
EXAMPLES OF TOPOLOGICAL SPACES

NEIL STRICKLAND

This is a list of examples of topological spaces. I am distributing it for a variety of reasons.
First and foremost, I want to persuade you that there are good reasons to study topology; it is a
powerful tool in almost every field of mathematics. I want also to drive home the disparate nature
of the examples to which the theory applies. This means, on the one hand, that we achieve a
great economy of effort, because we need only give one proof and it will apply in many contexts.
On the other hand, we need to be careful and rigorous, because our arguments are supposed to
be valid in situations far removed from our intuition.

Another reason for distributing these examples is to help you to understand the general theory.
I will always try to give examples of abstract theorems, and there will be questions about examples
on the problem sets (possibly drawn from this list) but it is always worthwhile to analyse further
cases on your own initiative.

I have tried to include examples from a wide range of fields of mathematics. This means that
there will probably be a number of examples which you do not have the neccessary background
to understand. Do not worry about this. Nothing in this list will be examinable unless I actually
lecture on it.

1. Euclidean Examples

The most basic example is the space R with the order topology. The open sets are the sets
U ⊂ R such that every point in U lies in an open interval wholly contained in U ; in symbols

x ∈ U ⇒ ∃a, b ∈ R x ∈ (a, b) ⊆ U

This topology is also defined by the metric

d(x, y) = |x− y|
A subset is compact if and only if it is bounded and closed. A subset A is connected if and

only if it is convex, i.e.
a < b < c and a, c ∈ A ⇒ b ∈ A

Almost as basic is the space Rn with the product topology. There are many different metrics
which induce this topology. For example, we can consider three norms on Rn:

‖v‖1 =
∑

k

|vk|(1)

‖v‖2 =
√∑

k

|vk|2(2)

‖v‖∞ = max
k
|vk|(3)

We then define d1(u, v) = ‖u− v‖1 and so on. This gives three different metrics d1 , d2 and d∞.
However, they all define the same topology.

In fact, it is an interesting theorem that every norm whatsoever induces the product topology.
To explain a little: a function ‖v‖ of vectors v is a norm if:

‖v‖ ≥ 0(4)
‖v‖ = 0 ⇔ v = 0(5)
‖av‖ = a‖v‖(6)

‖u + v‖ ≤ ‖u‖+ ‖v‖(7)
1
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Given a norm, we define a metric by d(u, v) = ‖u − v‖. This metric induces a topology, and the
claim is that this is always the same as the product topology, no matter what norm we start with.

2. Examples from Functional Analysis

The examples in this section are all spaces of functions with various different topologies. They
are important for analysing the convergence of Fourier series, the existence and uniqueness of
solutions to differential equations, the spectral theory of operators in quantum mechanics, and
many other things.

2.1. Continuous Functions.

C[0, 1] = {continuous functions f : [0, 1] −→ R}

This is a normed space with the following norm:

‖f‖∞ = sup{f(x) | 0 ≤ x ≤ 1}

This is finite because a continuous real valued function on a compact space is bounded. From it
we derive a metric:

d(f, g) = ‖f − g‖
A sequence of functions (fn)∞n=0 converges to a function f with respect to this metric if and only
if (in the usual language of real analysis) it converges uniformly. It follows (using the Weierstrass
M -test) that C[0, 1] is complete as a metric space.

The polynomial functions from [0, 1] to R (such as f(x) = 5x2 + 6) form a subspace P [0, 1] of
C[0, 1]. It is a dense subspace, by the Stone-Weierstrass theorem.

An interesting example of a continuous function from C[0, 1] to R is given by integration:

I : C[0, 1] −→ R I(f) =
∫ 1

0

f(x)dx

Another is the evaluation function â for a ∈ [0, 1]:

â : C[0, 1] −→ R â(f) = f(a)

This idea of regarding f(a) as a function of f rather than of a is certainly curious at first sight,
but it turns out to be strikingly useful.

