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> Fix a prime p, and let £ denote the semiring of p-local Bousfield classes.

> The literature contains many results about the structure of £. We seek a
consolidated statement that incorporates as much of this information as
possible.

> The Telescope Conjecture is a key open question about L. It is widely
expected to be false, but this remains unproven. We will work with a
quotient semiring £ in which TC is true.

> We will give a complete description of a subsemiring A < £ which
contains almost all classes that have previously been named and studied.
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B = {p — local spectra}.
This is a triangulated category, and in particular is additive.

There is a binary coproduct written X V Y, and more generally an indexed
coproduct written \/, X;.

There is a bilinear symmetric monoidal smash product written X A Y, with
unit object S.

All this is similar to the derived category D(R) of a ring R, with V like ®
and A like ®.

X)={T | XAT=0}and L ={(X) | X € B}.

Theorem of Ohkawa: L is a set, not a proper class.

There are well-defined operations (X) V (Y) = (X V Y) and
(XYA(Y)=(XAY). We put 0=(0) and 1 = (S).

We order Bousfield classes by reverse inclusion, so (X) < (Y) means
(X) 2(Y).
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that:
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V is commutative and associative, with 0 as an identity element.
A is commutative and associative, with 1 as an identity element.
A distributes over V.

Forall u € R we have OANu=0and 1Vu=1and uVu=u.

This gives a partial order by the rule u < v iff uvV v =v.

The binary operations preserve this order, and 0 and 1 are the smallest
and largest elements.

u V v is the smallest element satisfying w > u and w > v.

There is no similar statement for u A v in general.

We say that R is complete if every family of elements (u;)ic has least
upper bound \/; u;.

We say that R is completely distributive if, in addition,

x AV ui=\V,(x A u).

The set £ is naturally a completely distributive ordered semiring.
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We say that u € R is idempotent if u A u= u.

We write Rjate for the set of idempotent elements. This is a subsemiring of
L and is a distributive lattice.

We say that u € R is complemented if there is a (necessarily unique)
element —u with uV-u=1and uA-u=0.

We write Rpool for the set of complemented elements. This is a sublattice
of Riate and is a Boolean algebra.

If e € R is idempotent then there is a semiring R/e and a homomorphism
m: R — R /e that is initial among homomorphisms sending e to zero.

In fact, we can take R/e = {x € R | x > e} and 7(x) = x V e and define
operations on R/e so as to make ™ a homomorphism.

L will be a colimit of quotients £/¢(n) for some idempotents ¢(n) to be
described later.
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» t(gq, T) for g € No and T C N, cosmall.
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» t(gq, T) for g € No and T C N, cosmall.
> j(m,S) for me N, and S C N small.
> k(U) for U C No arbitrary.

t(q, T)At(q', T') = t(max(q.q'), TN T')
Jj(m, TnSy ifg<m

t(g, T)Aj(m',S") = {k(TﬁS’) if g > m

t(q, T) AN k(U') = k(TN U')
j(m,S)Aj(m', Sy =k(SNS')
J(m,S)Ak(U') = k(SN U")

k(U) Nk(U') = k(UN V).

Note that tail(a A b) = tail(a) N tail(b).
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J(m, $) v k(U') = {

k(U) v k(U") = k(U U U) k(U) A k(U") = k(U N U").

Outline of proof:
> It is long but straightforward to check that the operations satisfy all
axioms for an ordered semiring.

» A lemma shows that complete distributivity reduces to a statement about
least upper bounds for ideals.

> |deals in A have a fairly simple structure. In many cases, they have a
largest element, which makes other questions trivial.
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> We have k(U) < j(m,S) iff U C S.
> We have k(U) < k(U") iff U C U'".

> Ay, consists of all elements of the form t(q, T) or k(U).

> Apool consists of all elements of the form k(S) or —k(S) = t(0,N \ S)
with S small.
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The main theorem

» Theorem: There is an injective semiring homomorphism ¢: A — £ which
preserves all joins.

» This is defined as a composite A LNy L, but ¢ is not a
homomorphism of semirings unless TC holds.

» For each element x in A, we will define an element in £ with the same
name, which will be the image of x under ¢g.
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» For g € N we recall that the Bott periodicity isomorphism QSU = BU
gives a natural virtual vector bundle over QSU(p?), and the associated
Thom spectrum X(p?) has a natural ring structure. The p-localisation of
this has a p-typical summand called T(g). We have T(0) = S and
T(co0) = BP. In all cases we put t(q) = (T(q)) and t(g; n) = t(q) A f(n).

» Suppose g € No, and T C N, is cosmall.

If [n,00] C T, we put t(q, T;n) = t(q;n) V k(T).
Put t(q, T) = t(q, T; no), where no is smallest such that [ng,00] C T.

» For m € Noo we let J(m) denote the Brown-Comenetz dual of T(m), so
there is a natural isomorphism

[X, J(m)] ~ Hom(mo(T(m) A X),Q/Z).

