metric on R (in fact, it induces the same topology as the usual metric). This
is theorem 9.1 in the book.
(d) This is certainly not a metric space, as we have

4((1,0,(0,1)) = 0 but (1,0) # (0,1)
contrary to axiom M3. It is not even a pseudometric space, as the triangle inequality
fails for z = (0,0), y = (1,0) and z = (1,1).
(e) Yes.
(f) No. The triangle inequality fails for z =0, y =1 and z = 3.
(33) Let ey be the k’th basis vector (0,...,1,...0) and write a; = |leg||. Then

lzll =11 wrerl < Y lealllexll = Y lanlan

[z = [yl < llz = yll <Y |2 — yrlax
k
It follows that |n(y) — n(z)| < € provided that

y e [[(xr— 6,2k +0)
i
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where
0= 6/ Zak
k

This shows that n is continuous for the product topology.

Next, recall that the sphere S~ = {z | ||z||2 = 1} is compact in the product topology.
It follows that n is bounded on S 71, say n(x) < K for z € S"~1. More generally, if z # 0
then z/||z||2 € S"~! so

n(x)/|lzllz = n(z/|zll2) < K
SO
n(z) < K|z|
This also holds for = = 0, of course.
Moreover, n(z) > 0 for z € S"! (because ||z|] = 0 = z = 0) so 1/n(x) is also
continuous and thus bounded on S"~!. We deduce that
n(x) ' <kt for z € S"71
kllz|l2 < n(z) for all =
It follows that the identity maps
(Rnad) - (andQ) - (Rn7d)
are both Lipschitz and therefore continuous, in other words that the two topologies are

the same.
Suppose X is compact Hausdorff, and K, L are disjoint closed subsets. For z € K write

Vo={Ver|zgV}

Suppose y € L, so y # x. As X is Hausdorff, there are disjoint neighbourhoods U and V'
of z and y. AsUNV =), we see that x ¢ V and thus V € V,. Note also that y € V; this

shows that
Lc v

VeV,
It follows that there are sets Vi,...V, € V, such that

Lcv=|JW
k=1
moreover .
zeU=X\Vi)=X\JVe=X\V

k=1

Also, if y € L then V is a neighbourhood of y and V NU = §; thus U N L = §.
Next, we define -

U={Uer|UNL=0}

The above shows that U covers K, so

KcU=|Ju U el
1=1
say. We can then take

v =X\
=1

We find that K CU, L CV and UNV = () as required.
In these cases Y is open in X:
(a) X =R, Y=R\Z={zeR|xgZ}
() X=0Q, Y =0n[-v2,v2
© X={1/nln€Zi), ¥ ={/nt1)|nez)
(d) X=100,1]U[2,3, Y =][0,1]
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Note that in the second case Y = (fﬁ, \/5) NQ.
In these cases Y is not open in X:
(a) X =1[-1,1], Y =[0,1]
(b) X =R, Y={xeR|z#1/nforanyn € Z,}
In both cases 0 is a non-interior point of Y.

(36) (a) No. If the range of a function f: R — R is finite then f(F') is finite and hence closed
for every closed set F' C R (indeed, for every subset F' C R whatsoever). However, f
certainly need not be continuous; take for example f(z) =0 for < 0 and f(z) =1
for x > 0.

(b) No. For example if f(x) = sin(x) then f(R) is not open, so f is not open.

(c) Yes. If f: X — Y is a homeomorphism, then g = f~*: ¥ — X is continuous. Thus,
if F C X is closed then f(F) = g~ !(F) is closed in Y.

(d) No. If f(z) = e~* then f(R) = (0, 00) is not closed in R, so f: R — R is not a closed
mapping.

(e) Yes. Suppose that X and Y are compact Hausdorff and that f: X — Y is continuous.
Then, if F C X is closed then it is compact, so f(F') is compact. As a compact subset
of a Hausdorff space, f(F') must be closed.

