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> But (a) is really part of (b).
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> We often work with even periodic theories where E*(1) = 0 and E~2(1)
contains a unit. Here it is natural to focus on E°(X).
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This is called periodic complex cobordism.

> The Nilpotence (pre) Theorem of Hopkins-Devinatz-Smith: if MP*(u) =0
then u* = 0 for large k. This is the most powerful known theorem of the
type algebra = topology.

» Fix a prime p and an integer n > 0. There is then an even periodic theory
K(p, n) with K(p, n)*(1) = Fp[u, u™']. This is called Morava K-theory.

» The K(p, n)'s together carry roughly the same information as MP.
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> Every even periodic theory E gives a formal group Pk.

» The functor E — Pg is not too far from being an equivalence.

» The most elementary examples of formal groups are the additive and
multiplicative formal groups; these correspond to HP and KU.
(Here HP'(X) =TT, H*¥(X).)

» Steenrod operations in HP°(X;F,) and Adams operations in KU°(X) are
closely related to endomorphisms of the associated formal groups.

» The ring MP°(1) is naturally isomorphic to the Lazard ring, which plays a
central role in formal group theory.

» The Morava K-theories K(p, n) all have different formal groups.
» Together with HP°(X;F,) and HP°(X; Q) this gives all formal groups
over fields up to Galois twisting.

» For many spaces X the scheme Xg can be described naturally in terms of
Pe. For example, if X = BU(n) = {n — dimensional subspaces of C*}
then Xg = (Pg)/X.



Examples of formal groups



Examples of formal groups

» For any ring R we define commutative groups as follows:



Examples of formal groups

» For any ring R we define commutative groups as follows:
> G,(R)={a€ R| ais nilpotent } (under addition)



Examples of formal groups

» For any ring R we define commutative groups as follows:
> G,(R)={a€ R| ais nilpotent } (under addition)
> Gn(R) ={u € R| u—1is nilpotent } (under multiplication)



Examples of formal groups

» For any ring R we define commutative groups as follows:
> G,(R)={a€ R| ais nilpotent } (under addition)
> Gn(R) ={u € R| u—1is nilpotent } (under multiplication)
» G(R)={A=[S ] € Mx(R) | c2+s*> =1, c— 1 nilpotent }

c



Examples of formal groups

» For any ring R we define commutative groups as follows:

G:(R) = {a € R| ais nilpotent } (under addition)

Gm(R) = {u € R| u—1is nilpotent } (under multiplication)
G(R)={A=[¢ ] € Ma(R)| 2 +s* =1, c — 1 nilpotent }
Ge(R) = {(u,v) € Nil(R)? | v — u® + uv? = 0} (an elliptic curve)

v

vYyyv



Examples of formal groups

» For any ring R we define commutative groups as follows:

> G,(R)={a€ R| ais nilpotent } (under addition)
Gm(R) = {u € R| u—1is nilpotent } (under multiplication)
G(R)={A=[¢ ] € Ma(R)| 2 +s* =1, c — 1 nilpotent }
> Ge(R) = {(u,v) € Nil(R)? | v — ud + uv? = 0} (an elliptic curve)

» These are all functorial in R.

vy



Examples of formal groups

» For any ring R we define commutative groups as follows:

G:(R) = {a € R| ais nilpotent } (under addition)

Gm(R) = {u € R| u—1is nilpotent } (under multiplication)
G(R)={A=[¢ ] € Ma(R)| 2 +s* =1, c — 1 nilpotent }
Ge(R) = {(u,v) € Nil(R)? | v — u® + uv? = 0} (an elliptic curve)

» These are all functorial in R.

v

vYyyv

» We can define natural bijections x;: Gi(R) — Nil(R) by x.(a) = a and
Xm(u) =u—1and x,(A) = s/c and xe(u,v) = u.



Examples of formal groups

» For any ring R we define commutative groups as follows:
> G,(R)={a€ R| ais nilpotent } (under addition)
> Gn(R) ={u € R| u—1is nilpotent } (under multiplication)
» G(R)={A=[S ] € Mx(R) | c2+s*> =1, c— 1 nilpotent }
> Ge(R) = {(u,v) € Nil(R)? | v — ud + uv? = 0} (an elliptic curve)
> These are all functorial in R.