2.2. Square-Integrable Functions.

L2(R/Z) = {f : R −→ C such that f(x + 1) = f(x) and
∫ 1

0

|f(x)|2dx < ∞}

This space is the natural home of the theory of Fourier series. To make the definition of L2(R/Z)
precise, we need to mention that the integration sign means the Lebesgue integral, which is studied
in courses on measure theory. However, this is merely a technicality; the Lebesgue integral agrees
with any more elementary definition when the latter makes sense.

As in the case of C[0, 1], we define a norm and thence a metric:

‖f‖2 =
∫ 1

0

|f(x)|2dx

d(f, g) = ‖f − g‖2
This is not quite a metric because it is possible to have d(f, g) = 0 even when f 6= g. For example,
we could have g = 0 and

f(x) =

{
1 if x ∈ Z
0 otherwise

This is again just an annoying technicality, which can be suppressed.
The basic examples of elements of L2(R/Z) are the functions

en(x) = exp(2nπix)
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and the basic example of a continuous function from L2(R/Z) to C is the Fourier-coefficient
function

Cn(f) =
∫ 1

0

f(x)en(x)dx

The fundamental theorem about Fourier series is that for any f ∈ L2,

f =
∑
n∈Z

Cn(f)en

where the sum converges with respect to the metric just described.
In fact, still more is true, as described in the next example.

2.3. Square-Summable Sequences.

L2(Z) = {series c = (cn)∞n=−∞ such that
∑

n

|cn|2 < ∞}

‖c‖2 =
∑

n

|cn|2

d(b, c) = ‖b− c‖
There are continuous maps

L2(Z) F−→ L2(R/Z) C−→ L2(Z)

defined by
F (c) =

∑
n

cnen

C(f) = (Cn(f))∞n=−∞ =
(∫ 1

0

f(x)en(x)dx

)∞
n=−∞

These are in fact mutually inverse isometric isomorphisms:

FC(f) = f CF (c) = c

d(C(f), C(g)) = d(f, g) d(F (b), F (c)) = d(b, c)
This means that the two L2 spaces can be identified in a very strong sense.

2.4. Smooth Functions. The function spaces described above are good for studying things like
integration, and differential equations can often be converted into integral equations by cunning
means; but to study differentiation directly we need a different kind of space.

C∞(R) = { infinitely differentiable functions f : R −→ R}
Given a compact subset K ⊂ R, we let RK(f) denote the restriction of f to K:

RK : C∞(R) −→ C(K) RK(f) = f |K
We also write D for the function from C∞(R) to itself sending a function to its derivative:

D : C∞(R) −→ C∞(R) D(f) = f ′

We give C∞(R) the coarsest possible topology such that the maps RK (for all compact sets K)
and D are continuous. This topology is generated by a rather ugly metric, as follows:

Pn(f) = min(1, sup{|f(x)| such that − n ≤ x ≤ n})

d(f) =
∞∑

n=0

∞∑
m=0

2−m−nPn(Dmf)

d(f, g) = d(f − g)
Fortunately, one can usually use the characterisation of the topology in terms of RK and D and
ignore the metric.

Understanding this space and certain closely related spaces is the first step towards the theory
of distributions, which is the proper home of the Dirac delta function and similar beasts.
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3. Examples from Complex Analysis

3.1. The Riemann Sphere. The Riemann sphere C∞ is the one-point compactification C∪{∞}.
The open subsets are the open sets in C together with the sets U ∪ {∞} such that U is an open
subset of C whose complement in C is compact.

If p and q are complex polynomials (not both zero) then the expression r(z) = p(z)/q(z) can
be made sense of as a continuous function from C∞ to itself, although a certain amount of work
needs to be done to justify this. This is much the most natural context in which to think about
such functions.

3.2. Spaces of Analytic Functions. If U is a connected open subset of C, we let A(U) denote
the space of analytic functions on U . If K ⊂ U is compact and f ∈ A(U) then we write

‖f‖K = max{|f(z)| such that z ∈ K}

B(f,K, ε) = {g ∈ A(U) such that ‖f − g‖K < ε}

The sets B(f,K, ε) form a basis for a topology on A(U), called the topology of locally uniform
convergence.