(37) The metric is derived from the norm

[ull = [lulloe = sup{lu(z)| | z € X}
Thus, if u € C(Y') then
If Il = sup{[f*(u)(z) | z € X}
= sup{lu(f(z))| |z € X}
< sup{lu(y)| |y € Y} = [lull

Noting also that f*(u —v) = f*(u) — f*(v), we find that d(f*(u), f*(v)) < d(u,v). This
implies that f* is continuous.
It is also easy to see that the norm function

n: C(X) ~ R n(uw) = [l

A

is continuous. This follows from the reversed triangle inequality:
[n(u) = n(v)] < d(u,v)

Now consider Y = {(z,2') € X? | d(z,2") < €}. There are two continuous projection
maps 7o, m1: Y — X. We have

osce(u) = n(mg(u) — 71 (u))

which shows that osc, is continuous.

We next want to show that (J ., U(e,d) = C(X). Consider u € C(X); we need to find
€ > 0 such that osce(u) < §. This just means that « is uniformly continuous. A proof in
the spirit of this problem is as follows. Write

K ={(z,2") € X*| |u(z) — u(a’)| > 5}
The image d(K) under the distance map d: X2 — R is compact and does not contain 0, so
d(K)N[0,e) = 0 for some € > 0. Thus d(z,z’) < e implies |u(z) —u(z’)| < § as required.
(38) (a) First, Zj, is a metric space and therefore Hausdorff. The subspace Z is dense, so for
compactness it is sufficient to prove that Z is totally bounded, in other words that it

has a finite e-net for every € > 0. For this, choose n such that p™ < e. Any integer
m is congruent modulo p™ to a number [ with 0 < < p™:

m = kp" +1 keZ 0<Il<p"
Thus d(m,l) = |kp™| < p~™ < e. This shows that {0,1,2,...p™ — 1} is an e-net.
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First, we must prove that ~ is an equivalence relation. This is trivial once we remark
that

n~pm < n—mis divisible by p*
Consider the space Z/ ~,= Z/p*. If a = [n];, € Z/p"* then

qlzl{a} ={meZ|me~pn}= B(n,pl_k)

This shows that qk_l{a} is open, so {a} is open in the quotient topology. As the
points are open, the space is discrete. By the argument of the previous question,
Z/p* = {0k, [P" — s}

which is finite.

The apparent problem with the definition r([n]x) = [n]x—1 is that we might have
a = [n]x = [m]x € Z/p* and then we would have two potentially different definitions
ri(a) = [n]r—1 and ri(a) = [m]k—1. Of course, they are not really different:

[n]k = [m]x & v(n —m) > k=0v(n—m)>k—1s [nlp_1=[m]r—1

We next consider the space

X={a|Vk>0 r(ax)=ar1}C []2/p"
keN
If a,b € X and a # b then for some k we have aj # by. Thus 7, '{ap} N X
and w;l{bk} N X are disjoint neighbourhoods of a and b. Thus X is Hausdorff.
Alternatively, we could just quote the fact that products and subspaces of Hausdorff
spaces are Hausdorff.

The infinite product is compact by Tychonov, so we need only show that the subspace
X is closed. Suppose a € [], Z/p* but a ¢ X. Then ri(ay) # ay_1 for some k. Write

U =m Har} Nty {ar—1}
This is a neighbourhood of a. Moreover, if b € U then
rx(bx) = rr(ar) # ax—1 = br_1

so b ¢ X. Thus X is closed in a compact space and thus compact.

Next, we consider the sets
Ur(c) =m, {eyNX ={a€ X |ay=c}

As the sets 7, '{c} form (by definition) a subbasis for the product topology, it is
immediate that the sets Uy (c) form a subbasis for the topology on X as a subspace
of the product. The claim is that they are not merely a subbasis but a basis.
Consider V = Ug(c) NU;(b), with k <[ say. Note that a € V iff ar, = ¢ and a; = b.
For a € X we have

ar = Tk41(ar+1) = Tep1Te42 - - - ri(ar)

This shows that V' = Uy(b) if 7g417k42...7(b) = ¢ and V = () otherwise. Thus, a
finite intersection of sets in our subbasis either lies again in the subbasis or is empty.
It follows easily that the subbasis is really a basis.

