ELLIPTIC CURVES AND NUMBER FIELDS — AN EXAMPLE

N. P. STRICKLAND

Let E be the elliptic curve f(x,y) = 0, where f(z,y) = y?> — 23 + 2. Let K be the subfield of C obtained
from Q by adjoining the coordinates of all the points of order five on E. In this note we record the structure
of K and the action of G := Gal(K/Q).

For the sake of definiteness, we agree that z
rt/mei®/n if > 0 and —7 < 0 < 7. Put

1/n always denotes the principal branch, so (re?)/m =
T=1+2
= 7_‘,1/4
¢ = exp(2mi/5)
Theorem 1. The field K is generated over Q by X\ and \. It has a basis consisting of the monomials DU
with a € {0,1} and b,c € {0,1,2,3}. The Galois group G is generated by the conjugation map v: z — Z
together with elements a, @ acting as follows:

a(i) =a(i) =1

a(A) =1iA

a(d) =X

a(A) = A

a(\) = —i\

The relations are
ot =at=r%= [a, @] =

Yoy = Q.

The rest of this note constitutes the proof of the theorem. Let L be the field generated by i, A and X,
so we must show that K = L. The claimed basis B is certainly a spanning set for L over Q. Note that m
and T are inequivalent irreducibles in Z[i]; I think this implies that B is indeed a basis for L. Moreover,
if we put M = Q(i, ) and M = Q(i, \), this argument should show that L = M ®q() M, and thus that
Gal(L/Q(i)) = Gal(M/Q(i)) x Gal(M/Q(i)). Given this, it is easy to check that the Galois group is as
claimed.

Now recall that E has complex multiplication by Z[i], given by the formula i(z,y) = (—x,iy) (or i[z : y :
z] = iz : y : —iz]).

Put a =A"2? and b= (1 — i)\~ and P = (a,b). One checks directly that f(P) =0, so P € E. 1t is clear
that iP # P, so there is a unique line L joining P to ¢P, with equation g(t) = ((1 — 2t)a, (1 4+ (i — 1)t)b).
One can again check directly that f(g(t)) = 0 (mod #?), which means that L is tangent to E at P. From
the usual geometric description of addition in E, we see that 2P + iP = 0, so 7P = —i(2+ )P = 0, so
5P = 7w P = 0. This shows that a,b € K.

Next, we note that iP = (—a, ib) is another point of order 5, so —a,ib € K. It follows that i = (ib)/b € K
and thus that A = (1 —i)a/b € K. Similarly, we see that the point P = (@, b) satisfies 7P = 0, and deduce
that \ € K.

Let A be the group of complex points of E[5]. We claim that P and P form a basis for A over Z/5.
Indeed, both P and P are nonzero points of order 5, so it is enough to check that the intersection of the
subgroups that they generate is trivial. This intersection is annihilated by both 7 and 7, and these elements
are coprime in in Z[i], so the intersection is trivial as claimed. It follows that all points in A are defined over
L,so K =1L.
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Put @Q = P + P, which is easily seen to generate A over Z[i]/5. One checks that
Q= (A2 M AN BN /2, (A + NOXA2 +37) +2)/2)
Note that the coordinates here are real. One can check that
AN = 51/

A2+ N =14/2(1 4+ V5)

>\+)\:\/\/2(1+\/5)+2m

Moreover, A+ X is a root of the irreducible polynomial
256 — 1152t* — 656t° — 8t'* 4 ¢'°

and is thus a primitive element for the field K NR over Q.
The Weil pairing gives us an element (' = e5(P, P) which is a primitive 5’th root of one. It follows that
¢ is a power of ¢’ and so lies in K. In fact, we have the formula

C= (O — 14+ iAA2 +X10)) /4.
We have not checked whether ¢’ = (.

ANOTHER PARAMETRISATION

In any context where we can interpret the relevant square roots, we define

flu)=[w?—u2:2vu2 —u2:(u—u"
This lies on our curve. We have f(£1) =1[0:1:0], but f(£i) is 111—deﬁned. The invariant differential pulls
back to (u? —1)7'/2 du, so the logarithm is the elliptic function F;(iu). One of the points of order 3 on the
curve is f(u) where u = (14 3%/2 + 12/4) /2.
Alternatively, we have [z :1: z] € C where
\/1+4x4—1 Z( ) —4)n+1

n+1



