Introduction to chromatic homotopy

Neil Strickland

October 6, 2017

- ▶ For any space X we have a cohomology ring $H^*(X)$
- ▶ For many spaces this can be described explicitly: for example, if $X = \{$ two-dimensional subspaces of $\mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2)$.
- ▶ We can also consider the scheme $X_H = \operatorname{spec}(H^*(X))$, so $H^*(X)$ is the ring of functions on X_H .
- Now $f: X \to Y$ gives $f_H: X_H \to Y_H$ (depending only on the homotopy class) and $(X \coprod Y)_H = X_H \coprod Y_H$ and $(X \times Y)_H \sim X_H \times Y_H$.
- ► How good an invariant is this?
 - ▶ If $f_H: X_H \to Y_H$ is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
 - ▶ The map $[X, Y] \rightarrow Schemes(X_H, Y_H) = Rings(H^*(Y), H^*(X))$ is typically far from being injective or surjective.
 - ▶ If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$
- ▶ How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories
- ▶ But (a) is really part of (b).

▶ For any space X we have a cohomology ring $H^*(X)$

- ▶ For many spaces this can be described explicitly: for example, if $X = \{ \text{ two-dimensional subspaces of } \mathbb{C}^4 \} \text{ then } H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2).$
- ▶ We can also consider the scheme $X_H = \operatorname{spec}(H^*(X))$, so $H^*(X)$ is the ring of functions on X_H .
- ▶ Now $f: X \to Y$ gives $f_H: X_H \to Y_H$ (depending only on the homotopy class) and $(X \coprod Y)_H = X_H \coprod Y_H$ and $(X \times Y)_H \sim X_H \times Y_H$.
- ► How good an invariant is this?
 - ▶ If $f_H: X_H \to Y_H$ is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
 - ▶ The map $[X, Y] \rightarrow \text{Schemes}(X_H, Y_H) = \text{Rings}(H^*(Y), H^*(X))$ is typically far from being injective or surjective.
 - ▶ If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$
- ► How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories
- ▶ But (a) is really part of (b).

- ▶ For any space X we have a cohomology ring $H^*(X)$
- For many spaces this can be described explicitly: for example, if $X = \{$ two-dimensional subspaces of $\mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2).$
- ▶ We can also consider the scheme $X_H = \text{spec}(H^*(X))$, so $H^*(X)$ is the ring of functions on X_H .
- Now $f: X \to Y$ gives $f_H: X_H \to Y_H$ (depending only on the homotopy class) and $(X \coprod Y)_H = X_H \coprod Y_H$ and $(X \times Y)_H \sim X_H \times Y_H$.
- ► How good an invariant is this?
 - ▶ If $f_H: X_H \to Y_H$ is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
 - ▶ The map $[X, Y] \rightarrow Schemes(X_H, Y_H) = Rings(H^*(Y), H^*(X))$ is typically far from being injective or surjective.
 - ▶ If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$
- ► How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories
- ▶ But (a) is really part of (b).

- ▶ For any space X we have a cohomology ring $H^*(X)$
- ▶ For many spaces this can be described explicitly: for example, if $X = \{$ two-dimensional subspaces of $\mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2)$.
- ▶ We can also consider the scheme $X_H = \text{spec}(H^*(X))$, so $H^*(X)$ is the ring of functions on X_H .
- ▶ Now $f: X \to Y$ gives $f_H: X_H \to Y_H$ (depending only on the homotopy class) and $(X \coprod Y)_H = X_H \coprod Y_H$ and $(X \times Y)_H \sim X_H \times Y_H$.
- ► How good an invariant is this?
 - If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
 - ▶ The map $[X, Y] \rightarrow Schemes(X_H, Y_H) = Rings(H^*(Y), H^*(X))$ is typically far from being injective or surjective.
 - ▶ If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$
- ► How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories
- ▶ But (a) is really part of (b).

- ▶ For any space X we have a cohomology ring $H^*(X)$
- For many spaces this can be described explicitly: for example, if $X = \{ \text{ two-dimensional subspaces of } \mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2).$
- ▶ We can also consider the scheme $X_H = \text{spec}(H^*(X))$, so $H^*(X)$ is the ring of functions on X_H .
- ▶ Now $f: X \to Y$ gives $f_H: X_H \to Y_H$ (depending only on the homotopy class) and $(X \coprod Y)_H = X_H \coprod Y_H$ and $(X \times Y)_H \sim X_H \times Y_H$.
- How good an invariant is this?
 - If $f_H \colon X_H \to Y_H$ is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
 - The map [X, Y] → Schemes(X_H, Y_H) = Rings(H*(Y), H*(X) is typically far from being injective or surjective.
 - ▶ If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$
- ▶ How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories
- ▶ But (a) is really part of (b).

- ▶ For any space X we have a cohomology ring $H^*(X)$
- ▶ For many spaces this can be described explicitly: for example, if $X = \{$ two-dimensional subspaces of $\mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2)$.
- ▶ We can also consider the scheme $X_H = \text{spec}(H^*(X))$, so $H^*(X)$ is the ring of functions on X_H .
- ▶ Now $f: X \to Y$ gives $f_H: X_H \to Y_H$ (depending only on the homotopy class) and $(X \coprod Y)_H = X_H \coprod Y_H$ and $(X \times Y)_H \sim X_H \times Y_H$.
- ▶ How good an invariant is this?
 - If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
 - The map [X, Y] → Schemes(X_H, Y_H) = Rings(H*(Y), H*(X) is typically far from being injective or surjective.
 - ▶ If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$
- ► How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories
- ▶ But (a) is really part of (b).

- ▶ For any space X we have a cohomology ring $H^*(X)$
- For many spaces this can be described explicitly: for example, if $X = \{ \text{ two-dimensional subspaces of } \mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2).$
- ▶ We can also consider the scheme $X_H = \text{spec}(H^*(X))$, so $H^*(X)$ is the ring of functions on X_H .
- ▶ Now $f: X \to Y$ gives $f_H: X_H \to Y_H$ (depending only on the homotopy class) and $(X \coprod Y)_H = X_H \coprod Y_H$ and $(X \times Y)_H \sim X_H \times Y_H$.
- ▶ How good an invariant is this?
 - If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
 - The map [X, Y] → Schemes(X_H, Y_H) = Rings(H*(Y), H*(X) is typically far from being injective or surjective.
 - ▶ If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$
- ► How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories
- ▶ But (a) is really part of (b).

- ▶ For any space X we have a cohomology ring $H^*(X)$
- For many spaces this can be described explicitly: for example, if $X = \{$ two-dimensional subspaces of $\mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2)$.
- ▶ We can also consider the scheme $X_H = \operatorname{spec}(H^*(X))$, so $H^*(X)$ is the ring of functions on X_H .
- ▶ Now $f: X \to Y$ gives $f_H: X_H \to Y_H$ (depending only on the homotopy class) and $(X \coprod Y)_H = X_H \coprod Y_H$ and $(X \times Y)_H \sim X_H \times Y_H$.
- ▶ How good an invariant is this?
 - If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
 - ▶ The map $[X, Y] \rightarrow Schemes(X_H, Y_H) = Rings(H^*(Y), H^*(X))$ is typically far from being injective or surjective.
 - ▶ If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$
- ► How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories
- ▶ But (a) is really part of (b).

- ▶ For any space X we have a cohomology ring $H^*(X)$
- ▶ For many spaces this can be described explicitly: for example, if $X = \{$ two-dimensional subspaces of $\mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2)$.
- ▶ We can also consider the scheme $X_H = \text{spec}(H^*(X))$, so $H^*(X)$ is the ring of functions on X_H .
- ▶ Now $f: X \to Y$ gives $f_H: X_H \to Y_H$ (depending only on the homotopy class) and $(X \coprod Y)_H = X_H \coprod Y_H$ and $(X \times Y)_H \sim X_H \times Y_H$.
- ▶ How good an invariant is this?
 - If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
 - ▶ The map $[X, Y] \rightarrow Schemes(X_H, Y_H) = Rings(H^*(Y), H^*(X))$ is typically far from being injective or surjective.
 - ▶ If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$.
- ► How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories
- ▶ But (a) is really part of (b).

- ▶ For any space X we have a cohomology ring $H^*(X)$
- For many spaces this can be described explicitly: for example, if $X = \{ \text{ two-dimensional subspaces of } \mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2).$
- ▶ We can also consider the scheme $X_H = \operatorname{spec}(H^*(X))$, so $H^*(X)$ is the ring of functions on X_H .
- ▶ Now $f: X \to Y$ gives $f_H: X_H \to Y_H$ (depending only on the homotopy class) and $(X \coprod Y)_H = X_H \coprod Y_H$ and $(X \times Y)_H \sim X_H \times Y_H$.
- ▶ How good an invariant is this?
 - If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
 - ▶ The map $[X, Y] \rightarrow Schemes(X_H, Y_H) = Rings(H^*(Y), H^*(X))$ is typically far from being injective or surjective.
 - ▶ If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$.
- ► How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories
- ▶ But (a) is really part of (b).

- ▶ For any space X we have a cohomology ring $H^*(X)$
- ▶ For many spaces this can be described explicitly: for example, if $X = \{$ two-dimensional subspaces of $\mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2)$.
- ▶ We can also consider the scheme $X_H = \text{spec}(H^*(X))$, so $H^*(X)$ is the ring of functions on X_H .
- ▶ Now $f: X \to Y$ gives $f_H: X_H \to Y_H$ (depending only on the homotopy class) and $(X \coprod Y)_H = X_H \coprod Y_H$ and $(X \times Y)_H \sim X_H \times Y_H$.
- ▶ How good an invariant is this?
 - If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
 - ▶ The map $[X, Y] \rightarrow Schemes(X_H, Y_H) = Rings(H^*(Y), H^*(X))$ is typically far from being injective or surjective.
 - ▶ If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$.
- ▶ How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories.
- ▶ But (a) is really part of (b).

- ▶ For any space X we have a cohomology ring $H^*(X)$
- For many spaces this can be described explicitly: for example, if $X = \{ \text{ two-dimensional subspaces of } \mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2).$
- ▶ We can also consider the scheme $X_H = \operatorname{spec}(H^*(X))$, so $H^*(X)$ is the ring of functions on X_H .
- ▶ Now $f: X \to Y$ gives $f_H: X_H \to Y_H$ (depending only on the homotopy class) and $(X \coprod Y)_H = X_H \coprod Y_H$ and $(X \times Y)_H \sim X_H \times Y_H$.
- ▶ How good an invariant is this?
 - If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
 - ▶ The map $[X, Y] \rightarrow Schemes(X_H, Y_H) = Rings(H^*(Y), H^*(X))$ is typically far from being injective or surjective.
 - ▶ If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$.
- ▶ How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories.
- ▶ But (a) is really part of (b).

- ▶ For any space X we have a cohomology ring $H^*(X)$
- For many spaces this can be described explicitly: for example, if $X = \{ \text{ two-dimensional subspaces of } \mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2).$
- ▶ We can also consider the scheme $X_H = \operatorname{spec}(H^*(X))$, so $H^*(X)$ is the ring of functions on X_H .
- ▶ Now $f: X \to Y$ gives $f_H: X_H \to Y_H$ (depending only on the homotopy class) and $(X \coprod Y)_H = X_H \coprod Y_H$ and $(X \times Y)_H \sim X_H \times Y_H$.
- ▶ How good an invariant is this?
 - If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
 - The map [X, Y] → Schemes(X_H, Y_H) = Rings(H*(Y), H*(X) is typically far from being injective or surjective.
 - ▶ If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$.
- ▶ How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories.
- ▶ But (a) is really part of (b).