Suppose a,b € X and that a; = by,. Working downwards using ax_1 = rr(ax) ete.
we deduce that a; = b; for all [ < k.

Suppose that a € X and p~™ < ¢ < p'~". It is immediate from the definitions and
the above remark that

be Bla,e) <esIm>nby, =am < b, =a, & beUy(an)
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This shows that B(a,€) = U,(a,), and thus that the basis constructed previously is
precisely the set of open balls. It follows that the metric topology is the same as the
previous one.

(¢) Define f: Z — X by f(n) = ([n]x)ren. We then have
v(f(n)) = v(n)
[f(n)] = |n|
d(f(n), f(m)) = d(n,m)
so f is an isometric embedding. Moreover, X is compact and thus complete. By gen-
eral results about completion, there is an isometric embedding f: Z, — X extending
f.
Consider a basic open set V' = Uy (c), where ¢ = [n] € Z/p* say. Then f(n) € V. It
follows that f(Z) is dense in Z,,. A fortiori, f(Z,) is dense. On the other hand, Z, is

compact so f(Zp) is compact and thus closed. This means that f(Zp) =X, so f is
surjective. As it is isometric, it is injective:

v #y e 0#day) =d(f(2),f(y) & f2) # [y)

it also follows easily that the inverse is an isometry:

d(f~Hx), 7 (y) = d(ffH (@), Ff () = dla,y)
It follows that the inverse is continuous and thus f is a homeomorphism.

The set V' = (0, €) x [—m, 7] is connected, because intervals in R are connected and products
of connected sets are connected.

The set U is the image of V under the continuous map (r,6) — a + (rcosf,rsind).
Continuous images of connected sets are connected, so U is connected.

Suppose that X C R? is connected and a € int(X). Write Y = X \ {a}, and choose
€ > 0 such that

U ={b|dab) <e} CX
SO
U={b|0<d(a,b)<e} CY

Suppose that (A, B) is a separation of Y, so A and B are open in Y and are disjoint,
and AUB =Y. Then (ANU,BNU) is a separation of the connected set U, hence
is trivial. Without loss of generality, we may assume U C A and U N B = (. Write
A= AUU = AU{a}. Note that Y is open in X and thus A, B and A’ are open in
X. Moreover, AANB = ( and A’ UB = X, so (A, B) is a separation of X. As X is
connected and A’ D U’ # () we see that B = (). Thus, every separation of Y is trivial and
Y is connected.
Suppose that X is locally compact Hausdorff and second countable, with a countable basis
0 say. Write

B ={U € 3| U is compact }

This is a countable collection of precompact open sets; I claim it covers X. Indeed, suppose
x € X. Then as X is locally compact, there is a neighbourhood W of x such that W is
compact. As 3 is a basis, there is a set U € 8 with z € U C W. As U is closed in W, it
is compact, so U € /. Thus, for any x there is a set U € 3 with z € U as claimed.

Now enumerate 3’ as 5’ = {V,, | n > 0}. We shall define recursively precompact open
sets U,, such that

VngUngﬁngUn+l

Indeed, we can take Uy = (. Suppose we have defined sets Uy, ...U, satisfying the
requirements. Then U, is compact and covered by /3’ (as the whole space is) so

mngIU...Vk

m

say. We take
Upt1 =V UV, ULV
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and observe that this is precompact because each Vj is.
This procedure gives us U, for all n. As V,, C U, and the V,, cover X, we see that
U,, Un = X as required. O
We next quote the theorem that X is paracompact and hence normal.
We define the narrow and wide bands