This topology has remarkably good properties, much stronger than the corresponding ones
for the space of merely continuous functions on U . Firstly, it follows from the Cauchy integral
formulae that the differentiation function is continuous:

D : A(U) −→ A(U) D(f) = f ′

If Γ is a simple closed contour whose interior is contained in U and F is the set {f ∈
A(U) | f has no zeros on Γ} then we can define a function

vΓ : F −→ N

vΓ(f) = number of zeros of f inside Γ

Here zeros are counted by multiplicity in the usual way, so that f(z) = (z − 1)2 counts as having
two zeros at z = 1. This function turns out to be continuous, and thus (as N is discrete) constant
on the connected components of F .

Using this, we can prove another rather interesting theorem. Let G be the set of injective
analytic functions f : U −→ C, so G ⊂ A(U). The theorem is that the closure is given by

G = G ∪ { constant functions }

Still more interesting is the following theorem of Montel. Let us say that a set F ⊂ A(U) is
locally bounded if for every compact set K ⊂ U there is a constant M with ‖f‖K ≤ M for every
f ∈ F . Montel’s theorem states that F is compact if and only if it is locally bounded and closed.

The power of the above two results is revealed by the fact that Riemann mapping theorem is a
relatively simple consequence. This theorem states that any simply connected proper open subset
of C (no matter how wild its boundary) is conformally equivalent to the unit disc.

4. Examples from Differential Geometry and Algebraic Topology

The main interest of most of the following examples is their global topology, in other words,
what sort of holes they have in them and how the holes twist around each other and so on. This
course will lay important foundations for the study of such questions, and if we have time towards
the end we will address a few of the simpler ones. However, to understand such things fully we
would need the apparatus of algebraic topology; while this is particularly profound and beautiful,
it will have to wait until future courses. Nonetheless, we can at least take a quick look at some of
the phenomena which occur.

Disclaimer: my enthusiasm for this section has of course nothing whatever to do with the
subject of my research, honest.
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4.1. Spheres.

Sn = the n-sphere = {x = (x0, . . . xn) ∈ Rn+1 |
∑

x2
k = 1}

While these spaces are rather simple, they are in an important sense the building blocks from
which most other spaces of interest are constructed. It turns out that to understand the process
of construction, one has to study the continuous maps from one sphere to another. An interesting
example is the Hopf map:

η : S3 −→ S2

To define it, we think of S3 as a subset of R4 = C2:

S3 = {(z, w) ∈ C2 such that |z|2 + |w|2 = 1}

On the other hand, we think of S2 (which is an ordinary sphere, like the surface of a basketball)
as the Riemann sphere C ∪∞. The Hopf map is then just division:

η(z, w) = z/w ∈ C ∪∞

One interesting property is that the inverse image of any point in S2 is a circle in S3. Any two
such circles are linked, like the links in a chain.

4.2. The Projective Plane. Our next example is the real projective plane:

RP 2 = { lines through the origin in R3}

Any such line crosses the unit sphere S2 in two opposite points. Using this we can identify RP 2

with the space of opposite pairs of points, that is

RP 2 = S2/ ∼ x ∼ y iff x = ±y

We give RP 2 the quotient topology coming from this identification. This makes it a compact,
connected, Hausdorff space.

Here is an example of a useful geometric construction involving this space. Suppose X is a nice
smooth surface in R3. For any point x ∈ X, there are two unit normal vectors to X at x, say n
and −n. It is not always possible to designate one of these as the positive normal in a way which
is consistent over the whole surface. Nonetheless, both unit normals define the same point in RP 2,
so we get an unambiguous map

g : X −→ RP 2

This is called the Gauss map.