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^* : Spaces \to Rings* with properties similar to H^* , but $E^*(1)$ need not be \mathbb{Z} . It takes work to provide interesting examples.
- ▶ We often work with even periodic theories where $E^1(1) = 0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^0(X)$.
- ▶ Given an even periodic theory E we put $X_E = \text{spf}(E^0X)$.
- There is an even periodic theory KU with $KU^*(1) = \mathbb{Z}[u, u^{-1}]$ (where |u| = -2) and $KU^0(X)$ is the ring of virtual complex vector bundles on X
- Put $MP(n) = \{(v, V) \mid v \in V \leq \mathbb{C}^{2n}\}_{\infty}$ and $\Sigma^m X = (\mathbb{R}^m \times X)_{\infty}$ and $MP^k(X) = \lim_{\longrightarrow n} [\Sigma^{2n-k}X, MP(n)].$
 - This gives an even periodic theory with $MP^*(1) = \mathbb{Z}[a_1, a_2, a_3, \dots]$ This is called *periodic complex cobordism*.
- ▶ The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if $MP^*(u) = 0$ then $u^k = 0$ for large k. This is the most powerful known theorem of the type algebra \Rightarrow topology.
- Fix a prime p and an integer n > 0. There is then an even periodic theory K(p, n) with $K(p, n)^*(1) = \mathbb{F}_p[u, u^{-1}]$. This is called *Morava K-theory*.
- ▶ The K(p, n)'s together carry roughly the same information as MP.

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^* : Spaces \to Rings* with properties similar to H^* , but $E^*(1)$ need not be \mathbb{Z} . It takes work to provide interesting examples.
- ▶ We often work with even periodic theories where $E^1(1) = 0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^0(X)$.
- ▶ Given an even periodic theory E we put $X_E = spf(E^0X)$.
- There is an even periodic theory KU with $KU^*(1) = \mathbb{Z}[u, u^{-1}]$ (where |u| = -2) and $KU^0(X)$ is the ring of virtual complex vector bundles on X.
- Put $MP(n) = \{(v, V) \mid v \in V \leq \mathbb{C}^{2n}\}_{\infty}$ and $\Sigma^m X = (\mathbb{R}^m \times X)_{\infty}$ and $MP^k(X) = \lim_{n \to \infty} [\Sigma^{2n-k}X, MP(n)].$ This gives an even periodic theory with $MP^*(1) = \mathbb{Z}[a_1, a_2, a_3, \dots].$
- The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if $MP^*(u) = 0$ then $u^k = 0$ for large k. This is the most powerful known theorem of the type algebra \Rightarrow topology.
- Fix a prime p and an integer n > 0. There is then an even periodic theory K(p, n) with $K(p, n)^*(1) = \mathbb{F}_p[u, u^{-1}]$. This is called *Morava K-theory*.
- ▶ The K(p, n)'s together carry roughly the same information as MP.

- ▶ A generalised cohomology theory is a contravariant, homotopy invariant functor E^* : Spaces \rightarrow Rings* with properties similar to H^* , but $E^*(1)$ need not be \mathbb{Z} . It takes work to provide interesting examples.
- We often work with even periodic theories where $E^1(1) = 0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^0(X)$.
- ▶ Given an even periodic theory E we put $X_E = spf(E^0X)$.
- There is an even periodic theory KU with $KU^*(1) = \mathbb{Z}[u, u^{-1}]$ (where |u| = -2) and $KU^0(X)$ is the ring of virtual complex vector bundles on X.
- Put $MP(n) = \{(v, V) \mid v \in V \leq \mathbb{C}^{2n}\}_{\infty}$ and $\Sigma^m X = (\mathbb{R}^m \times X)_{\infty}$ and $MP^k(X) = \lim_{n \to \infty} [\Sigma^{2n-k}X, MP(n)].$ This gives an even periodic theory with $MP^*(1) = \mathbb{Z}[a_1, a_2, a_3, \dots].$
 - This gives an even periodic theory with $MP^-(1) = \mathbb{Z}[a_1, a_2, a_3, \dots]$ This is called *periodic complex cobordism*.
- The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if $MP^*(u) = 0$ then $u^k = 0$ for large k. This is the most powerful known theorem of the type algebra \Rightarrow topology.
- Fix a prime p and an integer n > 0. There is then an even periodic theory K(p, n) with $K(p, n)^*(1) = \mathbb{F}_p[u, u^{-1}]$. This is called *Morava K-theory*.
- ▶ The K(p, n)'s together carry roughly the same information as MP.

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^* : Spaces \to Rings* with properties similar to H^* , but $E^*(1)$ need not be \mathbb{Z} . It takes work to provide interesting examples.
- We often work with even periodic theories where $E^1(1) = 0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^0(X)$.
- Given an even periodic theory E we put $X_E = \operatorname{spf}(E^0X)$.
- There is an even periodic theory KU with $KU^*(1) = \mathbb{Z}[u, u^{-1}]$ (where |u| = -2) and $KU^0(X)$ is the ring of virtual complex vector bundles on X.
- Put $MP(n) = \{(v, V) \mid v \in V \leq \mathbb{C}^{2n}\}_{\infty}$ and $\Sigma^m X = (\mathbb{R}^m \times X)_{\infty}$ and $MP^k(X) = \lim_{\longrightarrow n} [\Sigma^{2n-k}X, MP(n)].$ This gives an even periodic theory with $MP^*(1) = \mathbb{Z}[a_1, a_2, a_3, \dots]$.
- ▶ The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if $MP^*(u) = 0$ then $u^k = 0$ for large k. This is the most powerful known theorem of the type algebra \Rightarrow topology.
- Fix a prime p and an integer n > 0. There is then an even periodic theory K(p, n) with $K(p, n)^*(1) = \mathbb{F}_p[u, u^{-1}]$. This is called *Morava K-theory*.
- ▶ The K(p, n)'s together carry roughly the same information as MP.

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^* : Spaces \to Rings* with properties similar to H^* , but $E^*(1)$ need not be \mathbb{Z} . It takes work to provide interesting examples.
- ▶ We often work with even periodic theories where $E^1(1) = 0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^0(X)$.
- Given an even periodic theory E we put $X_E = \operatorname{spf}(E^0X)$.
- ▶ There is an even periodic theory KU with $KU^*(1) = \mathbb{Z}[u, u^{-1}]$ (where |u| = -2) and $KU^0(X)$ is the ring of virtual complex vector bundles on X.
- Put $MP(n) = \{(v, V) \mid v \in V \leq \mathbb{C}^{2n}\}_{\infty}$ and $\Sigma^m X = (\mathbb{R}^m \times X)_{\infty}$ and $MP^k(X) = \lim_{n \to \infty} [\Sigma^{2n-k}X, MP(n)].$ This gives an even periodic theory with $MP^*(1) = \mathbb{Z}[a_1, a_2, a_3, \dots].$
- ▶ The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if $MP^*(u) = 0$ then $u^k = 0$ for large k. This is the most powerful known theorem of the type algebra \Rightarrow topology.
- Fix a prime p and an integer n > 0. There is then an even periodic theory K(p, n) with $K(p, n)^*(1) = \mathbb{F}_p[u, u^{-1}]$. This is called *Morava K-theory*.
- ▶ The K(p, n)'s together carry roughly the same information as MP.

- ▶ A generalised cohomology theory is a contravariant, homotopy invariant functor E^* : Spaces \rightarrow Rings* with properties similar to H^* , but $E^*(1)$ need not be \mathbb{Z} . It takes work to provide interesting examples.
- We often work with even periodic theories where $E^1(1) = 0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^0(X)$.
- Given an even periodic theory E we put $X_E = \operatorname{spf}(E^0X)$.
- ▶ There is an even periodic theory KU with $KU^*(1) = \mathbb{Z}[u, u^{-1}]$ (where |u| = -2) and $KU^0(X)$ is the ring of virtual complex vector bundles on X.
- ▶ Put $MP(n) = \{(v, V) \mid v \in V \leq \mathbb{C}^{2n}\}_{\infty}$ and $\Sigma^m X = (\mathbb{R}^m \times X)_{\infty}$ and $MP^k(X) = \lim_{\stackrel{\longrightarrow}{n}} [\Sigma^{2n-k}X, MP(n)].$

- ▶ The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if $MP^*(u) = 0$ then $u^k = 0$ for large k. This is the most powerful known theorem of the type algebra \Rightarrow topology.
- Fix a prime p and an integer n > 0. There is then an even periodic theory K(p, n) with $K(p, n)^*(1) = \mathbb{F}_p[u, u^{-1}]$. This is called *Morava K-theory*.
- ▶ The K(p, n)'s together carry roughly the same information as MP.

- ▶ A generalised cohomology theory is a contravariant, homotopy invariant functor E^* : Spaces \rightarrow Rings* with properties similar to H^* , but $E^*(1)$ need not be \mathbb{Z} . It takes work to provide interesting examples.
- We often work with even periodic theories where $E^1(1) = 0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^0(X)$.
- Given an even periodic theory E we put $X_E = \operatorname{spf}(E^0X)$.
- ▶ There is an even periodic theory KU with $KU^*(1) = \mathbb{Z}[u, u^{-1}]$ (where |u| = -2) and $KU^0(X)$ is the ring of virtual complex vector bundles on X.
- ▶ Put $MP(n) = \{(v, V) \mid v \in V \leq \mathbb{C}^{2n}\}_{\infty}$ and $\Sigma^m X = (\mathbb{R}^m \times X)_{\infty}$ and $MP^k(X) = \lim_{\longrightarrow n} [\Sigma^{2n-k} X, MP(n)].$

- ▶ The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if $MP^*(u) = 0$ then $u^k = 0$ for large k. This is the most powerful known theorem of the type algebra \Rightarrow topology.
- Fix a prime p and an integer n > 0. There is then an even periodic theory K(p, n) with $K(p, n)^*(1) = \mathbb{F}_p[u, u^{-1}]$. This is called *Morava K-theory*.
- ▶ The K(p, n)'s together carry roughly the same information as MP.

- ▶ A generalised cohomology theory is a contravariant, homotopy invariant functor E^* : Spaces \rightarrow Rings* with properties similar to H^* , but $E^*(1)$ need not be \mathbb{Z} . It takes work to provide interesting examples.
- We often work with even periodic theories where $E^1(1) = 0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^0(X)$.
- Given an even periodic theory E we put $X_E = \operatorname{spf}(E^0X)$.
- ▶ There is an even periodic theory KU with $KU^*(1) = \mathbb{Z}[u, u^{-1}]$ (where |u| = -2) and $KU^0(X)$ is the ring of virtual complex vector bundles on X.
- Put $MP(n) = \{(v, V) \mid v \in V \leq \mathbb{C}^{2n}\}_{\infty}$ and $\Sigma^m X = (\mathbb{R}^m \times X)_{\infty}$ and $MP^k(X) = \lim_{\longrightarrow n} [\Sigma^{2n-k} X, MP(n)].$

- ▶ The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if $MP^*(u) = 0$ then $u^k = 0$ for large k. This is the most powerful known theorem of the type algebra \Rightarrow topology.
- Fix a prime p and an integer n > 0. There is then an even periodic theory K(p, n) with $K(p, n)^*(1) = \mathbb{F}_p[u, u^{-1}]$. This is called *Morava K-theory*.
- ▶ The K(p, n)'s together carry roughly the same information as MP.

- ▶ A generalised cohomology theory is a contravariant, homotopy invariant functor E^* : Spaces \rightarrow Rings* with properties similar to H^* , but $E^*(1)$ need not be \mathbb{Z} . It takes work to provide interesting examples.
- ▶ We often work with even periodic theories where $E^1(1) = 0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^0(X)$.
- Given an even periodic theory E we put $X_E = \operatorname{spf}(E^0X)$.
- ▶ There is an even periodic theory KU with $KU^*(1) = \mathbb{Z}[u, u^{-1}]$ (where |u| = -2) and $KU^0(X)$ is the ring of virtual complex vector bundles on X.
- ▶ Put $MP(n) = \{(v, V) \mid v \in V \leq \mathbb{C}^{2n}\}_{\infty}$ and $\Sigma^m X = (\mathbb{R}^m \times X)_{\infty}$ and $MP^k(X) = \lim_{\longrightarrow n} [\Sigma^{2n-k} X, MP(n)].$

- ▶ The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if $MP^*(u) = 0$ then $u^k = 0$ for large k. This is the most powerful known theorem of the type algebra \Rightarrow topology.
- Fix a prime p and an integer n > 0. There is then an even periodic theory K(p, n) with $K(p, n)^*(1) = \mathbb{F}_p[u, u^{-1}]$. This is called *Morava K-theory*.
- ▶ The K(p, n)'s together carry roughly the same information as MP.