Yn :Uin\Unfl

Ln = n+1 \ Un_2
Note that Z,, N Z,, = 0 if [n —m| > 3. We also choose (using normality) open sets Z,,
with Y, C Z! C Z! C Z,,.
As X is normal, Urysohn’s lemma applies. This gives us a function
bn: X — [0,n]

with ¢, = 0 on Z.° and ¢,, = n on Y,,. This means that supp(¢,) C Z/, C Z,, and in
particular that the family of supports is locally finite. This means that

¢:Z¢n

is continuous. I claim that it is also proper. Indeed, suppose that K C R is compact,
so K C [-n,n] say. As ¢ > ¢, = m on Yy, we see that ¢~ 1(K) C Y; U...Y, which is
compact. Moreover, ¢~!(K) is closed by continuity. As a closed subset of a compact set,
it is itself compact.

Contemplate the construction which assigns to a set C' C C'(X) the set

C'=CU{f+glfgeCyu{fglf,geC}

Note in particular that C’ is countable if C is.
Suppose B C C(X) is countable. Define recursively

Co=QUB
Cn+1:C;LQCn
A=Jcn

n=0

I claim that A is a Q-algebra. Indeed, Q C Cy C A. Moreover, if f,g € A then f,g € C,
for some n and so f + g, fg € Cry1 € A. Also, each C,, is countable (by induction) so A
is countable. Thus A is a countable Q-algebra containing B, as required.

Now let X be a compact metric space which has a countable dense subset Y. Write
dy(z) =d(y,x), so dy € C(X). Write

B={dy|yeY}

(so B is a countable subset of C'(X)).

I claim that B C C(X) is separating. Indeed, suppose u,v € X and u # v, so
e =d(u,v)/2 > 0. As Y is dense, there is a point y € Y N B(u,€). Then

dy(u) = d(y,u) <e
dy(v) =d(v,y) > d(v,u) —d(u,y) = 2e — d(u,y) > €
so dy(u) # dy(v) as required.

Let A be a countable Q-algebra containing B. Then A is a ring (see the proof that the
closure of a R-algebra is a R-algebra) and contains Q = R. Thus A4 is a closed separating
R-algebra. By Stone-Weierstrass, it is all of C'(X). Thus A is a countable dense subset of
C(X).

A popular error is to suppose that X need not be a metric space. One chooses a
countable dense subset Y, uses Urysohn’s lemma to choose a countable set B of functions
separating any pair of points in Y and then argues as above. However, B need not separate
the points of X. For example, take X = [0,1] and B = {f € C[0,1] | f(0) = f(1)}. Then B
separates the points of the dense subset (0, 1), but does not separate 0 from 1. This shows
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that we need to use functions of the special form indicated above. The result is false for
non-metric spaces, the simplest example being X = SN, the Stone-Cech compactification
of the discrete space N. You can read about this in the book if you are interested.

We need to prove that the relation ~ is reflexive, symmetric and transitive. The first two
are immediate. For transitivity, suppose that  ~ y and y ~ z. Suppose that X = AU B
is a separation into disjoint open sets. By assumption either z,y € A or z,y € B, and also
either y,z € A or y,z € B. On the other hand, A and B are disjoint so it cannot happen
that y € A and y € B; thus the only possibilities are z,y,z € A or x,y,z € B. In either
case, ¢ and z lie in the same half of the partition. Thus x ~ z as required.

The quasicomponent C' containing x is the set of points y such that for every open and
closed set A containing x, we also have y € A. In other words,

C= ﬂ{A | z € A and A is open and closed}

This is the intersection of a family of closed sets, hence is closed.

Now write x = y if there is a connected set containing x and y, so the ~-equivalence
classes are by definition the components. Suppose that = ~ y, say z,y € Z with Z C X
connected. Consider a separation X = A U B as before. Then the separation Z =
(ZNA)U (Z N B) is trivial, so wlog ZN B = and so Z C A. Thus z,y € A. As this
happens for every separation X = AU B, we see that x ~ y. It follows that the component
D = {y | y = x} containing x is a subset of the quasicomponent C = {y | y ~ x}. Thus
every component is contained in a quasicomponent, as claimed.