» We can define natural bijections x;: Gi(R) — Nil(R) by x.(a) = a and
Xm(u) =u—1and x,(A) = s/c and xe(u,v) = u.

> One can check that xj(a * b) = Fi(xi(a), xi(b)) where Fy(s,t) = s+t and
Fm(s,t) =s+t+stand F(s,t) = (s+t)/(1 —st) =3 ,,5t'(s+1).
(One cannot be so explicit for Fe.) B



Examples of formal groups

» For any ring R we define commutative groups as follows:
> G,(R)={a€ R| ais nilpotent } (under addition)
> Gn(R) ={u € R| u—1is nilpotent } (under multiplication)
» G(R)={A=[S ] € Mx(R) | c2+s*> =1, c— 1 nilpotent }
> Ge(R) = {(u,v) € Nil(R)? | v — ud + uv? = 0} (an elliptic curve)
> These are all functorial in R.

» We can define natural bijections x;: Gi(R) — Nil(R) by x.(a) = a and
Xm(u) =u—1and x,(A) = s/c and xe(u,v) = u.

> One can check that xj(a * b) = Fi(xi(a), xi(b)) where Fy(s,t) = s+t and
Fm(s,t) =s+t+stand F(s,t) = (s+t)/(1 —st) =3 ,,5t'(s+1).
(One cannot be so explicit for Fe.) B

» The functors G; are formal groups; the power series F; are formal group
laws.



Examples of formal groups

» For any ring R we define commutative groups as follows:
> G,(R)={a€ R| ais nilpotent } (under addition)
> Gn(R) ={u € R| u—1is nilpotent } (under multiplication)
» G(R)={A=[S ] € Mx(R) | c2+s*> =1, c— 1 nilpotent }
> Ge(R) = {(u,v) € Nil(R)? | v — ud + uv? = 0} (an elliptic curve)
> These are all functorial in R.
» We can define natural bijections x;: Gi(R) — Nil(R) by x.(a) = a and
Xm(u) =u—1and x,(A) = s/c and xe(u,v) = u.
> One can check that xj(a * b) = Fi(xi(a), xi(b)) where Fy(s,t) = s+t and
Fm(s,t) =s+t+stand F(s,t) = (s+t)/(1 —st) =3 ,,5t'(s+1).
(One cannot be so explicit for Fe.) B

» The functors G; are formal groups; the power series F; are formal group
laws.

» Axioms: F(s,0) =s, F(s,t) = F(t,s) and F(F(s,t),u) = F(s, F(t,u)).



Examples of formal groups

» For any ring R we define commutative groups as follows:
> G,(R)={a€ R| ais nilpotent } (under addition)
> Gn(R) ={u € R| u—1is nilpotent } (under multiplication)
» G(R)={A=[S ] € Mx(R) | c2+s*> =1, c— 1 nilpotent }
> Ge(R) = {(u,v) € Nil(R)? | v — u3 + uv? = 0} (an elliptic curve)
> These are all functorial in R.

» We can define natural bijections x;: Gi(R) — Nil(R) by x.(a) = a and
Xm(u) =u—1and x,(A) = s/c and xe(u,v) = u.

> One can check that xj(a * b) = Fi(xi(a), xi(b)) where Fy(s,t) = s+t and
Fm(s,t) =s+t+stand F(s,t) = (s+t)/(1 —st) =3 ,,5t'(s+1).
(One cannot be so explicit for Fe.) B

» The functors G; are formal groups; the power series F; are formal group
laws.

» Axioms: F(s,0) =s, F(s,t) = F(t,s) and F(F(s,t),u) = F(s, F(t,u)).

> More general version: we have a ground ring k, and G(R) is only
functorial for k-algebras, and F(s, t) € ks, t].