- ▶ Every even periodic theory E gives a formal group P_E .
- ▶ The functor $E \mapsto P_E$ is not too far from being an equivalence.
- ▶ The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to HP and KU. (Here $HP^i(X) = \prod_i H^{i+2j}(X)$.)
- ▶ Steenrod operations in $HP^0(X; \mathbb{F}_p)$ and Adams operations in $KU^0(X)$ are closely related to endomorphisms of the associated formal groups.
- ► The ring MP⁰(1) is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- ▶ The Morava K-theories K(p, n) all have different formal groups.
- ▶ Together with $HP^0(X; \mathbb{F}_p)$ and $HP^0(X; \mathbb{Q})$ this gives all formal groups over fields up to Galois twisting.
- ▶ For many spaces X the scheme X_E can be described naturally in terms of P_E . For example, if $X = BU(n) = \{n \text{dimensional subspaces of } \mathbb{C}^{\infty}\}$ then $X_E = (P_E^n)/\Sigma_n$.

• Every even periodic theory E gives a formal group P_E .

- ▶ The functor $E \mapsto P_E$ is not too far from being an equivalence.
- ▶ The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to HP and KU. (Here $HP^i(X) = \prod_i H^{i+2j}(X)$.)
- ▶ Steenrod operations in $HP^0(X; \mathbb{F}_p)$ and Adams operations in $KU^0(X)$ are closely related to endomorphisms of the associated formal groups.
- ► The ring MP⁰(1) is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- ▶ The Morava K-theories K(p, n) all have different formal groups.
- ▶ Together with $HP^0(X; \mathbb{F}_p)$ and $HP^0(X; \mathbb{Q})$ this gives all formal groups over fields up to Galois twisting.
- ▶ For many spaces X the scheme X_E can be described naturally in terms of P_E . For example, if $X = BU(n) = \{n \text{dimensional subspaces of } \mathbb{C}^{\infty}\}$ then $X_E = (P_E^n)/\Sigma_n$.

- Every even periodic theory E gives a formal group P_E .
- ▶ The functor $E \mapsto P_E$ is not too far from being an equivalence.
- ▶ The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to HP and KU. (Here $HP^{i}(X) = \prod_{i} H^{i+2i}(X)$.)
- ▶ Steenrod operations in $HP^0(X; \mathbb{F}_p)$ and Adams operations in $KU^0(X)$ are closely related to endomorphisms of the associated formal groups.
- ► The ring MP⁰(1) is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- ▶ The Morava K-theories K(p, n) all have different formal groups.
- ▶ Together with $HP^0(X; \mathbb{F}_p)$ and $HP^0(X; \mathbb{Q})$ this gives all formal groups over fields up to Galois twisting.
- ▶ For many spaces X the scheme X_E can be described naturally in terms of P_E . For example, if $X = BU(n) = \{n \text{dimensional subspaces of } \mathbb{C}^{\infty}\}$ then $X_E = (P_E^n)/\Sigma_n$.

- Every even periodic theory E gives a formal group P_E .
- ▶ The functor $E \mapsto P_E$ is not too far from being an equivalence.
- ▶ The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to HP and KU. (Here $HP^{i}(X) = \prod_{i} H^{i+2j}(X)$.)
- ▶ Steenrod operations in $HP^0(X; \mathbb{F}_p)$ and Adams operations in $KU^0(X)$ are closely related to endomorphisms of the associated formal groups.
- ▶ The ring $MP^0(1)$ is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- ▶ The Morava K-theories K(p, n) all have different formal groups.
- ▶ Together with $HP^0(X; \mathbb{F}_p)$ and $HP^0(X; \mathbb{Q})$ this gives all formal groups over fields up to Galois twisting.
- ▶ For many spaces X the scheme X_E can be described naturally in terms of P_E . For example, if $X = BU(n) = \{n \text{dimensional subspaces of } \mathbb{C}^{\infty}\}$ then $X_E = (P_E^n)/\Sigma_n$.

- Every even periodic theory E gives a formal group P_E .
- ▶ The functor $E \mapsto P_E$ is not too far from being an equivalence.
- ▶ The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to HP and KU. (Here $HP^{i}(X) = \prod_{i} H^{i+2j}(X)$.)
- ▶ Steenrod operations in $HP^0(X; \mathbb{F}_p)$ and Adams operations in $KU^0(X)$ are closely related to endomorphisms of the associated formal groups.
- ▶ The ring $MP^0(1)$ is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- ▶ The Morava K-theories K(p, n) all have different formal groups.
- ▶ Together with $HP^0(X; \mathbb{F}_p)$ and $HP^0(X; \mathbb{Q})$ this gives all formal groups over fields up to Galois twisting.
- ▶ For many spaces X the scheme X_E can be described naturally in terms of P_E . For example, if $X = BU(n) = \{n \text{dimensional subspaces of } \mathbb{C}^{\infty}\}$ then $X_E = (P_E^n)/\Sigma_n$.

- Every even periodic theory E gives a formal group P_E .
- ▶ The functor $E \mapsto P_E$ is not too far from being an equivalence.
- ▶ The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to HP and KU. (Here $HP^{i}(X) = \prod_{i} H^{i+2j}(X)$.)
- ▶ Steenrod operations in $HP^0(X; \mathbb{F}_p)$ and Adams operations in $KU^0(X)$ are closely related to endomorphisms of the associated formal groups.
- ▶ The ring $MP^0(1)$ is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- ▶ The Morava K-theories K(p, n) all have different formal groups.
- ▶ Together with $HP^0(X; \mathbb{F}_p)$ and $HP^0(X; \mathbb{Q})$ this gives all formal groups over fields up to Galois twisting.
- ▶ For many spaces X the scheme X_E can be described naturally in terms of P_E . For example, if $X = BU(n) = \{n \text{dimensional subspaces of } \mathbb{C}^{\infty}\}$ then $X_E = (P_E^n)/\Sigma_n$.

- Every even periodic theory E gives a formal group P_E .
- ▶ The functor $E \mapsto P_E$ is not too far from being an equivalence.
- ▶ The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to HP and KU. (Here $HP^{i}(X) = \prod_{i} H^{i+2j}(X)$.)
- ▶ Steenrod operations in $HP^0(X; \mathbb{F}_p)$ and Adams operations in $KU^0(X)$ are closely related to endomorphisms of the associated formal groups.
- ▶ The ring $MP^0(1)$ is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- ▶ The Morava K-theories K(p, n) all have different formal groups.
- ▶ Together with $HP^0(X; \mathbb{F}_p)$ and $HP^0(X; \mathbb{Q})$ this gives all formal groups over fields up to Galois twisting.
- ▶ For many spaces X the scheme X_E can be described naturally in terms of P_E . For example, if $X = BU(n) = \{n \text{dimensional subspaces of } \mathbb{C}^{\infty}\}$ then $X_E = (P_E^n)/\Sigma_n$.

- Every even periodic theory E gives a formal group P_E .
- ▶ The functor $E \mapsto P_E$ is not too far from being an equivalence.
- ▶ The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to HP and KU. (Here $HP^{i}(X) = \prod_{i} H^{i+2j}(X)$.)
- ▶ Steenrod operations in $HP^0(X; \mathbb{F}_p)$ and Adams operations in $KU^0(X)$ are closely related to endomorphisms of the associated formal groups.
- ▶ The ring $MP^0(1)$ is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- ▶ The Morava K-theories K(p, n) all have different formal groups.
- ▶ Together with $HP^0(X; \mathbb{F}_p)$ and $HP^0(X; \mathbb{Q})$ this gives all formal groups over fields up to Galois twisting.
- ▶ For many spaces X the scheme X_E can be described naturally in terms of P_E . For example, if $X = BU(n) = \{n \text{dimensional subspaces of } \mathbb{C}^{\infty}\}$ then $X_E = (P_E^n)/\Sigma_n$.

- Every even periodic theory E gives a formal group P_E .
- ▶ The functor $E \mapsto P_E$ is not too far from being an equivalence.
- ▶ The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to HP and KU. (Here $HP^{i}(X) = \prod_{i} H^{i+2j}(X)$.)
- ▶ Steenrod operations in $HP^0(X; \mathbb{F}_p)$ and Adams operations in $KU^0(X)$ are closely related to endomorphisms of the associated formal groups.
- ▶ The ring $MP^0(1)$ is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- ▶ The Morava K-theories K(p, n) all have different formal groups.
- ▶ Together with $HP^0(X; \mathbb{F}_p)$ and $HP^0(X; \mathbb{Q})$ this gives all formal groups over fields up to Galois twisting.
- ▶ For many spaces X the scheme X_E can be described naturally in terms of P_E . For example, if $X = BU(n) = \{n \text{dimensional subspaces of } \mathbb{C}^{\infty}\}$ then $X_E = (P_E^n)/\Sigma_n$.

- \blacktriangleright For any ring R we define commutative groups as follows:
 - $ightharpoonup G_a(R) = \{a \in R \mid a \text{ is nilpotent }\} \text{ (under addition)}$
 - $G_m(R) = \{u \in R \mid u 1 \text{ is nilpotent }\}$ (under multiplication)
 - $G_r(R) = \{A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, c 1 \text{ nilpotent } \}$
 - $G_e(R) = \{(u, v) \in Nil(R)^2 \mid v u^3 + uv^2 = 0\}$ (an elliptic curve)
- ▶ These are all functorial in *R*
- ▶ We can define natural bijections x_i : $G_i(R) \to \text{Nil}(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- ▶ One can check that $x_i(a*b) = F_i(x_i(a), x_i(b))$ where $F_a(s,t) = s+t$ and $F_m(s,t) = s+t+st$ and $F_r(s,t) = (s+t)/(1-st) = \sum_{i\geq 0} s^i t^i (s+t)$. (One cannot be so explicit for F_e .)
- ▶ The functors G_i are formal groups; the power series F_i are formal group laws.
- ▶ Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t),u) = F(s,F(t,u)).
- ▶ More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and $F(s,t) \in k[\![s,t]\!]$.
- ▶ Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

► For any ring *R* we define commutative groups as follows:

- $ightharpoonup G_a(R) = \{a \in R \mid a \text{ is nilpotent }\}$ (under addition)
- $ightharpoonup G_m(R) = \{u \in R \mid u 1 \text{ is nilpotent }\}$ (under multiplication)
- $ightharpoonup G_r(R) = \{A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, \ c 1 \text{ nilpotent } \}$
- ► $G_e(R) = \{(u, v) \in Nil(R)^2 \mid v u^3 + uv^2 = 0\}$ (an elliptic curve)
- ightharpoonup These are all functorial in R.
- ▶ We can define natural bijections x_i : $G_i(R) \to \text{Nil}(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- ▶ One can check that $x_i(a*b) = F_i(x_i(a), x_i(b))$ where $F_a(s,t) = s+t$ and $F_m(s,t) = s+t+st$ and $F_r(s,t) = (s+t)/(1-st) = \sum_{i\geq 0} s^i t^i (s+t)$. (One cannot be so explicit for F_e .)
- ▶ The functors G_i are formal groups; the power series F_i are formal group laws.
- ▶ Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t),u) = F(s,F(t,u)).
- ▶ More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and $F(s,t) \in k[\![s,t]\!]$.
- ▶ Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

- ► For any ring *R* we define commutative groups as follows:
 - $G_a(R) = \{a \in R \mid a \text{ is nilpotent }\}$ (under addition)
 - $ightharpoonup G_m(R) = \{u \in R \mid u 1 \text{ is nilpotent }\} \text{ (under multiplication)}$
 - $ightharpoonup G_r(R) = \{A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, \ c 1 \text{ nilpotent}$
 - ▶ $G_e(R) = \{(u, v) \in Nil(R)^2 \mid v u^3 + uv^2 = 0\}$ (an elliptic curve)
- ▶ These are all functorial in R.
- ▶ We can define natural bijections x_i : $G_i(R) \to \text{Nil}(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- ▶ One can check that $x_i(a*b) = F_i(x_i(a), x_i(b))$ where $F_a(s,t) = s+t$ and $F_m(s,t) = s+t+st$ and $F_r(s,t) = (s+t)/(1-st) = \sum_{i\geq 0} s^i t^i (s+t)$. (One cannot be so explicit for F_e .)
- ▶ The functors G_i are formal groups; the power series F_i are formal group laws.
- ▶ Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t),u) = F(s,F(t,u)).
- ▶ More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and $F(s,t) \in k[\![s,t]\!]$.
- ▶ Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