I know of no natural examples in which the components and quasicomponents are
different, but I can show you a contrived example if you insist. You can show that if the
components are open then they are the same as the quasicomponents, and that this in
turn holds whenever the space is locally connected or has only finitely many components.

(a) The function f(z) = x/(1 — 2?) is an order preserving bijection between the interval
(—1,1) and the real line (see p. 105). By defining f(—1) = —oco and f(1) = oo we
obtain an order preserving bijection between [—1,1] and X. Both spaces have the
order topology, so this is a homeomorphism. Thus X is compact and Hausdorff.

(b) Suppose that F' C R is closed. Note that the subspace topology on R as a subspace
of X is the usual topology. Write F for the closure of F in X. Then the closure of
F in R (which is just F') is F N R. This shows that F C F U {0}, and hence that
FU{#+oo} = FU{#o0} is closed. As a closed subspace of a compact Hausdorff space,
it is thus compact.

(¢) Suppose that p(z) = >}, apz® is a polynomial function. If p is constant then the
question is trivial, so we may assume that n > 0 and that a, # 0. For definiteness,
suppose that n is odd and a, > 0; the other three cases are treated similarly. We
define p(—o0) = —oo and p(+00) = 400, and of course p(x) = p(x) for finite .
Because p is continuous and p(z) — oo as * — oo, we see that for every K > 0 the
preimage U = p~1(K,00) is open in R and contains some set (L,cc). This implies
that

(K, oc]) = U U (L,oq]
which is open in X. Similarly for p~*([—o00, K)). As the sets [K,o00) and [—o0, K)
form a subbasis for the order topology, this means that p is continuous.

(d) Suppose F' C R is closed. Write G = F'U {£o0}, which we have shown is compact.
It follows that p(G) is compact, and thus that p(G) NR is closed in R. On the other
hand, it is easy to see that p(G) NR = p(F).

(a) It is trivial that ) and R* are closed. Suppose that F; is closed for all i € I, and
that F' = ﬂie ; F;. For each n, we know that the intersections F; NR,, are closed in
the usual topology on R™. The same is thus true of the intersection of this family of
sets, which is just F'NR™. As this holds for all n, we see that F' is closed in R*> as
required. A similar argument shows that finite unions of closed sets are closed.
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(b) The closed sets in the subspace topology are the sets G = F N R™ where F is closed
in R*>. By definition of the topology on R*°, these sets G are closed in the usual
topology on R™. Conversely, if a set ' C R™ is closed in the usual topology then it
is easy to see that it is also closed in R*® and hence in the subspace topology on R™.

(¢) Suppose that z,y € R* and x # y. For some k we have xy # yi, say zp < a < Yg.
The sets U = {z € R® | 2z, < a} and V = {z € R*® | z;, > a} are open and disjoint,
and z € U and y € V. Thus R* is Hausdorff.

(d) Suppose F' C R* is such that F N R™ is finite for each n. It is clear from the
definitions that F' is closed in R*°. The same applies by the same argument to any
subset G C F. Thus, every subset of F'is closed in F, so also every subset is open in
F. That is, F' is discrete.

(e) Suppose X C R* is compact. Consider a subset F' of X as described. By construc-
tion, F'NR"™ contains at most n points. Thus, by the previous part, F' is discrete. It
is also a closed subset of the compact set X, and thus compact. The one point sets
{z} for x € F thus form an open cover of F, so compactness implies that F is finite.
Looking back at the definition of F', this implies that X C R™ for some n.

(46) Let X be a space and ~ an equivalence realtion on X. Consider the map ¢: X — X/ ~

defined by ¢g(z) = [z]. The quotient topology on X/ ~ is defined by specifying that
U C X/ ~ is open iff ¢~ *(U) is open in X.