Examples of formal groups

» For any ring R we define commutative groups as follows:
> G,(R)={a€ R| ais nilpotent } (under addition)
> Gn(R) ={u € R| u—1is nilpotent } (under multiplication)
» G(R)={A=[S ] € Mx(R) | c2+s*> =1, c— 1 nilpotent }
> Ge(R) = {(u,v) € Nil(R)? | v — ud + uv? = 0} (an elliptic curve)
> These are all functorial in R.
» We can define natural bijections x;: Gi(R) — Nil(R) by x.(a) = a and
Xm(u) =u—1and x,(A) = s/c and xe(u,v) = u.
> One can check that xj(a * b) = Fi(xi(a), xi(b)) where Fy(s,t) = s+t and
Fm(s,t) =s+t+stand F(s,t) = (s+t)/(1 —st) =3 ,,5t'(s+1).
(One cannot be so explicit for Fe.) B

» The functors G; are formal groups; the power series F; are formal group
laws.

» Axioms: F(s,0) =s, F(s,t) = F(t,s) and F(F(s,t),u) = F(s, F(t,u)).
> More general version: we have a ground ring k, and G(R) is only
functorial for k-algebras, and F(s, t) € ks, t].

> Example: for any a € k we have an FGL F(s,t) = s+ t + ast over k.
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» This is a commutative topological monoid (with inverses up to homotopy).
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> So Pt is a formal group scheme over 1¢ = spec(E°(1)).

> We can calculate E*(CP") by induction on n using Mayer-Vietoris. It
follows that there exists x with E°(P) = E°(1)[x]
(but there is no canonical choice of x).

» This gives E°(P x P) = E°(1)[x1, x2]. The multiplication map
pw: P x P— P has p*(x) = F(x1, x2) for some formal group law F.

» Now fix a prime p and let w: P — P be the p'th power map and put
B = (C[t]\ {0})/ G

» Suppose that p =0 in E°(1). Under some conditions that are often
satisfied, we have E°(B) = E°(1)[x]/7*(x) and this is free of finite rank
over E°(1). If so, then the rank is always p” for some n > 0, called the
height.

» For E = K(p, n) we have 7*(x) = x”" and the height is n.

» Over an algebraically closed field of characteristic p, any two formal
groups of the same height are isomorphic.
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> Consider a formal power series F(s,t) =3, bis'tl € k[s, t].
When is this an FGL?
» For F(s,0) = s we need big = di1. For F(s,t) = F(t,s) we need b; = bj;.
> Now
F(s,t) = s+t + bust + bio(st? 4+ s°t) + bns?t® + bis(st® + s°t) + O(5)
> Using this we get
F(F(s,t),u) — F(s, F(t,u)) = (2b11b12 + 3b13 — 2b)(s — u)stu 4 O(5)
> For an FGL we must have 2b11b12 4 3b13 — 2b2. In terms of the
parameters a; = b1 and a» = bi» and az = bxy — biz we get
F(s,t) = s+tdaist+asst(s+t)+2(as—aiaz)st(s?+st+t?)+ass’t>+0(5).
» There are no more relations: any power series of the above form satisfies
the FGL conditions up to errors of order 5.
> Lazard's theorem: we can continue to define as, as, ... so that F(s,t) can
be expressed in terms of the a;, and no further relations are required to
make the associativity axiom hold.
» Reformulation: over the Lazard ring L = Z[a1, a2, .. .] there is a universal

formal group law F, such that the resulting map Rings(L, k) — FGL(k) is
bijective for all k.
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> A simple topological construction gives a map MP°(1) — H.(MP). We can
push forward the FGL over MPY(1) to get an FGL over H.(MP).

> In fact this is F(s,t) = f~1(f(s) + f(t)), where f(t) =, bjt'™l. So f
gives an isomorphism from F to the additive law F,(s,t) = s+ t.

> The remaining steps are harder to summarise, but they involve the action of
the group Aut(F;), its relationship with Steenrod operations, and the
Adams spectral sequence.



The Spanier-Whitehead category



The Spanier-Whitehead category

> A finite spectrum is an expression L"X, where X is a based finite simplicial
complex, and n € Z. (This can be interpreted as a space if n > 0, but not
necessarily if n < 0.) We write F for the class of finite spectra.