- \blacktriangleright For any ring R we define commutative groups as follows:
 - $G_a(R) = \{a \in R \mid a \text{ is nilpotent } \}$ (under addition)
 - $G_m(R) = \{u \in R \mid u 1 \text{ is nilpotent }\}$ (under multiplication)
 - $G_r(R) = \{A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, c 1 \text{ nilpotent } \}$
 - ▶ $G_e(R) = \{(u, v) \in Nil(R)^2 \mid v u^3 + uv^2 = 0\}$ (an elliptic curve)
- ► These are all functorial in R.
- ▶ We can define natural bijections x_i : $G_i(R) \to \text{Nil}(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- ▶ One can check that $x_i(a*b) = F_i(x_i(a), x_i(b))$ where $F_a(s,t) = s+t$ and $F_m(s,t) = s+t+st$ and $F_r(s,t) = (s+t)/(1-st) = \sum_{i\geq 0} s^i t^i (s+t)$. (One cannot be so explicit for F_e .)
- ▶ The functors G_i are formal groups; the power series F_i are formal group laws.
- ▶ Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t),u) = F(s,F(t,u)).
- ▶ More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and $F(s,t) \in k[\![s,t]\!]$.
- ▶ Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

- \blacktriangleright For any ring R we define commutative groups as follows:
 - $G_a(R) = \{a \in R \mid a \text{ is nilpotent } \}$ (under addition)
 - $G_m(R) = \{u \in R \mid u 1 \text{ is nilpotent }\}$ (under multiplication)
 - $G_r(R) = \{A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, c 1 \text{ nilpotent } \}$
 - $G_e(R) = \{(u, v) \in \text{Nil}(R)^2 \mid v u^3 + uv^2 = 0\}$ (an elliptic curve)
- ► These are all functorial in R.
- ▶ We can define natural bijections x_i : $G_i(R) \to \text{Nil}(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- ▶ One can check that $x_i(a*b) = F_i(x_i(a), x_i(b))$ where $F_a(s,t) = s+t$ and $F_m(s,t) = s+t+st$ and $F_r(s,t) = (s+t)/(1-st) = \sum_{i\geq 0} s^i t^i (s+t)$. (One cannot be so explicit for F_e .)
- ▶ The functors G_i are formal groups; the power series F_i are formal group laws.
- ▶ Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t),u) = F(s,F(t,u)).
- ▶ More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and $F(s,t) \in k[\![s,t]\!]$.
- ▶ Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

- ► For any ring *R* we define commutative groups as follows:
 - $G_a(R) = \{a \in R \mid a \text{ is nilpotent } \}$ (under addition)
 - $G_m(R) = \{u \in R \mid u 1 \text{ is nilpotent }\}$ (under multiplication)
 - $G_r(R) = \{A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, c 1 \text{ nilpotent } \}$
 - ► $G_e(R) = \{(u, v) \in Nil(R)^2 \mid v u^3 + uv^2 = 0\}$ (an elliptic curve)
- ► These are all functorial in *R*.
- ▶ We can define natural bijections x_i : $G_i(R) \to \text{Nil}(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- ▶ One can check that $x_i(a*b) = F_i(x_i(a), x_i(b))$ where $F_a(s,t) = s+t$ and $F_m(s,t) = s+t+st$ and $F_r(s,t) = (s+t)/(1-st) = \sum_{i\geq 0} s^i t^i (s+t)$. (One cannot be so explicit for F_e .)
- ▶ The functors G_i are formal groups; the power series F_i are formal group laws.
- ▶ Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t),u) = F(s,F(t,u)).
- ▶ More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and $F(s,t) \in k[s,t]$.
- ▶ Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

- ► For any ring *R* we define commutative groups as follows:
 - $G_a(R) = \{a \in R \mid a \text{ is nilpotent } \}$ (under addition)
 - $G_m(R) = \{u \in R \mid u 1 \text{ is nilpotent }\}$ (under multiplication)
 - $G_r(R) = \{A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, c 1 \text{ nilpotent } \}$
 - $G_e(R) = \{(u, v) \in Nil(R)^2 \mid v u^3 + uv^2 = 0\}$ (an elliptic curve)
- ▶ These are all functorial in R.
- ▶ We can define natural bijections x_i : $G_i(R) \to \text{Nil}(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- ▶ One can check that $x_i(a*b) = F_i(x_i(a), x_i(b))$ where $F_a(s,t) = s+t$ and $F_m(s,t) = s+t+st$ and $F_r(s,t) = (s+t)/(1-st) = \sum_{i\geq 0} s^i t^i (s+t)$. (One cannot be so explicit for F_e .)
- ▶ The functors G_i are formal groups; the power series F_i are formal group laws.
- ▶ Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t),u) = F(s,F(t,u)).
- ▶ More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and $F(s,t) \in k[\![s,t]\!]$.
- ▶ Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

- ▶ For any ring *R* we define commutative groups as follows:
 - $G_a(R) = \{a \in R \mid a \text{ is nilpotent } \}$ (under addition)
 - $G_m(R) = \{u \in R \mid u 1 \text{ is nilpotent }\}$ (under multiplication)
 - $G_r(R) = \{A = \begin{bmatrix} c s \\ s c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, c 1 \text{ nilpotent } \}$
 - $G_e(R) = \{(u, v) \in Nil(R)^2 \mid v u^3 + uv^2 = 0\}$ (an elliptic curve)
- ▶ These are all functorial in R.
- ▶ We can define natural bijections x_i : $G_i(R) \to \text{Nil}(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- ▶ One can check that $x_i(a*b) = F_i(x_i(a), x_i(b))$ where $F_a(s,t) = s+t$ and $F_m(s,t) = s+t+st$ and $F_r(s,t) = (s+t)/(1-st) = \sum_{i\geq 0} s^i t^i (s+t)$. (One cannot be so explicit for F_e .)
- ▶ The functors G_i are formal groups; the power series F_i are formal group laws.
- ▶ Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t),u) = F(s,F(t,u)).
- ▶ More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and $F(s,t) \in k[\![s,t]\!]$.
- ▶ Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

- ► For any ring *R* we define commutative groups as follows:
 - $G_a(R) = \{a \in R \mid a \text{ is nilpotent } \}$ (under addition)
 - $G_m(R) = \{u \in R \mid u 1 \text{ is nilpotent }\}$ (under multiplication)
 - $G_r(R) = \{A = \begin{bmatrix} c s \\ s c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, c 1 \text{ nilpotent } \}$
 - ▶ $G_e(R) = \{(u, v) \in Nil(R)^2 \mid v u^3 + uv^2 = 0\}$ (an elliptic curve)
- ▶ These are all functorial in *R*.
- ▶ We can define natural bijections x_i : $G_i(R) \to \text{Nil}(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- ▶ One can check that $x_i(a*b) = F_i(x_i(a), x_i(b))$ where $F_a(s,t) = s+t$ and $F_m(s,t) = s+t+st$ and $F_r(s,t) = (s+t)/(1-st) = \sum_{i\geq 0} s^i t^i (s+t)$. (One cannot be so explicit for F_e .)
- ▶ The functors G_i are formal groups; the power series F_i are formal group laws.
- ▶ Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t),u) = F(s,F(t,u)).
- ▶ More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and $F(s,t) \in k[\![s,t]\!]$.
- ▶ Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

- ▶ For any ring *R* we define commutative groups as follows:
 - $G_a(R) = \{a \in R \mid a \text{ is nilpotent } \}$ (under addition)
 - $G_m(R) = \{u \in R \mid u 1 \text{ is nilpotent }\}$ (under multiplication)
 - $G_r(R) = \{A = \begin{bmatrix} c s \\ s c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, c 1 \text{ nilpotent } \}$
 - ▶ $G_e(R) = \{(u, v) \in Nil(R)^2 \mid v u^3 + uv^2 = 0\}$ (an elliptic curve)
- ▶ These are all functorial in R.
- ▶ We can define natural bijections x_i : $G_i(R) \to \text{Nil}(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- ▶ One can check that $x_i(a*b) = F_i(x_i(a), x_i(b))$ where $F_a(s,t) = s+t$ and $F_m(s,t) = s+t+st$ and $F_r(s,t) = (s+t)/(1-st) = \sum_{i\geq 0} s^i t^i (s+t)$. (One cannot be so explicit for F_e .)
- ▶ The functors G_i are formal groups; the power series F_i are formal group laws.
- ▶ Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t),u) = F(s,F(t,u)).
- ▶ More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and $F(s,t) \in k[\![s,t]\!]$.
- ▶ Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

- ► For any ring *R* we define commutative groups as follows:
 - $G_a(R) = \{a \in R \mid a \text{ is nilpotent } \}$ (under addition)
 - $G_m(R) = \{u \in R \mid u 1 \text{ is nilpotent }\}$ (under multiplication)
 - $G_r(R) = \{A = \begin{bmatrix} c s \\ s c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, c 1 \text{ nilpotent } \}$
 - $G_e(R) = \{(u, v) \in Nil(R)^2 \mid v u^3 + uv^2 = 0\}$ (an elliptic curve)
- ▶ These are all functorial in R.
- ▶ We can define natural bijections x_i : $G_i(R) \to \text{Nil}(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- ▶ One can check that $x_i(a*b) = F_i(x_i(a), x_i(b))$ where $F_a(s,t) = s+t$ and $F_m(s,t) = s+t+st$ and $F_r(s,t) = (s+t)/(1-st) = \sum_{i\geq 0} s^i t^i (s+t)$. (One cannot be so explicit for F_e .)
- ▶ The functors G_i are formal groups; the power series F_i are formal group laws.
- ▶ Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t),u) = F(s,F(t,u)).
- ▶ More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and $F(s,t) \in k[\![s,t]\!]$.
- ▶ Example: for any $a \in k$ we have an FGL F(s,t) = s + t + ast over k.

- ▶ For any ring *R* we define commutative groups as follows:
 - ▶ $G_a(R) = \{a \in R \mid a \text{ is nilpotent }\}$ (under addition)
 - $G_m(R) = \{u \in R \mid u 1 \text{ is nilpotent }\}$ (under multiplication)
 - $G_r(R) = \{A = \begin{bmatrix} c s \\ s c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, c 1 \text{ nilpotent } \}$
 - $G_e(R) = \{(u, v) \in Nil(R)^2 \mid v u^3 + uv^2 = 0\}$ (an elliptic curve)
- ▶ These are all functorial in R.
- ▶ We can define natural bijections x_i : $G_i(R) \to \text{Nil}(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- ▶ One can check that $x_i(a*b) = F_i(x_i(a), x_i(b))$ where $F_a(s,t) = s+t$ and $F_m(s,t) = s+t+st$ and $F_r(s,t) = (s+t)/(1-st) = \sum_{i\geq 0} s^i t^i (s+t)$. (One cannot be so explicit for F_e .)
- ▶ The functors G_i are formal groups; the power series F_i are formal group laws.
- ▶ Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t),u) = F(s,F(t,u)).
- ▶ More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and $F(s,t) \in k[\![s,t]\!]$.
- ▶ Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

- ► For any ring *R* we define commutative groups as follows:
 - $G_a(R) = \{a \in R \mid a \text{ is nilpotent } \}$ (under addition)
 - $G_m(R) = \{u \in R \mid u 1 \text{ is nilpotent }\}$ (under multiplication)
 - $G_r(R) = \{A = \begin{bmatrix} c s \\ s c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, c 1 \text{ nilpotent } \}$
 - $G_e(R) = \{(u, v) \in Nil(R)^2 \mid v u^3 + uv^2 = 0\}$ (an elliptic curve)
- These are all functorial in R.
- ▶ We can define natural bijections x_i : $G_i(R) \to \text{Nil}(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- ▶ One can check that $x_i(a*b) = F_i(x_i(a), x_i(b))$ where $F_a(s,t) = s+t$ and $F_m(s,t) = s+t+st$ and $F_r(s,t) = (s+t)/(1-st) = \sum_{i\geq 0} s^i t^i (s+t)$. (One cannot be so explicit for F_e .)
- ▶ The functors G_i are formal groups; the power series F_i are formal group laws.
- ▶ Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t),u) = F(s,F(t,u)).
- ▶ More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and $F(s,t) \in k[\![s,t]\!]$.
- ▶ Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

- $\qquad P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$
- ▶ This is a commutative topological monoid (with inverses up to homotopy).
- ▶ So P_E is a formal group scheme over $1_E = \text{spec}(E^0(1))$.
- ▶ We can calculate $E^*(\mathbb{C}P^n)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^0(P) = E^0(1)[\![x]\!]$ (but there is no canonical choice of x).
- ► This gives $E^0(P \times P) = E^0(1)[x_1, x_2]$. The multiplication map $\mu \colon P \times P \to P$ has $\mu^*(x) = F(x_1, x_2)$ for some formal group law F.
- Now fix a prime p and let $\pi \colon P \to P$ be the p'th power map and put $B = (\mathbb{C}[t] \setminus \{0\})/C_p$.
- Suppose that p=0 in $E^0(1)$. Under some conditions that are often satisfied, we have $E^0(B)=E^0(1)[\![x]\!]/\pi^*(x)$ and this is free of finite rank over $E^0(1)$. If so, then the rank is always p^n for some n>0, called the height.
- ▶ For E = K(p, n) we have $\pi^*(x) = x^{p^n}$ and the height is n.
- ▶ Over an algebraically closed field of characteristic *p*, any two formal groups of the same height are isomorphic.