A function f: X/ ~— Y is continuous iff the composite f o ¢ is continuous.

The one-point compactification of a space X is the set X U {oo}, in which a set U is
declared to be open iff
(a) UNX is open in X.
(b) If oo € U then X \ U is compact.

Consider f and X as in the given problem. First, note that f(f(z)) = z for all z, so f
has inverse f and is a bijection.

We need only check continuity of f at 0 and co — we are allowed to assume it elsewhere.
The basic neighbourhoods of f(0) = oo are the sets

Ve={z€C||z| > R} U{co}

The preimage is
f7H(VR) ={weCllw| <R}
which is certainly a neighbourhood of 0. Similarly, the preimage of a basic neighbourhood
{z | |z] < €} of 0 is the neighbourhood V; /. of co. It follows that f is continuous, and thus
that f~! = f is continuous, and thus that f is a homeomorphism.
Now consider the space
X=(AUA)/~

where

wiz) ~nw) & 2w=1
Define continuous maps g, g1: A — Cy by

go(z) =2 9i1(z) = f(z) =1/z
Note that
image(go) = {z | |2] < 1}
image(g1) = {2 | 2| = 1} U {oc}
and go(z) = g1(w) iff zw =1 iff ip(2) ~ i1 (w).
These maps combine to give a map

g: AUA — Cq goig=go goir =g

It is clear that a ~ b < g(a)

= g(b) so g induces a continuous injective map
§g: X =(AUA)/ ~— Cx

Moreover,
image(g) = image(go) U image(g1) = Co
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Thus g is surjective, hence a continuous bijection of compact Hausdorff spaces, hence a
homeomorphism. o
(47) We choose recursively open sets V}, such that V, C Uy, and

K=JvulJu

1<k I>k

Having chosen V; for | < k we set

v =UvvlJu
1<k I>k
so by the recursion hypothesis K = U} U Uy. In other words, (U})¢ C Uy. As (U})° is
closed and Uy is open and compact Hausdorff spaces are normal, there is an open set Vj
with
(Up)¢ S Vi CVi C UL
As (U})¢ C Vi, we have

K=U,uvi=Jviu{Ju
1<k I>k

as required for the recursion. After n steps we have
K=J%
k

(48) (a) We shall say that a set U C X is to-open iff U € 7,. The definition 7 = (), 7o simply
means that a set U is 7-open iff it is 7,-open for every a. For example, for every «
we are given that 7, is a topology so # and X are 7,-open. This means that () and
X are T-open, so that 7 satisfies TO. Now suppose that {U;};cy is a family of 7-open
sets. We need to show that U = |J; U; is 7-open. For each «, we note that each U;
is Tq-open so (by T1 for 7,) U is 7,-open. As this holds for all a, we see that U is
T-open. This shows that 7 satisfies T1. The proof for T2 is similar.

(b) Take
70 = {(a,00) | a € R} U {0, R}
71 = {(—00,b) | b€ R} U {0, R}
These are both topologies on R, but 7 = 79 U7y is not. Indeed, the sets U = (—1, c0)
and V = (—o0,1) both lie in 7, but UNV = (—1, 1) does not, contradicting the axiom
T2.
(¢) There was a misprint in this question; it should have defined o to be the topology
on X with subbase v = (J, 7o. By an exercise which I left to you in class, this is
the intersection of the family of all topologies which contain v. In other words, a
topology p contains o iff p contains v; but p contains v iff p contains 7, for every a.
(d) The largest and smallest topologies on X are respectively the discrete and indiscrete
topologies:
Tais = P(X) = { all subsets of X}
Tind = {Q)a X}
(49) In the following answers we denote the collection of subsets of R offered as a possible
topology by the letter o.
(a) No. R ¢ o, so axiom TO fails.
(b) Yes.
(c¢) No. The sets [e,00) for € > 0 lie in o, but their union does not:

U[E,OO) - (0,00) ¢ o
e>0

This contradicts axiom T1.
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(d) Yes. TO holds by definition. T1 holds essentially because
U(ai, 00) = (ir}fai,oo)

I
Suppose I have a family {U;};cs of sets in 0. We want to know that U = J, U; € o.
For some ¢ we may have U; = (J; these terms can be discarded without affecting the
union. For other ¢ we may have U; = X if so then U = X € o. If there are no ¢ for
which U; = X then the question reduces to the equation above. Similarly, T2 holds
because of the equation

(a,00) N (b, 00) = (max(a,b), o)
apart from a little fiddling with exceptional cases.
(e) No. 0 & o, so TO fails.
(f) Yes.
(g) Yes.

Let Y C Q be connected. According to my definition (and that in the book) the empty
set is not connected, so suppose y € Y. I claim that Y = {y}. If not, then there is some
z € Y with z # y and then 2 = y+ (2 —y)/V/2 is irrational and lies strictly between y and
z. This means that (—oo,z)NY and (x,00)NY form a nontrivial partition of Y, contrary
to the assumption. Thus Y = {y} and Q is totally disconnected.

Now let X denote the space Z with the 2-adic metric and the resulting topology. I
claim that the balls

B(n,27%) = {m € Z | n — m is divisible by 2!}

are both open and closed. They are open essentially by definition. To see that they are
closed, consider a closure point m € B(n,2-%). The ball B(m,27%) meets B(n,27%), so
there is some integer | with say m — | = 2¥*1y and n — | = 2¥*1y. This implies that
m —n = 21 (u —v), so m € B(n,27%) as required.

Now suppose that n and m are distinct integers, say n — m = 2¥1 with [ odd. The
ball B = B(n,27%) is then an open and closed set containing n but not m, so that no
connected set can contain both n and m. It follows that Z is totally disconnected with
this topology.

Recall the basic properties of ultrafilters (proved in the notes):

Proposition 0.0.1. Let W be an ultrafilter.

UPO If SeW andT 2 S then T € W.

UP1 If S, € W for each k then S1N...S, € W.

UP2 If S C X then either S € W or S¢ € W (but not both).
UP3 IfTCX andTNS #0 for every S € W then T € W.
UP4 If S1U...S, €W then S € W for some k.

UP5 X e W

(a) Suppose W = W, is fixed. Then the finite set {z} is an element of W. Conversely,
suppose
S={zg,...xnt={ao}U.. {zp} €W
By UP4, {x} € W for some k. Write x = z;. Using UPO we find that
SeW,ezxeSe{z}CS=5eW

Thus W, C W. By maximality of W,,, we conclude that W, = W as required.

(b) Suppose Si,...S, € f4#(W), so that f~(Sk) € W. By FIP for W, we have

0 FH Sk =F" (ﬂ&)
k k

This means that (), Sk # 0 (indeed, if x € f~1( S then f(z) € (" Sk). Thus fx(W)
at least has FIP.
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Suppose S C Y. By UP2 for W, we know that either f=1(S) or f=1(S)¢ = f~1(S°)
is an element of W. This means that either S or S¢ is an element of fux(W). By
proposition 0.2 of the ultrafilter notes, we deduce that fx(W) is an ultrafilter as
required.

Suppose f: X — Y is continuous. Suppose Z C Y. As Z C Z, we have f~1(Z) C

f~Y(Z). By continuity, f~1(Z) is closed. As f~1(Z) is the smallest closed set con-
taining f~1(Z), we deduce that

fHZ)cf7(2)

as required.
Conversely, suppose we are told that f~1(Z) C f~1(Z) for each Z C Y. In the case

when Z is closed, we find that f~1(Z) C f~%(Z), which means that f~1(Z) is closed.
Thus preimages of closed sets are closed, which means that f is continuous.

x€Z YUeN, UNZ#0

N, U{Z} has FIP

3 an ultrafilter W AN, U{Z} CW
W ZeWand N, CW

W ZeWand W —x

toe o0

Suppose that f is continuous, and that YW — x. Then
fT WNp@) SN CW
so by definition of fy we have
Ni@) € f2(W)