Put J(w) =V ,en J(m), and j(m) = (J(m)) for all m € N,,.
Given a small set S, put j(m,S) = j(m) V k(S).
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» For n € N we choose a good v, element w, € m.(F(n)). This means that
Wy = v,‘,’d" in BP,.F(n) for some d,, plus some additional properties. Put
K'(n) = F(n)[w,; ] and k'(n) = (K'(n)).

» Now fix n € N. Let L, denote the Bousfield localisation functor with
respect to the Johnson-Wilson spectrum E(n), and let C,X denote the
fibre of the natural map X — L,X. We also put A(n) = C,K’(n) and
a(n) = (A(n)). We also put ¢(n) = \/;_, a(i) for all n € Neo.

» Proposition: the elements a(i) and €(n) are idempotent.

> The Telescope Conjecture is equivalent to a(i) = 0 for all i, or ¢(n) =0
for all n € N, or ¢(00) = 0.

» We work with £ = lim £/e(n). One can also consider £ = £/e(cc),

—n
which is a quotient of £, but that gives weaker results.
» We have k’(n) = k(n) V a(n), so k’(n) = k(n) in L.
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(a) If Ris a ring spectrum then (R) A (R) = (R). Moreover, if M is any
R-module spectrum then (M) = (R) A (M) < (R).

(b) Let K be a ring spectrum such that all nonzero homogeneous elements of
K. are invertible. Then for any X we have either K.X = 0 and
(KY AN (X) =0, or K.X # 0 and (K) A (X) = (K) and (X) > (K).

(c) Let X be a spectrum, and let v: ¥YX — X be a self-map with cofibre
X/v and telescope X[v™']. Then (X) = (X/v) V (X[v']).

(d) Let T and X be spectra such that the homotopy groups of X are finitely
generated over Z,). Then T A IX =0 iff T A I(X/p) = 0 iff
F(T,X/p) =0.

e) Suppose again that the homotopy groups of X are finitely generated over

(e) S in that the h f X finitel d
Z(py, and that they are not all torsion groups. Then

(X) = (X;") = (HQ) v (X/p).
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> For any x, the class k(n) A x is 0 or k(n), and standard arguments tell us
which possibility holds for all our x.

» From this it is easy to understand k(U) A x and also k(U) V x, except for
the fact that k(U) V j(m,S) = k(U U S) when U is big.

» We have ring maps T(0) - T(1) — --- — T(oc0) = BP — K(n), giving
t(0) > t(1) > --- > t(o0) > k(n).

» However, j(0) < (1) <--- < j(w) < j(c0) by applying Brown-Comenetz
duality to a T(g + 1)-based Adams resolution of T(q).

> A similar argument with generalised Adams resolutions gives
t(q) Aj(m) =0 for ¢ > m. However, if ¢ < m then J(m) is a
T(g)-module and so t(q) Aj(m) = j(m).

» The spectrum J(q) is bounded above with torsion homotopy groups and
so satisfies (J(q)) < (H/p), or j(q) < k(o0).

> There are various equations uV v = x and u A v =y that hold by
definition in A; we need to show that they also hold in £. In the cases
where x and y are not of the form t(g, T), we now have enough
information to see that the relevant equations hold already in L.
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» Recall that t(q, T; n) = t(q) A f(n) Vv k(T) for sufficiently large n.

» The following rules are valid in £ (provided that n is large enough for the
terms on the left to be defined):

t(q, T;n) A t(q', T';n) = t(max(q,q’), TN T'; n))
t(q, T;n) vV t(q’, T'; n) = t(min(q,q’), TU T'; n)
t(q, T;n) Vv j(m',S') =t(q, TUS'; n)
t(q, T;n)V k(U') = t(q, TUU'; n).

> In the quotient £, the class t(g, T; n) is independent of n.
(Increasing n by 1 swaps a k’(n) for a k(n).)



Popular Bousfield classes

0 = k(0)
S=35, = T(0) = t(0,Nu)
S/p=S/p~ = t(0,[1, c])
F(n) = (0, [n, oc])
HQ = SQ = I(HQ) = k({0})
H/p=H/p™ =I(H) = 1(H/p) = I(BP{n >) = k({oc})

= k({0,00})
v, 'F(n) = K'(n) =~ k({n})
T(q) = t(q,N)

BP = BP} = T(o0) = t(co,N)
P(n) = BP/I, = t(o0, [n, o))
B(n) = v, 'P(n) = K(n) = M,S = k({n})
IB(n) = IK(n) = k({n})



Popular Bousfield classes

E(n) = v, 'BP(n) = v, 'BP = L,S = k([0, n])
E(n) = Li(wS = k([0, n])
CnS ~ t(0,[n+1,00])
BP(n) = k([0, n] U {oo})
BP{(n)/l, = k({n,o0})
KU = KO = k({0,1})
kU = kO = k({0,1,00})
Ell = TMF = k({0,1,2})
I(S) = I(T(0)) = I(F(n)) = j(0,0)
1(85) = 1(5/p>) = j(0,{0})
I(T(m)) = 1(T(m) A F(n)) = j(m,0)