- ▶ $P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$
- ▶ This is a commutative topological monoid (with inverses up to homotopy).
- ▶ So P_E is a formal group scheme over $1_E = \text{spec}(E^0(1))$.
- ▶ We can calculate $E^*(\mathbb{C}P^n)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^0(P) = E^0(1)[\![x]\!]$ (but there is no canonical choice of x).
- ▶ This gives $E^0(P \times P) = E^0(1)[x_1, x_2]$. The multiplication map $\mu \colon P \times P \to P$ has $\mu^*(x) = F(x_1, x_2)$ for some formal group law F.
- Now fix a prime p and let $\pi \colon P \to P$ be the p'th power map and put $B = (\mathbb{C}[t] \setminus \{0\})/C_p$.
- Suppose that p=0 in $E^0(1)$. Under some conditions that are often satisfied, we have $E^0(B)=E^0(1)[\![x]\!]/\pi^*(x)$ and this is free of finite rank over $E^0(1)$. If so, then the rank is always p^n for some n>0, called the height.
- ▶ For E = K(p, n) we have $\pi^*(x) = x^{p^n}$ and the height is n.
- ▶ Over an algebraically closed field of characteristic *p*, any two formal groups of the same height are isomorphic.

- ▶ $P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$
- ▶ This is a commutative topological monoid (with inverses up to homotopy).
- ▶ So P_E is a formal group scheme over $1_E = \text{spec}(E^0(1))$.
- ▶ We can calculate $E^*(\mathbb{C}P^n)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^0(P) = E^0(1)[\![x]\!]$ (but there is no canonical choice of x).
- ▶ This gives $E^0(P \times P) = E^0(1)[x_1, x_2]$. The multiplication map $\mu \colon P \times P \to P$ has $\mu^*(x) = F(x_1, x_2)$ for some formal group law F.
- Now fix a prime p and let $\pi \colon P \to P$ be the p'th power map and put $B = (\mathbb{C}[t] \setminus \{0\})/C_p$.
- Suppose that p=0 in $E^0(1)$. Under some conditions that are often satisfied, we have $E^0(B)=E^0(1)[\![x]\!]/\pi^*(x)$ and this is free of finite rank over $E^0(1)$. If so, then the rank is always p^n for some n>0, called the height.
- ▶ For E = K(p, n) we have $\pi^*(x) = x^{p^n}$ and the height is n.
- ▶ Over an algebraically closed field of characteristic *p*, any two formal groups of the same height are isomorphic.

- ▶ $P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$
- ▶ This is a commutative topological monoid (with inverses up to homotopy).
- ▶ So P_E is a formal group scheme over $1_E = \text{spec}(E^0(1))$.
- ▶ We can calculate $E^*(\mathbb{C}P^n)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^0(P) = E^0(1)[\![x]\!]$ (but there is no canonical choice of x).
- ► This gives $E^0(P \times P) = E^0(1)[x_1, x_2]$. The multiplication map $\mu \colon P \times P \to P$ has $\mu^*(x) = F(x_1, x_2)$ for some formal group law F.
- Now fix a prime p and let $\pi: P \to P$ be the p'th power map and put $B = (\mathbb{C}[t] \setminus \{0\})/C_p$.
- Suppose that p=0 in $E^0(1)$. Under some conditions that are often satisfied, we have $E^0(B)=E^0(1)[\![x]\!]/\pi^*(x)$ and this is free of finite rank over $E^0(1)$. If so, then the rank is always p^n for some n>0, called the height.
- ▶ For E = K(p, n) we have $\pi^*(x) = x^{p^n}$ and the height is n.
- ▶ Over an algebraically closed field of characteristic *p*, any two formal groups of the same height are isomorphic.

- ▶ $P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$
- ▶ This is a commutative topological monoid (with inverses up to homotopy).
- ▶ So P_E is a formal group scheme over $1_E = \text{spec}(E^0(1))$.
- ▶ We can calculate $E^*(\mathbb{C}P^n)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^0(P) = E^0(1)[\![x]\!]$ (but there is no canonical choice of x).
- This gives $E^0(P \times P) = E^0(1)[x_1, x_2]$. The multiplication map $\mu \colon P \times P \to P$ has $\mu^*(x) = F(x_1, x_2)$ for some formal group law F.
- Now fix a prime p and let $\pi: P \to P$ be the p'th power map and put $B = (\mathbb{C}[t] \setminus \{0\})/C_p$.
- Suppose that p=0 in $E^0(1)$. Under some conditions that are often satisfied, we have $E^0(B)=E^0(1)[\![x]\!]/\pi^*(x)$ and this is free of finite rank over $E^0(1)$. If so, then the rank is always p^n for some n>0, called the height.
- ▶ For E = K(p, n) we have $\pi^*(x) = x^{p^n}$ and the height is n.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

- ▶ $P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$
- ▶ This is a commutative topological monoid (with inverses up to homotopy).
- ▶ So P_E is a formal group scheme over $1_E = \text{spec}(E^0(1))$.
- ▶ We can calculate $E^*(\mathbb{C}P^n)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^0(P) = E^0(1)[\![x]\!]$ (but there is no canonical choice of x).
- ► This gives $E^0(P \times P) = E^0(1)[x_1, x_2]$. The multiplication map $\mu \colon P \times P \to P$ has $\mu^*(x) = F(x_1, x_2)$ for some formal group law F.
- Now fix a prime p and let $\pi: P \to P$ be the p'th power map and put $B = (\mathbb{C}[t] \setminus \{0\})/C_p$.
- Suppose that p=0 in $E^0(1)$. Under some conditions that are often satisfied, we have $E^0(B)=E^0(1)[\![x]\!]/\pi^*(x)$ and this is free of finite rank over $E^0(1)$. If so, then the rank is always p^n for some n>0, called the height.
- ▶ For E = K(p, n) we have $\pi^*(x) = x^{p^n}$ and the height is n.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

- ▶ $P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$
- ▶ This is a commutative topological monoid (with inverses up to homotopy).
- ▶ So P_E is a formal group scheme over $1_E = \text{spec}(E^0(1))$.
- ▶ We can calculate $E^*(\mathbb{C}P^n)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^0(P) = E^0(1)[\![x]\!]$ (but there is no canonical choice of x).
- ► This gives $E^0(P \times P) = E^0(1)[x_1, x_2]$. The multiplication map $\mu \colon P \times P \to P$ has $\mu^*(x) = F(x_1, x_2)$ for some formal group law F.
- Now fix a prime p and let $\pi \colon P \to P$ be the p'th power map and put $B = (\mathbb{C}[t] \setminus \{0\})/C_p$.
- Suppose that p=0 in $E^0(1)$. Under some conditions that are often satisfied, we have $E^0(B)=E^0(1)[\![x]\!]/\pi^*(x)$ and this is free of finite rank over $E^0(1)$. If so, then the rank is always p^n for some n>0, called the height.
- ▶ For E = K(p, n) we have $\pi^*(x) = x^{p^n}$ and the height is n.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

- ▶ $P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$
- ▶ This is a commutative topological monoid (with inverses up to homotopy).
- ▶ So P_E is a formal group scheme over $1_E = \text{spec}(E^0(1))$.
- ▶ We can calculate $E^*(\mathbb{C}P^n)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^0(P) = E^0(1)[\![x]\!]$ (but there is no canonical choice of x).
- ► This gives $E^0(P \times P) = E^0(1)[x_1, x_2]$. The multiplication map $\mu \colon P \times P \to P$ has $\mu^*(x) = F(x_1, x_2)$ for some formal group law F.
- Now fix a prime p and let $\pi \colon P \to P$ be the p'th power map and put $B = (\mathbb{C}[t] \setminus \{0\})/C_p$.
- Suppose that p=0 in $E^0(1)$. Under some conditions that are often satisfied, we have $E^0(B)=E^0(1)[\![x]\!]/\pi^*(x)$ and this is free of finite rank over $E^0(1)$. If so, then the rank is always p^n for some n>0, called the height.
- ▶ For E = K(p, n) we have $\pi^*(x) = x^{p^n}$ and the height is n.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

- ▶ $P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$
- ▶ This is a commutative topological monoid (with inverses up to homotopy).
- ▶ So P_E is a formal group scheme over $1_E = \text{spec}(E^0(1))$.
- ▶ We can calculate $E^*(\mathbb{C}P^n)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^0(P) = E^0(1)[\![x]\!]$ (but there is no canonical choice of x).
- ► This gives $E^0(P \times P) = E^0(1)[x_1, x_2]$. The multiplication map $\mu \colon P \times P \to P$ has $\mu^*(x) = F(x_1, x_2)$ for some formal group law F.
- Now fix a prime p and let $\pi \colon P \to P$ be the p'th power map and put $B = (\mathbb{C}[t] \setminus \{0\})/C_p$.
- Suppose that p=0 in $E^0(1)$. Under some conditions that are often satisfied, we have $E^0(B)=E^0(1)[\![x]\!]/\pi^*(x)$ and this is free of finite rank over $E^0(1)$. If so, then the rank is always p^n for some n>0, called the height.
- ▶ For E = K(p, n) we have $\pi^*(x) = x^{p^n}$ and the height is n.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

- ▶ $P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$
- ▶ This is a commutative topological monoid (with inverses up to homotopy).
- ▶ So P_E is a formal group scheme over $1_E = \text{spec}(E^0(1))$.
- ▶ We can calculate $E^*(\mathbb{C}P^n)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^0(P) = E^0(1)[\![x]\!]$ (but there is no canonical choice of x).
- ► This gives $E^0(P \times P) = E^0(1)[x_1, x_2]$. The multiplication map $\mu \colon P \times P \to P$ has $\mu^*(x) = F(x_1, x_2)$ for some formal group law F.
- Now fix a prime p and let $\pi \colon P \to P$ be the p'th power map and put $B = (\mathbb{C}[t] \setminus \{0\})/C_p$.
- Suppose that p=0 in $E^0(1)$. Under some conditions that are often satisfied, we have $E^0(B)=E^0(1)[\![x]\!]/\pi^*(x)$ and this is free of finite rank over $E^0(1)$. If so, then the rank is always p^n for some n>0, called the height.
- ▶ For E = K(p, n) we have $\pi^*(x) = x^{p^n}$ and the height is n.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

- ▶ Consider a formal power series $F(s,t) = \sum_{i,j} b_{ij} s^i t^j \in k[\![s,t]\!]$. When is this an FGL?
- ▶ For F(s,0) = s we need $b_{i0} = \delta_{i,1}$. For F(s,t) = F(t,s) we need $b_{ij} = b_{ji}$.
- Now $F(s,t) = s + t + b_{11}st + b_{12}(st^2 + s^2t) + b_{22}s^2t^2 + b_{13}(st^3 + s^3t) + O(5)$
- ▶ Using this we get $F(F(s,t),u) F(s,F(t,u)) = (2b_{11}b_{12} + 3b_{13} 2b_{22})(s-u)stu + O(5)$
- ▶ For an FGL we must have $2b_{11}b_{12} + 3b_{13} 2b_{22}$. In terms of the parameters $a_1 = b_{11}$ and $a_2 = b_{12}$ and $a_3 = b_{22} b_{13}$ we get $F(s,t) = s+t+a_1st+a_2st(s+t)+2(a_3-a_1a_2)st(s^2+st+t^2)+a_3s^2t^2+O(5)$.
- ▶ There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- Lazard's theorem: we can continue to define a_4, a_5, \ldots so that F(s,t) can be expressed in terms of the a_i , and no further relations are required to make the associativity axiom hold.
- ▶ Reformulation: over the Lazard ring $L = \mathbb{Z}[a_1, a_2, \ldots]$ there is a universal formal group law F_u such that the resulting map $Rings(L, k) \to FGL(k)$ is bijective for all k.