S0
faW) — f(z)

To be a bit more explicit, suppose that U € N (,). By continuity f~1(U) € N,. As

W — z we have N, CW, so f~1(U) € W. By the definition of fx this means that

U € f4(W). This holds for every neighbourhood U of f(z) so Ny C fa(WV).
Conversely, suppose we know that

W—ox = faWV) = f(z)

Suppose Z C Y is closed; we want to show that f~1(Z) is closed. Suppose that z is a
closure point of f~1(Z). By question (51d) above, we know that there is an ultrafilter
W on X such that f~!'(Z) € W and W — =z. By hypothesis, f+(W) — f(z).
Moreover, from the definition of fy we see that Z € fx(W). Applying the other half
of (51d), we find that f(z) € Z = Z. Thus z € f~1(Z). This shows that f~1(2) is
closed, as required.

me first try to demystify this topology a little. If X is a metric space then it can be

shown (indeed, you can show) that the Vietoris topology is derived from the metric

d(K, L) = max(sup d(z, L),sup d(y, K))
reK yeL

where

(a)

d(z,L) = ;IGIE d(z,y) d(y, K) = Ilgf( d(z,y)

KesU)ns(V)e(KCUand KCV)e KCUNV & Kes(UNV)
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(b) Suppose U C V. Then
Kem(U)0£AKNUCKNV = Kem(V)
so m(U) Cm(V) and m(U) N m(V) =m(U).

(¢) We have K € s(U)Nm(V) iff K C U and there is a point x € K NV. If so, then
xe€ K CUandsoxeUNV. Thus K € s(U) N m(U NV). The opposite inclusion
is trivial.

(d) Suppose K € s(UUV), so K CUUV. Then either K CU, or KNV # (. Thus

s(UUV) Cs(U)um(V)
It follows easily that
s(UUV)=s(U)U(s(UUV)Nnm(V))
(indeed, if BC AC BUC then A= BU(ANC) for any sets A, B and C).
By definition, a basic open set has the form
s(U)N...ns(Uy) nm(Vy)Nn...nm(V;)

(we allow the cases t = 0 or » = 0 in which there are no s’s or m’s). However

s(U)N...s(U;) = s(U) U=(\Us
k

here we interpret U as X if r = 0; note that s(X) = Z. Next,
sU)NmV)Nn...m(V,)=sOU)Nnm(WVinU)N...m(V,.NU)

so we may assume that V;, C U for each k. Finally, if Vi, C V; then m(Vy) C m(V}) so
we can forget about V; without affecting the union. By doing this repeatedly, we obtain a
representation in which the V’s are pairwise incomparable.

We next prove that Z is compact, using Alexander’s subbasis theorem. Consider a
covering of Z by subbasic open sets:

Z=Jswi)ulmvy)

iel jeJ
Write
K=x\Uv,
jed

Note that K € Z, but K ¢ m(V;) for any j € J so we must instead have K € s(U,) for
some a € I. Thus K C U,. Next, consider K’ = X \ U, € Z. Note that K’ C X \ K =
U, V; and K’ is compact so K’ C |J,, V; for some finite J' C J.

Now consider an arbitary element L € Z. Either L C U (so L € s(U)) or LN K’ # (.
In the latter case we have LNJ,; V; # 0 so LNV, # ( for some j € J', so L € m(V}).
Either way, we have

Les)ulJm(vy)
¥

syulJm(v;) =2
5

This is the required finite subcover.

Finally, we prove that Z is Hausdorff. Suppose K, L € Z with K # L. Without loss of
generality, there is an element © € K \ L. Choose disjoint open sets U and V with x € U
and L C V — there was a lemma telling us that this is possible. Then K € m(U) and
L e s(V)and m(U)Ns(V)=0. Thus Z is Hausdorff.