4.3. Configuration Spaces. Our next example is called the unordered configuration space of k
points in C:

Bk = { finite sets S ⊂ C with k elements }
We can describe a topology on this space in two different ways (they turn out to be the same
topology). One way is to consider the ordered configuration space

Fk = {z = (z1, . . . zk) ∈ Ck | zi 6= zj when i 6= j}

There is a surjective map from Fk to Bk which sends the ordered k-tuple (z1, . . . zk) to the un-
ordered set {z1, . . . zk}. Each point in Bk comes from k! points in Fk, corresponding to the different
orders which could be imposed. For example, the six preimages of the point

{i, π, e} ∈ B3

are the following six points in F3:

(i, π, e) (i, e, π) (π, i, e) (π, e, i) (e, i, π) (e, π, i)

We can thus topologise Bk as a quotient space of Fk. In fact, Fk is a covering space of Bk; I hope
to discuss covering spaces towards the end of the course.

Another approach to the topology on Bk is as follows. Take k = 3 for simplicity. Given a set

S = {u, v, w} ⊂ C
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consider the polynomial

pS(t) = (t− u)(t− v)(t− w) = t3 + at2 + bt + c

The numbers
a = −(u + v + w) b = uv + uw + vw c = −uvw

depend only the set S and not on the order in which I listed the elements. We thus get a well
defined map

g : B3 −→ C3 g(S) = (a, b, c)

This is injective, because S is precisely the set of roots of pS and so is determined uniquely by
(a, b, c). The image of g can be shown to be an open set in C3. We can use this to define a
topology on B3, in which the open sets are precisely the sets g∗(U) where U is open in C3. As
stated previously, this is the same as the quotient topology coming from F3.

The space F3 is actually quite simple; you can check that the map

f(u, v, w) = (u, v − u, (w − u)/(v − u))

gives a homeomorphism
f : F3 −→ C× C \ {0} × C \ {0, 1}

However, the spaces Fk for k > 3 are rather complicated, and the spaces Bk are still worse. They
are rumoured to have an important relationship with the physics of string theory, which is one
good reason to study them.

You can show that Bk and Fk are connected, Hausdorff, locally compact and metrisable topo-
logical manifolds, but that they are not compact.

4.4. Loop Spaces. Next, we consider loop spaces on spheres:

ΛnSm = { continuous maps λ : Sn −→ Sm}

We give this the compact-open topology, which is defined as follows. Given a compact set K ⊂ Sn

and an open set U ⊂ Sm we write

W (K, U) = {λ ∈ ΛnSm | λ(K) ⊂ U}

These sets W (K, U) form a subbasis for the compact-open topology, so the open sets in this
topology are precisely the arbitary unions of finite intersections of sets of the form W (K, U).
The important point about the compact open topology is that the following “evaluation” map is
continuous:

ev: Sn × ΛnSm −→ Sm ev(x, λ) = λ(x)

Here is an interesting map σ : S1 −→ Λ1S2. Think of S2 as the globe. A point in Λ1S2 is a
function from S1 to the globe, that is, a parameterised loop on the globe. The great circles which
start at the North pole, run down to a point x on the equator, then down to the South pole and
back up the other side, form a family of such loops. There is one such loop λx for each point x
on the equator. On the other hand, we can also identify the equator with S1. We obtain a map
σ sending x ∈ S1 = equator to the loop λx. You can show that this is continuous.

A very hard, but very important, problem is to understand the connected components of ΛnSm

when n ≥ m. A great deal of partial information is known, but the general case remains intractable.
The simplest case is that of Λ1S1, which is the space of continuous maps from the circle to itself.
It is simplest here to think of S1 as the unit circle in the complex plane. Let C0(S1, R) be the
subspace of C(S1, R) consisting of continuous functions f : S1 −→ R such that f(1) = 0. There is
a continuous function

γ : Z× S1 × C0(S1, R) −→ Λ1S1

given by
γ(n, w, f)(z) = znw exp(if(z))

which turns out to be a homeomorphism. As S1×C0(S1, R) is connected (why ?) this shows that
the set of components of Λ1S1 bijects naturally with Z.
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4.5. Matrix Groups. The last example in this section is the orthogonal group:

O3 = {3× 3 matrices such that AT = A−1}

(here AT denotes the transposed matrix).
This is topologised as a subspace of R9. You can show that it is compact. It is also a group

under matrix multiplication. You can show that the group operations are given by continuous
maps:

µ : O3 ×O3 −→ O3 µ(A,B) = AB

χ : O3 −→ O3 χ(A) = A−1

Such a matrix has determinant ±1. As the determinant gives a continuous map

det : {3× 3 matrices} −→ R

we see that O3 is disconnected. It falls into two parts:

SO3 = O+
3 = {A | det(A) = 1} O−

3 = {A | det(A) = −1}

It can be shown that O+
3 is the space of rotation matrices.

Suppose that L is a line through the origin in R3. Let P be the plane orthogonal to L. There
is a map ρL from R3 to itself, sending a vector v ∈ R3 to its mirror image after reflection in P . If
the two unit vectors in L are n and −n, then you can check that the formula is

ρL(v) = v − 2(n.v)n = ALv

Here AL is the matrix whose (i, j) entry is δij − 2ninj , and δij is the Kronecker symbol:

δij =

{
1 if i = j

0 otherwise

Using this, we can see that there is a continuous map R : RP 2 −→ O−
3 sending L to AL.

Here is another interesting map. A matrix A ∈ O3 satisfies ‖Av‖ = ‖v‖ for every vector v ∈ R3,
so the action of A gives a continuous map αA : S2 −→ S2. We thus get a map

α : O3 −→ Λ2S2 α(A) = αA

You can check that this map is again continuous.

5. Fractal Examples

5.1. The Cantor Set. The simplest example of a fractal is the Cantor set. We define

Ul =
3l−1⋃

k=−3l−1

((3k − 1
2 )3−l, (3k + 1

2 )3−l) ⊂ [− 1
2 ,+ 1

2 ]

The Cantor set is then
X = [− 1

2 ,+ 1
2 ] \

⋃
l≥0

Ul

Another description is as follows: we start with the interval [− 1
2 ,+ 1

2 ] and remove the middle third
(− 1

6 ,+ 1
6 ) to leave two closed intervals [− 1

2 ,− 1
6 ] and [ 16 , 1

2 ]. We remove the middle thirds of each of
these to get four closed intervals of length 1/9, and so on. What we get in the limit is the Cantor
set again. At the n’th stage we have 2n closed intervals, each of length 3−n, so the total length is
(2/3)n. There is a well behaved concept of the “total length” of a subset of the real line (called
Lebesgue measure), which works even for curious sets like the Cantor set; from the above we can
see that the Lebesgue measure of X must be zero.

It is easy to see that X is compact and Hausdorff. It is also totally disconnected: you can show
that the connected components of X are points. It is also perfect: every point a ∈ X lies in the
closure of X \ {a}. All these properties are quite typical of fractals.
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The Cantor set is actually homeomorphic to an infinite Cartesian product of copies of the two
point discrete space {−1, 1}. Indeed, you can show that the map

f : {−1, 1}Z+ −→ X f(a) =
∑
k>0

ak3−k

is a homeomorphism.
Another typical fractal property is self-similarity: every neighbourhood of every point in X con-

tains a homeomorphic copy of the whole set. To be more specific, consider a basic neighbourhood
(a − ε, a + ε) of a point a ∈ X. For large l we have 3−l < ε. It follows from the homeomor-
phism in the last paragraph that there is a unique integer n such that n is not divisible by 3 and
|3la− n| ≤ 1

2 . It then follows that the map

g : X −→ X ∩ (a− ε, a + ε)

g(b) = n + 3−lb

gives a homeomorphism between X and a small neighbourhood of a in X.
Such exact self-similarity is not actually very typical. In more complicated cases, there is

approximate self-similarity. To make this precise, we need to say what it means for two sets to
be almost the same, in other words, to impose a topology on a suitable collection of subsets of a
given space X. We shall consider several such topologies elsewhere in these notes.