- ▶ Consider a formal power series $F(s,t) = \sum_{i,j} b_{ij}s^it^j \in k[\![s,t]\!]$. When is this an FGL?
- ▶ For F(s,0) = s we need $b_{i0} = \delta_{i,1}$. For F(s,t) = F(t,s) we need $b_{ij} = b_{ji}$.
- Now $F(s,t) = s + t + b_{11}st + b_{12}(st^2 + s^2t) + b_{22}s^2t^2 + b_{13}(st^3 + s^3t) + O(5)$
- ▶ Using this we get $F(F(s,t),u) F(s,F(t,u)) = (2b_{11}b_{12} + 3b_{13} 2b_{22})(s-u)stu + O(5)$
- ▶ For an FGL we must have $2b_{11}b_{12} + 3b_{13} 2b_{22}$. In terms of the parameters $a_1 = b_{11}$ and $a_2 = b_{12}$ and $a_3 = b_{22} b_{13}$ we get $F(s,t) = s+t+a_1st+a_2st(s+t)+2(a_3-a_1a_2)st(s^2+st+t^2)+a_3s^2t^2+O(5)$.
- ▶ There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- Lazard's theorem: we can continue to define a_4, a_5, \ldots so that F(s,t) can be expressed in terms of the a_i , and no further relations are required to make the associativity axiom hold.
- ▶ Reformulation: over the Lazard ring $L = \mathbb{Z}[a_1, a_2, \ldots]$ there is a universal formal group law F_u such that the resulting map $Rings(L, k) \to FGL(k)$ is bijective for all k.

- ▶ Consider a formal power series $F(s,t) = \sum_{i,j} b_{ij}s^it^j \in k[\![s,t]\!]$. When is this an FGL?
- ▶ For F(s,0) = s we need $b_{i0} = \delta_{i,1}$. For F(s,t) = F(t,s) we need $b_{ij} = b_{ji}$.
- Now $F(s,t) = s + t + b_{11}st + b_{12}(st^2 + s^2t) + b_{22}s^2t^2 + b_{13}(st^3 + s^3t) + O(5)$
- ▶ Using this we get $F(F(s,t),u) F(s,F(t,u)) = (2b_{11}b_{12} + 3b_{13} 2b_{22})(s-u)stu + O(5)$
- ▶ For an FGL we must have $2b_{11}b_{12} + 3b_{13} 2b_{22}$. In terms of the parameters $a_1 = b_{11}$ and $a_2 = b_{12}$ and $a_3 = b_{22} b_{13}$ we get $F(s,t) = s+t+a_1st+a_2st(s+t)+2(a_3-a_1a_2)st(s^2+st+t^2)+a_3s^2t^2+O(5)$.
- ▶ There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- Lazard's theorem: we can continue to define a_4, a_5, \ldots so that F(s,t) can be expressed in terms of the a_i , and no further relations are required to make the associativity axiom hold.
- ▶ Reformulation: over the Lazard ring $L = \mathbb{Z}[a_1, a_2, \ldots]$ there is a universal formal group law F_u such that the resulting map $Rings(L, k) \to FGL(k)$ is bijective for all k.

- ▶ Consider a formal power series $F(s,t) = \sum_{i,j} b_{ij}s^it^j \in k[\![s,t]\!]$. When is this an FGL?
- ▶ For F(s,0) = s we need $b_{i0} = \delta_{i,1}$. For F(s,t) = F(t,s) we need $b_{ij} = b_{ji}$.
- Now $F(s,t) = s + t + b_{11}st + b_{12}(st^2 + s^2t) + b_{22}s^2t^2 + b_{13}(st^3 + s^3t) + O(5)$
- ▶ Using this we get $F(F(s,t),u) F(s,F(t,u)) = (2b_{11}b_{12} + 3b_{13} 2b_{22})(s-u)stu + O(5)$
- ▶ For an FGL we must have $2b_{11}b_{12} + 3b_{13} 2b_{22}$. In terms of the parameters $a_1 = b_{11}$ and $a_2 = b_{12}$ and $a_3 = b_{22} b_{13}$ we get $F(s,t) = s+t+a_1st+a_2st(s+t)+2(a_3-a_1a_2)st(s^2+st+t^2)+a_3s^2t^2+O(5)$
- ▶ There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- Lazard's theorem: we can continue to define a_4, a_5, \ldots so that F(s,t) can be expressed in terms of the a_i , and no further relations are required to make the associativity axiom hold.
- ▶ Reformulation: over the Lazard ring $L = \mathbb{Z}[a_1, a_2, \ldots]$ there is a universal formal group law F_u such that the resulting map $Rings(L, k) \to FGL(k)$ is bijective for all k.

- ▶ Consider a formal power series $F(s,t) = \sum_{i,j} b_{ij}s^it^j \in k[\![s,t]\!]$. When is this an FGL?
- ▶ For F(s,0) = s we need $b_{i0} = \delta_{i,1}$. For F(s,t) = F(t,s) we need $b_{ij} = b_{ji}$.
- Now $F(s,t) = s + t + b_{11}st + b_{12}(st^2 + s^2t) + b_{22}s^2t^2 + b_{13}(st^3 + s^3t) + O(5)$
- ▶ Using this we get $F(F(s,t),u) F(s,F(t,u)) = (2b_{11}b_{12} + 3b_{13} 2b_{22})(s-u)stu + O(5)$
- ▶ For an FGL we must have $2b_{11}b_{12} + 3b_{13} 2b_{22}$. In terms of the parameters $a_1 = b_{11}$ and $a_2 = b_{12}$ and $a_3 = b_{22} b_{13}$ we get $F(s,t) = s+t+a_1st+a_2st(s+t)+2(a_3-a_1a_2)st(s^2+st+t^2)+a_3s^2t^2+O(5)$.
- ▶ There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- Lazard's theorem: we can continue to define a_4, a_5, \ldots so that F(s,t) can be expressed in terms of the a_i , and no further relations are required to make the associativity axiom hold.
- ▶ Reformulation: over the Lazard ring $L = \mathbb{Z}[a_1, a_2, \ldots]$ there is a universal formal group law F_u such that the resulting map $Rings(L, k) \to FGL(k)$ is bijective for all k.

- ▶ Consider a formal power series $F(s,t) = \sum_{i,j} b_{ij}s^it^j \in k[\![s,t]\!]$. When is this an FGL?
- ▶ For F(s,0) = s we need $b_{i0} = \delta_{i,1}$. For F(s,t) = F(t,s) we need $b_{ij} = b_{ji}$.
- Now $F(s,t) = s + t + b_{11}st + b_{12}(st^2 + s^2t) + b_{22}s^2t^2 + b_{13}(st^3 + s^3t) + O(5)$
- ▶ Using this we get $F(F(s,t),u) F(s,F(t,u)) = (2b_{11}b_{12} + 3b_{13} 2b_{22})(s-u)stu + O(5)$
- ▶ For an FGL we must have $2b_{11}b_{12} + 3b_{13} 2b_{22}$. In terms of the parameters $a_1 = b_{11}$ and $a_2 = b_{12}$ and $a_3 = b_{22} b_{13}$ we get $F(s,t) = s+t+a_1st+a_2st(s+t)+2(a_3-a_1a_2)st(s^2+st+t^2)+a_3s^2t^2+O(5)$.
- ▶ There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- Lazard's theorem: we can continue to define a_4, a_5, \ldots so that F(s,t) can be expressed in terms of the a_i , and no further relations are required to make the associativity axiom hold.
- ▶ Reformulation: over the Lazard ring $L = \mathbb{Z}[a_1, a_2, ...]$ there is a universal formal group law F_u such that the resulting map Rings $(L, k) \to \mathsf{FGL}(k)$ is bijective for all k.

- ▶ Consider a formal power series $F(s,t) = \sum_{i,j} b_{ij}s^it^j \in k[\![s,t]\!]$. When is this an FGL?
- ▶ For F(s,0) = s we need $b_{i0} = \delta_{i,1}$. For F(s,t) = F(t,s) we need $b_{ij} = b_{ji}$.
- Now $F(s,t) = s + t + b_{11}st + b_{12}(st^2 + s^2t) + b_{22}s^2t^2 + b_{13}(st^3 + s^3t) + O(5)$
- ▶ Using this we get $F(F(s,t),u) F(s,F(t,u)) = (2b_{11}b_{12} + 3b_{13} 2b_{22})(s-u)stu + O(5)$
- ▶ For an FGL we must have $2b_{11}b_{12} + 3b_{13} 2b_{22}$. In terms of the parameters $a_1 = b_{11}$ and $a_2 = b_{12}$ and $a_3 = b_{22} b_{13}$ we get $F(s,t) = s+t+a_1st+a_2st(s+t)+2(a_3-a_1a_2)st(s^2+st+t^2)+a_3s^2t^2+O(5)$.
- ► There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- Lazard's theorem: we can continue to define a_4, a_5, \ldots so that F(s,t) can be expressed in terms of the a_i , and no further relations are required to make the associativity axiom hold.
- ▶ Reformulation: over the Lazard ring $L = \mathbb{Z}[a_1, a_2, ...]$ there is a universal formal group law F_u such that the resulting map Rings $(L, k) \to \mathsf{FGL}(k)$ is bijective for all k.

- ▶ Consider a formal power series $F(s,t) = \sum_{i,j} b_{ij}s^it^j \in k[\![s,t]\!]$. When is this an FGL?
- ▶ For F(s,0) = s we need $b_{i0} = \delta_{i,1}$. For F(s,t) = F(t,s) we need $b_{ij} = b_{ji}$.
- Now $F(s,t) = s + t + b_{11}st + b_{12}(st^2 + s^2t) + b_{22}s^2t^2 + b_{13}(st^3 + s^3t) + O(5)$
- ▶ Using this we get $F(F(s,t),u) F(s,F(t,u)) = (2b_{11}b_{12} + 3b_{13} 2b_{22})(s-u)stu + O(5)$
- ▶ For an FGL we must have $2b_{11}b_{12} + 3b_{13} 2b_{22}$. In terms of the parameters $a_1 = b_{11}$ and $a_2 = b_{12}$ and $a_3 = b_{22} b_{13}$ we get $F(s,t) = s+t+a_1st+a_2st(s+t)+2(a_3-a_1a_2)st(s^2+st+t^2)+a_3s^2t^2+O(5)$.
- ► There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- ▶ Lazard's theorem: we can continue to define a_4, a_5, \ldots so that F(s, t) can be expressed in terms of the a_i , and no further relations are required to make the associativity axiom hold.
- ▶ Reformulation: over the Lazard ring $L = \mathbb{Z}[a_1, a_2, ...]$ there is a universal formal group law F_u such that the resulting map Rings $(L, k) \to \mathsf{FGL}(k)$ is bijective for all k.