The Spanier-Whitehead category

> A finite spectrum is an expression L"X, where X is a based finite simplicial
complex, and n € Z. (This can be interpreted as a space if n > 0, but not
necessarily if n < 0.) We write F for the class of finite spectra.
> We define F(X"X,X™Y) = lim [Z"™*X, X"k Y]. This has a natural
—k

structure as a (finitely generated) Abelian group. There is a composition
rule making F an additive category.



The Spanier-Whitehead category

> A finite spectrum is an expression L"X, where X is a based finite simplicial
complex, and n € Z. (This can be interpreted as a space if n > 0, but not
necessarily if n < 0.) We write F for the class of finite spectra.

> We define F(X"X,X™Y) = lim [Z"™*X, X"k Y]. This has a natural
—
structure as a (finitely generated) Abelian group. There is a composition
rule making F an additive category.

> This is an approximation to the homotopy category of finite complexes,
and has a rich and interesting structure.



The Spanier-Whitehead category

> A finite spectrum is an expression L"X, where X is a based finite simplicial
complex, and n € Z. (This can be interpreted as a space if n > 0, but not
necessarily if n < 0.) We write F for the class of finite spectra.
> We define F(X"X,X™Y) = lim [Z"™*X, X"k Y]. This has a natural
—k

structure as a (finitely generated) Abelian group. There is a composition
rule making F an additive category.

> This is an approximation to the homotopy category of finite complexes,
and has a rich and interesting structure.

» Homology gives an isomorphism
Q® F(X,Y) — Vect.(H.(X;Q), H.(Y; Q)).



The Spanier-Whitehead category

> A finite spectrum is an expression L"X, where X is a based finite simplicial
complex, and n € Z. (This can be interpreted as a space if n > 0, but not
necessarily if n < 0.) We write F for the class of finite spectra.
> We define F(X"X,X™Y) = lim [Z"™*X, X"k Y]. This has a natural
—k

structure as a (finitely generated) Abelian group. There is a composition
rule making F an additive category.

> This is an approximation to the homotopy category of finite complexes,
and has a rich and interesting structure.

» Homology gives an isomorphism
Q® F(X,Y) — Vect.(H.(X;Q), H.(Y; Q)).

> The category F has formal properties similar to those of Vect.: there are
tensor products, duals and adjoints.
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> A finite spectrum is an expression L"X, where X is a based finite simplicial
complex, and n € Z. (This can be interpreted as a space if n > 0, but not
necessarily if n < 0.) We write F for the class of finite spectra.
> We define F(X"X,X™Y) = lim [Z"™*X, X"k Y]. This has a natural
—k

structure as a (finitely generated) Abelian group. There is a composition
rule making F an additive category.

> This is an approximation to the homotopy category of finite complexes,
and has a rich and interesting structure.

» Homology gives an isomorphism
Q® F(X,Y) — Vect.(H.(X;Q), H.(Y; Q)).

> The category F has formal properties similar to those of Vect.: there are
tensor products, duals and adjoints.

> It is very hard work to calculate (X, Y), even in simple cases like
F(59,5%). This is known for d < 60 or so, but not for general d. The
calculations use MP or related methods.
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» Say X has type n at p if K(p, n)«(X) # 0 and K(p, m)«(X) =0 for
m < n. Let F(p, n) be the category of X of type at least n at p.

» Nilpotence theorem: if u: /X — X and K(p, n).(u) = 0 for all (p, n)
then u* = 0: Z%X — X for k> 0.

> Periodicity theorem: if X € F(p, n) with n > 0 then there is a map
v: X9X — X (for some d > 0) giving an isomorphism on K(p, n).(X)
(and having a number of other properties, making it “almost unique”).

> Thick subcategory theorem: if C is a subcategory of F satisfying some
natural conditions, then it must be one of the categories F(p, n).

» Chromatic convergence theorem: 73(X) = F(S*, X) can be built up in
layers. The difference between layers n and n — 1 is in some sense
controlled by K(p, n), and consists of families that are periodic of period
2(p" — 1)p* for large k.