5.2. Attractors for Newton’s Method. Consider what happens if we try to look for complex
roots of the equation z3− 1 = 0 using Newton’s method. We start with some initial guess z0, and
recursively define

zn+1 = zn − (z3
n − 1)/3z2

n

If zn = 0 we take zm = ∞ for all m > n. The hope is that this sequence will converge to some
number z which is a root of the equation. Of course, we know what the roots are — there are
three of them:

z = 1 z = ω = e2πi/3 z = ω = e−2πi/3

If our initial guess z0 is close to ω (say) then the sequence (zk) will converge rapidly to ω. However,
if z0 is intermediate between two of the roots, then the sequence need not converge at all. If it
does converge then the limit depends in a very sensitive and intricate way on the precise position
of z0.

Possibly the simplest example of a point for which the sequence does not converge is as follows:

ρ = 10−1/6

θ = cos−1(−1/
√

5/32)/3
α = ρ exp(iθ)

If z0 = α then the sequence is just
α, α, α, α, . . .

Before proceeding further, we change notation a little. We write

g(z) = z − (z3 − 1)/3z2 =
2z3 + 1

3z2

g(3)(z) = g(g(g(z))) g(4)(z) = g(g(g(g(z)))) etc.
These functions are called the iterates of g. In the old notation, we have

zn = g(n)(z0)

We can divide the complex plane into four parts, as follows:

F1 = {w | g(n)(w) −→ 1 as n −→∞}

Fω = {w | g(n)(w) −→ ω as n −→∞}
Fω = {w | g(n)(w) −→ ω as n −→∞}

F = F1 ∪ Fω ∪ Fω

J = (C ∪ {∞}) \ F ⊂ C ∪ {∞}
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It is not difficult to write a program to plot these sets and colour them in four different colours.
You will find that they are extremely intricate.

The sets J and F are called the Julia set and the Fatou set respectively. The Julia set is
uncountable, closed, and perfect, and has empty interior. The Fatou set is open and has infinitely
many connected components. The proofs of these facts involve subtle arguments in both complex
analysis and general topology.

If we write bU for the boundary of U , then we have the following very curious fact:

bF1 = bFω = bFω = J

You should try to find another example of three disjoint open sets with the same boundary, to see
quite how curious this fact is.

There is an interesting characterisation of F in terms of the topology of spaces of analytic
functions. For any open set V ⊂ C we write

GV = {g(n)|V such that n ∈ N}

We regard this as a subspace of the space of continuous maps from V to the Riemann sphere
C∪ {∞}, endowed with the compact-open topology. It turns out that F is the largest set V such
that GV has compact closure. This is the appropriate definition of the Fatou set for a more general
rational function g.

5.3. The Mandelbrot Set. Given a complex number c, define qc(z) = z2 + c and

fn(c) = q(n)
c (0) = qc(qc(qc . . . (0) . . .))

where qc is applied n times. In other words:

f0(c) = 0

fn+1(c) = qc(fn(c)) = fn(c)2 + c

The Mandelbrot set M is defined as

M = {c ∈ C | |fn(c)| ≤ 2 for all n}

Many of you have probably seen pictures of this set - there are a number of computer programs
available to plot it, and indeed you can quite easily write such a program yourself. It has a very
intricate fractal boundary. Many small parts of the set contain approximate copies of the whole
set — in other words the Mandelbrot set is aproximately self-similar.

A number of interesting topological properties of M are known. Firstly, it is compact — this is
easy to see. Secondly, it is connected. This is at first sight implausible — if you look at pictures
of M , you will see many small “islands” well separated from the main body of the set. However,
on closer inspection there appear to be thin tendrils linking the islands to the centre. The proof
that M is connected is quite formidable, involving very powerful methods from complex analysis.
However, it is also true that the complement of the Mandelbrot set is connected, and this is
comparatively straightforward to prove. This has a natural geometric interpretation. As M is
compact, the complement M c has a single unbounded component. If M had any holes in it (e.g.
if M were something like the closed annulus 1 ≤ |z| ≤ 2) then M c would also have a bounded
component, and so would be disconnected. Thus the fact that M c is connected just means that
M has no holes.