- ▶ Consider a formal power series $F(s,t) = \sum_{i,j} b_{ij}s^it^j \in k[\![s,t]\!]$. When is this an FGL?
- ▶ For F(s,0) = s we need $b_{i0} = \delta_{i,1}$. For F(s,t) = F(t,s) we need $b_{ij} = b_{ji}$.
- Now $F(s,t) = s + t + b_{11}st + b_{12}(st^2 + s^2t) + b_{22}s^2t^2 + b_{13}(st^3 + s^3t) + O(5)$
- ▶ Using this we get $F(F(s,t),u) F(s,F(t,u)) = (2b_{11}b_{12} + 3b_{13} 2b_{22})(s-u)stu + O(5)$
- ▶ For an FGL we must have $2b_{11}b_{12} + 3b_{13} 2b_{22}$. In terms of the parameters $a_1 = b_{11}$ and $a_2 = b_{12}$ and $a_3 = b_{22} b_{13}$ we get $F(s,t) = s+t+a_1st+a_2st(s+t)+2(a_3-a_1a_2)st(s^2+st+t^2)+a_3s^2t^2+O(5)$.
- ▶ There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- ▶ Lazard's theorem: we can continue to define a_4, a_5, \ldots so that F(s, t) can be expressed in terms of the a_i , and no further relations are required to make the associativity axiom hold.
- ▶ Reformulation: over the Lazard ring $L = \mathbb{Z}[a_1, a_2, ...]$ there is a universal formal group law F_u such that the resulting map Rings $(L, k) \to \mathsf{FGL}(k)$ is bijective for all k.

- Recall $MP^0(X) = \lim_{\longrightarrow n} [\Sigma^{2n}X, MP(n)]$ (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with $MP^0(P) = MP^0(1)[\![x]\!]$. (We do not need to know $MP^0(1)$ for this.)
- ▶ Using this we get a formal group law F over $MP^0(1)$.
- ▶ Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and $MP^1(1) = 0$).
- ► Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP. (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}]$$

- A simple topological construction gives a map $MP^0(1) \rightarrow H_*(MP)$. We can push forward the FGL over $MP^0(1)$ to get an FGL over $H_*(MP)$.
- In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- ▶ The remaining steps are harder to summarise, but they involve the action of the group $Aut(F_a)$, its relationship with Steenrod operations, and the Adams spectral sequence.

- ▶ Recall $MP^0(X) = \lim_{\longrightarrow n} [\Sigma^{2n}X, MP(n)]$ (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with $MP^0(P) = MP^0(1)[\![x]\!]$. (We do not need to know $MP^0(1)$ for this.)
- ▶ Using this we get a formal group law F over $MP^0(1)$.
- ▶ Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and $MP^1(1) = 0$)
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map $MP^0(1) \to H_*(MP)$. We can push forward the FGL over $MP^0(1)$ to get an FGL over $H_*(MP)$.
- ▶ In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- The remaining steps are harder to summarise, but they involve the action of the group $Aut(F_a)$, its relationship with Steenrod operations, and the Adams spectral sequence

- ▶ Recall $MP^0(X) = \lim_{\longrightarrow n} [\Sigma^{2n}X, MP(n)]$ (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with $MP^0(P) = MP^0(1)[\![x]\!]$. (We do not need to know $MP^0(1)$ for this.)
- ▶ Using this we get a formal group law F over $MP^0(1)$.
- ▶ Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and $MP^1(1) = 0$)
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map $MP^0(1) \to H_*(MP)$. We can push forward the FGL over $MP^0(1)$ to get an FGL over $H_*(MP)$.
- ▶ In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- ► The remaining steps are harder to summarise, but they involve the action of the group Aut(F_a), its relationship with Steenrod operations, and the Adams spectral sequence

- ▶ Recall $MP^0(X) = \lim_{\longrightarrow n} [\Sigma^{2n}X, MP(n)]$ (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with $MP^0(P) = MP^0(1)[\![x]\!]$. (We do not need to know $MP^0(1)$ for this.)
- ▶ Using this we get a formal group law F over $MP^0(1)$.
- ▶ Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and $MP^1(1) = 0$)
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map $MP^0(1) \rightarrow H_*(MP)$. We can push forward the FGL over $MP^0(1)$ to get an FGL over $H_*(MP)$.
- ▶ In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- ► The remaining steps are harder to summarise, but they involve the action of the group Aut(F_a), its relationship with Steenrod operations, and the Adams spectral sequence

- ▶ Recall $MP^0(X) = \lim_{\longrightarrow n} [\Sigma^{2n}X, MP(n)]$ (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with $MP^0(P) = MP^0(1)[\![x]\!]$. (We do not need to know $MP^0(1)$ for this.)
- ▶ Using this we get a formal group law F over $MP^0(1)$.
- ▶ Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and $MP^1(1) = 0$).
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map $MP^0(1) \rightarrow H_*(MP)$. We can push forward the FGL over $MP^0(1)$ to get an FGL over $H_*(MP)$.
- In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- The remaining steps are harder to summarise, but they involve the action of the group $Aut(F_a)$, its relationship with Steenrod operations, and the Adams spectral sequence

- ▶ Recall $MP^0(X) = \lim_{\longrightarrow_n} [\Sigma^{2n}X, MP(n)]$ (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with $MP^0(P) = MP^0(1)[\![x]\!]$. (We do not need to know $MP^0(1)$ for this.)
- ▶ Using this we get a formal group law F over $MP^0(1)$.
- ▶ Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and $MP^1(1) = 0$).
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP. (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map $MP^0(1) \rightarrow H_*(MP)$. We can push forward the FGL over $MP^0(1)$ to get an FGL over $H_*(MP)$.
- ▶ In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- ▶ The remaining steps are harder to summarise, but they involve the action of the group $Aut(F_a)$, its relationship with Steenrod operations, and the Adams spectral sequence

- ▶ Recall $MP^0(X) = \lim_{\longrightarrow n} [\Sigma^{2n}X, MP(n)]$ (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with $MP^0(P) = MP^0(1)[\![x]\!]$. (We do not need to know $MP^0(1)$ for this.)
- ▶ Using this we get a formal group law F over $MP^0(1)$.
- ▶ Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and $MP^1(1) = 0$).
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP. (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map $MP^0(1) \rightarrow H_*(MP)$. We can push forward the FGL over $MP^0(1)$ to get an FGL over $H_*(MP)$.
- ▶ In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- The remaining steps are harder to summarise, but they involve the action of the group $Aut(F_a)$, its relationship with Steenrod operations, and the Adams spectral sequence

- ▶ Recall $MP^0(X) = \lim_{\longrightarrow n} [\Sigma^{2n}X, MP(n)]$ (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with $MP^0(P) = MP^0(1)[\![x]\!]$. (We do not need to know $MP^0(1)$ for this.)
- ▶ Using this we get a formal group law F over $MP^0(1)$.
- ▶ Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and $MP^1(1) = 0$).
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP.
 (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map $MP^0(1) \rightarrow H_*(MP)$. We can push forward the FGL over $MP^0(1)$ to get an FGL over $H_*(MP)$.
- ▶ In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- ► The remaining steps are harder to summarise, but they involve the action of the group Aut(F_a), its relationship with Steenrod operations, and the Adams spectral sequence

Quillen's theorem

- ▶ Recall $MP^0(X) = \lim_{\longrightarrow_n} [\Sigma^{2n}X, MP(n)]$ (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with $MP^0(P) = MP^0(1)[\![x]\!]$. (We do not need to know $MP^0(1)$ for this.)
- ▶ Using this we get a formal group law F over $MP^0(1)$.
- ▶ Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- ▶ Quillen's theorem: this is an isomorphism (and $MP^1(1) = 0$).
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP.
 (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map $MP^0(1) \to H_*(MP)$. We can push forward the FGL over $MP^0(1)$ to get an FGL over $H_*(MP)$.
- ▶ In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- ► The remaining steps are harder to summarise, but they involve the action of the group Aut(F_a), its relationship with Steenrod operations, and the Adams spectral sequence

Quillen's theorem

- ▶ Recall $MP^0(X) = \lim_{\longrightarrow_n} [\Sigma^{2n}X, MP(n)]$ (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with $MP^0(P) = MP^0(1)[\![x]\!]$. (We do not need to know $MP^0(1)$ for this.)
- ▶ Using this we get a formal group law F over $MP^0(1)$.
- ▶ Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and $MP^1(1) = 0$).
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP.
 (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map $MP^0(1) \to H_*(MP)$. We can push forward the FGL over $MP^0(1)$ to get an FGL over $H_*(MP)$.
- In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- ► The remaining steps are harder to summarise, but they involve the action of the group Aut(F_a), its relationship with Steenrod operations, and the Adams spectral sequence.

Quillen's theorem

- ▶ Recall $MP^0(X) = \lim_{\longrightarrow_n} [\Sigma^{2n}X, MP(n)]$ (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with $MP^0(P) = MP^0(1)[\![x]\!]$. (We do not need to know $MP^0(1)$ for this.)
- ▶ Using this we get a formal group law F over $MP^0(1)$.
- ▶ Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and $MP^1(1) = 0$).
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP.
 (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map $MP^0(1) \to H_*(MP)$. We can push forward the FGL over $MP^0(1)$ to get an FGL over $H_*(MP)$.
- In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- ▶ The remaining steps are harder to summarise, but they involve the action of the group $Aut(F_a)$, its relationship with Steenrod operations, and the Adams spectral sequence.

- ▶ A finite spectrum is an expression $\Sigma^n X$, where X is a based finite simplicial complex, and $n \in \mathbb{Z}$. (This can be interpreted as a space if $n \geq 0$, but not necessarily if n < 0.) We write \mathcal{F} for the class of finite spectra.
- ▶ We define $\mathcal{F}(\Sigma^n X, \Sigma^m Y) = \lim_{\longrightarrow_k} [\Sigma^{n+k} X, \Sigma^{m+k} Y]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
- This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- ▶ Homology gives an isomorphism $\mathbb{Q} \otimes \mathcal{F}(X,Y) \to \text{Vect}_*(H_*(X;\mathbb{Q}),H_*(Y;\mathbb{Q})).$
- The category F has formal properties similar to those of Vect*: there are tensor products, duals and adjoints.
- ▶ It is very hard work to calculate $\mathcal{F}(X,Y)$, even in simple cases like $\mathcal{F}(S^d,S^0)$. This is known for $d \leq 60$ or so, but not for general d. The calculations use MP or related methods.

- A finite spectrum is an expression $\Sigma^n X$, where X is a based finite simplicial complex, and $n \in \mathbb{Z}$. (This can be interpreted as a space if $n \geq 0$, but not necessarily if n < 0.) We write \mathcal{F} for the class of finite spectra.
- ▶ We define $\mathcal{F}(\Sigma^n X, \Sigma^m Y) = \lim_{\substack{\longrightarrow k \\ \text{rule making } \mathcal{F}}} [\Sigma^{n+k} X, \Sigma^{m+k} Y]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
- This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- ▶ Homology gives an isomorphism $\mathbb{Q} \otimes \mathcal{F}(X,Y) \to \text{Vect}_*(H_*(X;\mathbb{Q}),H_*(Y;\mathbb{Q})).$
- ► The category F has formal properties similar to those of Vect*: there are tensor products, duals and adjoints.
- ▶ It is very hard work to calculate $\mathcal{F}(X,Y)$, even in simple cases like $\mathcal{F}(S^d,S^0)$. This is known for $d \leq 60$ or so, but not for general d. The calculations use MP or related methods.

- A finite spectrum is an expression $\Sigma^n X$, where X is a based finite simplicial complex, and $n \in \mathbb{Z}$. (This can be interpreted as a space if $n \geq 0$, but not necessarily if n < 0.) We write \mathcal{F} for the class of finite spectra.
- ▶ We define $\mathcal{F}(\Sigma^n X, \Sigma^m Y) = \lim_{\stackrel{\longrightarrow}{\longrightarrow} k} [\Sigma^{n+k} X, \Sigma^{m+k} Y]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
- This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- ▶ Homology gives an isomorphism $\mathbb{Q} \otimes \mathcal{F}(X,Y) \to \mathrm{Vect}_*(H_*(X;\mathbb{Q}),H_*(Y;\mathbb{Q})).$
- ► The category F has formal properties similar to those of Vect*: there are tensor products, duals and adjoints.
- ▶ It is very hard work to calculate $\mathcal{F}(X,Y)$, even in simple cases like $\mathcal{F}(S^d,S^0)$. This is known for $d \leq 60$ or so, but not for general d. The calculations use MP or related methods.

