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N. P. STRICKLAND

Let E be the elliptic curve f(x, y) = 0, where f(x, y) = y2 − x3 + x. Let K be the subfield of C obtained
from Q by adjoining the coordinates of all the points of order five on E. In this note we record the structure
of K and the action of G := Gal(K/Q).

For the sake of definiteness, we agree that z1/n always denotes the principal branch, so (reiθ)1/n =
r1/neiθ/n if r > 0 and −π < θ ≤ π. Put

π = 1 + 2i

λ = π1/4

ζ = exp(2πi/5)

Theorem 1. The field K is generated over Q by λ and λ. It has a basis consisting of the monomials iaλbλ
c

with a ∈ {0, 1} and b, c ∈ {0, 1, 2, 3}. The Galois group G is generated by the conjugation map γ : z 7→ z
together with elements α, α acting as follows:

α(i) = α(i) = i

α(λ) = iλ

α(λ) = λ

α(λ) = λ

α(λ) = −iλ.

The relations are
α4 = α4 = γ2 = [α, α] = 1

γαγ = α.

The rest of this note constitutes the proof of the theorem. Let L be the field generated by i, λ and λ,
so we must show that K = L. The claimed basis B is certainly a spanning set for L over Q. Note that π
and π are inequivalent irreducibles in Z[i]; I think this implies that B is indeed a basis for L. Moreover,
if we put M = Q(i, λ) and M = Q(i, λ), this argument should show that L = M ⊗Q(i) M , and thus that
Gal(L/Q(i)) = Gal(M/Q(i)) × Gal(M/Q(i)). Given this, it is easy to check that the Galois group is as
claimed.

Now recall that E has complex multiplication by Z[i], given by the formula i(x, y) = (−x, iy) (or i[x : y :
z] = [ix : y : −iz]).

Put a = λ−2 and b = (1− i)λ−3 and P = (a, b). One checks directly that f(P ) = 0, so P ∈ E. It is clear
that iP 6= P , so there is a unique line L joining P to iP , with equation g(t) = ((1 − 2t)a, (1 + (i − 1)t)b).
One can again check directly that f(g(t)) = 0 (mod t2), which means that L is tangent to E at P . From
the usual geometric description of addition in E, we see that 2P + iP = 0, so πP = −i(2 + i)P = 0, so
5P = ππP = 0. This shows that a, b ∈ K.

Next, we note that iP = (−a, ib) is another point of order 5, so −a, ib ∈ K. It follows that i = (ib)/b ∈ K
and thus that λ = (1− i)a/b ∈ K. Similarly, we see that the point P = (a, b) satisfies πP = 0, and deduce
that λ ∈ K.

Let A be the group of complex points of E[5]. We claim that P and P form a basis for A over Z/5.
Indeed, both P and P are nonzero points of order 5, so it is enough to check that the intersection of the
subgroups that they generate is trivial. This intersection is annihilated by both π and π, and these elements
are coprime in in Z[i], so the intersection is trivial as claimed. It follows that all points in A are defined over
L, so K = L.
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Put Q = P + P , which is easily seen to generate A over Z[i]/5. One checks that

Q = ((λ2 + λλ + λ
2

+ λ3λ
3
)/2, (λ + λ)(λλ(λ2 + λ

2
) + 2)/2)

Note that the coordinates here are real. One can check that

λλ = 51/4

λ2 + λ
2

=
√

2(1 +
√

5)

λ + λ =

√√
2(1 +

√
5) + 2

√√
5

Moreover, λ + λ is a root of the irreducible polynomial

256− 1152t4 − 656t8 − 8t12 + t16

and is thus a primitive element for the field K ∩ R over Q.
The Weil pairing gives us an element ζ ′ = e5(P, P ) which is a primitive 5’th root of one. It follows that

ζ is a power of ζ ′ and so lies in K. In fact, we have the formula

ζ = (λ2λ
2 − 1 + iλλ(λ2 + λ

2
))/4.

We have not checked whether ζ ′ = ζ.

Another parametrisation

In any context where we can interpret the relevant square roots, we define

f(u) = [u2 − u−2 : 2
√

u2 − u−2 : (u− u−1)2].

This lies on our curve. We have f(±1) = [0 : 1 : 0], but f(±i) is ill-defined. The invariant differential pulls
back to (u4 − 1)−1/2 du, so the logarithm is the elliptic function Fi(iu). One of the points of order 3 on the
curve is f(u) where u = (1 + 31/2 + 121/4)/2.

Alternatively, we have [x : 1 : z] ∈ C where

z =
√

1 + 4x4 − 1
2x

=
1
x

∞∑
n=0

(
2n
n

)
(−x4)n+1

n + 1
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