Another interesting fact is that M is the closure of its interior. It is an open question whether
M is locally connected — many other things would follow if it were.

6. Examples from Algebraic Geometry

Frequently, when one is faced a geometric problem involving sets of points in Rn, the sets in
question are defined by polynomial equations, and any relevant functions between them are also
given by polynomials. A situation like this can be analysed using the usual topology on Rn — the
sets are then closed and the functions are continuous. However, polynomials are far more rigid
than arbitary continuous functions, so we could hope to replace the usual topology with a coarser
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topology which would give more information. We will explore this idea in this section, but we will
use C rather than R for technical reasons.

6.1. The Zariski Topology on Cn. We write C[z1, . . . zn] for the set of polynomial functions
from Cn to C, for example the function

f(z1, z2, z3) = z4
1 + iz3

is an element of C[z1, z2, z3]. Given such a function f , we write

D(f) = {z | f(z) 6= 0}

It is easy to see that
D(f) ∩D(g) = D(fg)

These sets D(f) form a basis for a new topology on Cn, called the Zariski topology. Of course,
the sets D(f) are open in the usual topology, which implies that the Zariski topology is coarser
than the usual one.

The closed sets for the Zariski topology are all of the form

V (f1, . . . fm) = {z ∈ Cn | f1(z) = . . . fm(z) = 0}

In principle, it seems that we ought to also allow sets like V (f1, f2, . . .) with infinitely many f ’s.
However, it is a consequence of the important Hilbert Basis Theorem that any such set can be
rewritten as V (g1, . . . gm) for some finite list of polynomials {g1, . . . gm}.

Let us write Xn for the space Cn equipped with the Zariski topology. It is not the same,
incidentally, as the product topology on Cn = C× . . . C derived from the Zariski topology on each
factor.

The space Xn has a number of properties which are strikingly different from those of the spaces
considered previously. Firstly, it is not Hausdorff. Indeed, any two non-empty open sets intersect
non-trivially, or in other words, every non-empty open set is dense. In fact, it is this example and
related ones which provide the main reason for bothering to study non-Hausdorff spaces.

However, every set consisting of a single point is closed, so that Xn does satisfy the separation
axiom T1.

The next curious property of Xn is that very many subspaces are compact. In particular, every
open subspace is compact. This is very unlike the situation with Hausdorff spaces, in which every
compact set is closed.

6.2. Prime Spectra of Rings. Our next example requires some rather more sophisticated alge-
bra. Consider a commutative ring A. We let X = spec(A) denote the set of prime ideals in A.
Given any ideal a ≤ A, we define

V (a) = {p ∈ spec(A) | a ≤ p}

These subsets of spec(A) satisfy

V (0) = spec(A) V (A) = ∅

V (Σiai) =
⋂
i

V (ai)

V (a ∩ b) = V (ab) = V (a) ∪ V (b)
The sets D(a) = spec(A) \ V (a) are the open sets for a topology on X = spec(A), which we

again refer to as the Zariski topology. It is also good to consider the subset max(A), consisting of
the maximal ideals of A — we give this the subspace topology.

In particular, we can consider the case A = C[z1, . . . zm]. For any point z ∈ Cn there is a
surjective evaluation homomorphism

ẑ : A −→ C ẑ(f) = f(z)

The kernel of this is a maximal ideal:

mz = ker(ẑ : A −→ C) = {f ∈ A | f(z) = 0}
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In fact, the map

Cn −→ max(A) z 7→ mz

is a homeomorphism if we give the left hand side the Zariski topology, as in the last section.
The space spec(A) is always compact. The closed points correspond to maximal ideals of A,

so the space max(A) is always T1. The larger space spec(A) is almost never T1, however. For
example, if A = Z then there is a point in spec(A) corresponding to the prime ideal {0}, and
the closure of this point is the whole space. On the other hand, the weaker axiom T0 is always
satisfied. This and related examples are the main reason for studying spaces which are not T1.

7. Examples from Algebraic Number Theory

Number theory is to a large extent the study of Diophantine equations, that is, polynomial
equations whose solutions are required to be integers. The most famous example is of course the
Fermat equation

xn + yn = zn

It was finally proved in June 1993 by Andrew Wiles that there are no non-zero integer solutions
to this when n > 2. This had been stated by Fermat over 300 years previously, but although he
claimed to have a proof, Fermat did not write it down — it is generally believed that he must
have been mistaken.

Anyway, one might ask how it is possible to attack such problems. One method is to work
modulo m for some convenient integer m. For example, consider the equation x2 + x + 1 = 0.
By considering the two cases in which x is even or odd, we see that the left hand side is always
odd and the right hand side is zero so there can be no integer solutions. We can rephrase this
argument: there are no solutions mod 2, and hence none integrally.

For a slightly different example, consider the equation x2 + 2 = 0. This does have a solution
mod 2 (we can take x = 0) but it has no solution mod 4.

This all leads up to the idea that we should look for solutions modulo various large numbers
m (better still, numbers m with many factors) and view these as “approximate solutions” to the
original equation. It actually turns out to be technically convenient to focus on one prime p at a
time, and consider solutions modulo pm for large m. This is the core idea behind the constructions
of this section.

7.1. The p-adic Metric. Let p be a prime number. For any non-zero integer n, we can repeatedly
divide by p until this is no longer possible, and thus write n = pvm for uniquely determined integers
m and v ≥ 0. We then write

|n|p = p−v

|0|p = 0

dp(l, n) = |l − n|p
We find that dp is a metric on Z, called the p-adic metric. It is very different from the usual
metric. For example, as k −→∞ the numbers pk converge to zero p-adically but diverge to infinity
in the usual sense.

Here is an analogy which may make this idea seem more natural. A formal power series is
a formal expression

∑∞
k=0 akxk with the ak being real numbers and x a symbol. There is no

requirement of convergence. The set of formal power series forms a ring in an obvious way - it is
called R[[x]]. It is usual to think of two power series f and g as being close to each other if they
agree to a high order, in other words, if f − g is divisible by a high power of x. This is analogous
to the p-adic topology, in which n and m are close if n−m is divisible by a high power of p.

The space Z with this metric has few good properties. Things improve greatly if we consider
the completion of Z with respect to dp, which is called the space of p-adic integers, denoted Zp.
This space is compact, Hausdorff, and totally disconnected.
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7.2. The p-adic Rationals. We can generalise the above slightly. If 0 6= a ∈ Q then we can write
a = pvb/c where b and c are integers not divisible by p, and then write |a|p = p−v. This gives a
metric on Q. The completion is Qp, the field of p-adic rationals. It is locally compact, Hausdorff
and totally disconnected. All algebraic operations are continuous. There is a good notion of the
Fourier transform of a suitable function f : Qp −→ C, which is extremely important in modern
number theory.

7.3. The Ring of Adèles. It turns out to be convenient to regard ∞ as a prime and write |a|∞
for the usual absolute value, so Q∞ = R. Write C for the set of finite primes, and C∞ = C ∪ {∞}.
We then have a topological ring: ∏

p∈C∞

Qp = R×
∏
C

Qp

An element a = (ap) of this product is said to be an adèle if ap ∈ Zp ⊂ Qp for all but finitely many
finite primes p ∈ C. The set of adèles forms a ring A. You can check that it is locally compact,
although the infinite product ring is not. If a ∈ Q then there is an adèle â with âp = a for all
p (why is this an adèle ?). This identifies Q with a subspace of A. It is discrete in the subspace
topology. We can form the quotient additive group:

A/Q = A/ ∼ a ∼ b iff a− b ∈ Q
it is an important fact that this is compact in the quotient topology.

On the other hand, we can consider the analogous construction involving only the finite primes:

A′ = {(ap) ∈
∏
C

Qp | ap ∈ Zp for almost all p}

It is another important fact that Q is dense in A′. This is closely related to the Chinese Remainder
Theorem.