- A finite spectrum is an expression $\Sigma^n X$, where X is a based finite simplicial complex, and $n \in \mathbb{Z}$. (This can be interpreted as a space if $n \geq 0$, but not necessarily if n < 0.) We write \mathcal{F} for the class of finite spectra.
- ▶ We define $\mathcal{F}(\Sigma^n X, \Sigma^m Y) = \lim_{\stackrel{\longrightarrow}{\longrightarrow} k} [\Sigma^{n+k} X, \Sigma^{m+k} Y]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
- This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- ▶ Homology gives an isomorphism $\mathbb{Q} \otimes \mathcal{F}(X,Y) \to \text{Vect}_*(H_*(X;\mathbb{Q}),H_*(Y;\mathbb{Q})).$
- ► The category F has formal properties similar to those of Vect*: there are tensor products, duals and adjoints.
- ▶ It is very hard work to calculate $\mathcal{F}(X,Y)$, even in simple cases like $\mathcal{F}(S^d,S^0)$. This is known for $d \leq 60$ or so, but not for general d. The calculations use MP or related methods.

- A finite spectrum is an expression $\Sigma^n X$, where X is a based finite simplicial complex, and $n \in \mathbb{Z}$. (This can be interpreted as a space if $n \geq 0$, but not necessarily if n < 0.) We write \mathcal{F} for the class of finite spectra.
- ▶ We define $\mathcal{F}(\Sigma^n X, \Sigma^m Y) = \lim_{\stackrel{\longrightarrow}{\longrightarrow} k} [\Sigma^{n+k} X, \Sigma^{m+k} Y]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
- This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- ▶ Homology gives an isomorphism $\mathbb{Q} \otimes \mathcal{F}(X,Y) \rightarrow \mathsf{Vect}_*(H_*(X;\mathbb{Q}),H_*(Y;\mathbb{Q})).$
- ▶ The category \mathcal{F} has formal properties similar to those of Vect*: there are tensor products, duals and adjoints.
- ▶ It is very hard work to calculate $\mathcal{F}(X,Y)$, even in simple cases like $\mathcal{F}(S^d,S^0)$. This is known for $d \leq 60$ or so, but not for general d. The calculations use MP or related methods.

- A finite spectrum is an expression $\Sigma^n X$, where X is a based finite simplicial complex, and $n \in \mathbb{Z}$. (This can be interpreted as a space if $n \geq 0$, but not necessarily if n < 0.) We write \mathcal{F} for the class of finite spectra.
- ▶ We define $\mathcal{F}(\Sigma^n X, \Sigma^m Y) = \lim_{\stackrel{\longrightarrow}{\longrightarrow} k} [\Sigma^{n+k} X, \Sigma^{m+k} Y]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
- This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- ▶ Homology gives an isomorphism $\mathbb{Q} \otimes \mathcal{F}(X,Y) \to \text{Vect}_*(H_*(X;\mathbb{Q}),H_*(Y;\mathbb{Q})).$
- ► The category F has formal properties similar to those of Vect*: there are tensor products, duals and adjoints.
- ▶ It is very hard work to calculate $\mathcal{F}(X,Y)$, even in simple cases like $\mathcal{F}(S^d,S^0)$. This is known for $d \leq 60$ or so, but not for general d. The calculations use MP or related methods.

- A finite spectrum is an expression $\Sigma^n X$, where X is a based finite simplicial complex, and $n \in \mathbb{Z}$. (This can be interpreted as a space if $n \geq 0$, but not necessarily if n < 0.) We write \mathcal{F} for the class of finite spectra.
- ▶ We define $\mathcal{F}(\Sigma^n X, \Sigma^m Y) = \lim_{\stackrel{\longrightarrow}{\longrightarrow} k} [\Sigma^{n+k} X, \Sigma^{m+k} Y]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
- This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- ▶ Homology gives an isomorphism $\mathbb{Q} \otimes \mathcal{F}(X,Y) \rightarrow \mathsf{Vect}_*(H_*(X;\mathbb{Q}),H_*(Y;\mathbb{Q})).$
- ► The category F has formal properties similar to those of Vect*: there are tensor products, duals and adjoints.
- ▶ It is very hard work to calculate $\mathcal{F}(X,Y)$, even in simple cases like $\mathcal{F}(S^d,S^0)$. This is known for $d \leq 60$ or so, but not for general d. The calculations use MP or related methods.

- ► Fact: if $K(p, n)_*(X) = 0$, then $K(p, m)_*(X) = 0$ for all m < n (including $K(p, 0)_*(X) = H_*(X; \mathbb{Q})$).
- ▶ Also, if $K(p, n)_*(X) = 0$ for all p and n then X = 0.
- ▶ Say X has type n at p if $K(p, n)_*(X) \neq 0$ and $K(p, m)_*(X) = 0$ for m < n. Let $\mathcal{F}(p, n)$ be the category of X of type at least n at p.
- Nilpotence theorem: if $u \colon \Sigma^d X \to X$ and $K(p, n)_*(u) = 0$ for all (p, n) then $u^k = 0 \colon \Sigma^{dk} X \to X$ for $k \gg 0$.
- Periodicity theorem: if $X \in \mathcal{F}(p,n)$ with n>0 then there is a map $v \colon \Sigma^d X \to X$ (for some d>0) giving an isomorphism on $K(p,n)_*(X)$ (and having a number of other properties, making it "almost unique").
- ▶ Thick subcategory theorem: if C is a subcategory of F satisfying some natural conditions, then it must be one of the categories F(p, n).
- ► Chromatic convergence theorem: $\pi_*^5(X) = \mathcal{F}(S^*, X)$ can be built up in layers. The difference between layers n and n-1 is in some sense controlled by K(p, n), and consists of families that are periodic of period $2(p^n-1)p^k$ for large k.

- ► Fact: if $K(p, n)_*(X) = 0$, then $K(p, m)_*(X) = 0$ for all m < n (including $K(p, 0)_*(X) = H_*(X; \mathbb{Q})$).
- ▶ Also, if $K(p, n)_*(X) = 0$ for all p and n then X = 0.
- ▶ Say X has type n at p if $K(p, n)_*(X) \neq 0$ and $K(p, m)_*(X) = 0$ for m < n. Let $\mathcal{F}(p, n)$ be the category of X of type at least n at p.
- Nilpotence theorem: if $u \colon \Sigma^d X \to X$ and $K(p,n)_*(u) = 0$ for all (p,n) then $u^k = 0 \colon \Sigma^{dk} X \to X$ for $k \gg 0$.
- Periodicity theorem: if $X \in \mathcal{F}(p,n)$ with n > 0 then there is a map $v \colon \Sigma^d X \to X$ (for some d > 0) giving an isomorphism on $K(p,n)_*(X)$ (and having a number of other properties, making it "almost unique")
- ▶ Thick subcategory theorem: if C is a subcategory of F satisfying some natural conditions, then it must be one of the categories F(p, n).
- ▶ Chromatic convergence theorem: $\pi_*^5(X) = \mathcal{F}(S^*, X)$ can be built up in layers. The difference between layers n and n-1 is in some sense controlled by K(p, n), and consists of families that are periodic of period $2(p^n-1)p^k$ for large k.

- ▶ Fact: if $K(p, n)_*(X) = 0$, then $K(p, m)_*(X) = 0$ for all m < n (including $K(p, 0)_*(X) = H_*(X; \mathbb{Q})$).
- ▶ Also, if $K(p, n)_*(X) = 0$ for all p and n then X = 0.
- Say X has type n at p if $K(p, n)_*(X) \neq 0$ and $K(p, m)_*(X) = 0$ for m < n. Let $\mathcal{F}(p, n)$ be the category of X of type at least n at p.
- Nilpotence theorem: if $u \colon \Sigma^d X \to X$ and $K(p,n)_*(u) = 0$ for all (p,n) then $u^k = 0 \colon \Sigma^{dk} X \to X$ for $k \gg 0$.
- Periodicity theorem: if $X \in \mathcal{F}(p,n)$ with n > 0 then there is a map $v \colon \Sigma^d X \to X$ (for some d > 0) giving an isomorphism on $K(p,n)_*(X)$ (and having a number of other properties, making it "almost unique")
- ▶ Thick subcategory theorem: if C is a subcategory of F satisfying some natural conditions, then it must be one of the categories F(p, n).
- ▶ Chromatic convergence theorem: $\pi_*^5(X) = \mathcal{F}(S^*, X)$ can be built up in layers. The difference between layers n and n-1 is in some sense controlled by K(p, n), and consists of families that are periodic of period $2(p^n-1)p^k$ for large k.

- ▶ Fact: if $K(p, n)_*(X) = 0$, then $K(p, m)_*(X) = 0$ for all m < n (including $K(p, 0)_*(X) = H_*(X; \mathbb{Q})$).
- ▶ Also, if $K(p, n)_*(X) = 0$ for all p and n then X = 0.
- Say X has type n at p if K(p, n)_{*}(X) ≠ 0 and K(p, m)_{*}(X) = 0 for m < n. Let F(p, n) be the category of X of type at least n at p.</p>
- Nilpotence theorem: if $u \colon \Sigma^d X \to X$ and $K(p, n)_*(u) = 0$ for all (p, n) then $u^k = 0 \colon \Sigma^{dk} X \to X$ for $k \gg 0$.
- Periodicity theorem: if $X \in \mathcal{F}(p,n)$ with n>0 then there is a map $v \colon \Sigma^d X \to X$ (for some d>0) giving an isomorphism on $K(p,n)_*(X)$ (and having a number of other properties, making it "almost unique").
- ▶ Thick subcategory theorem: if C is a subcategory of \mathcal{F} satisfying some natural conditions, then it must be one of the categories $\mathcal{F}(p, n)$.
- ▶ Chromatic convergence theorem: $\pi_*^5(X) = \mathcal{F}(S^*, X)$ can be built up in layers. The difference between layers n and n-1 is in some sense controlled by K(p, n), and consists of families that are periodic of period $2(p^n-1)p^k$ for large k.

- ▶ Fact: if $K(p, n)_*(X) = 0$, then $K(p, m)_*(X) = 0$ for all m < n (including $K(p, 0)_*(X) = H_*(X; \mathbb{Q})$).
- ▶ Also, if $K(p, n)_*(X) = 0$ for all p and n then X = 0.
- ▶ Say X has type n at p if $K(p, n)_*(X) \neq 0$ and $K(p, m)_*(X) = 0$ for m < n. Let $\mathcal{F}(p, n)$ be the category of X of type at least n at p.
- Nilpotence theorem: if $u \colon \Sigma^d X \to X$ and $K(p, n)_*(u) = 0$ for all (p, n) then $u^k = 0 \colon \Sigma^{dk} X \to X$ for $k \gg 0$.
- Periodicity theorem: if $X \in \mathcal{F}(p,n)$ with n>0 then there is a map $v \colon \Sigma^d X \to X$ (for some d>0) giving an isomorphism on $K(p,n)_*(X)$ (and having a number of other properties, making it "almost unique").
- ▶ Thick subcategory theorem: if C is a subcategory of \mathcal{F} satisfying some natural conditions, then it must be one of the categories $\mathcal{F}(p, n)$.
- ▶ Chromatic convergence theorem: $\pi_*^5(X) = \mathcal{F}(S^*, X)$ can be built up in layers. The difference between layers n and n-1 is in some sense controlled by K(p, n), and consists of families that are periodic of period $2(p^n-1)p^k$ for large k.

- ▶ Fact: if $K(p, n)_*(X) = 0$, then $K(p, m)_*(X) = 0$ for all m < n (including $K(p, 0)_*(X) = H_*(X; \mathbb{Q})$).
- ▶ Also, if $K(p, n)_*(X) = 0$ for all p and n then X = 0.
- ▶ Say X has type n at p if $K(p, n)_*(X) \neq 0$ and $K(p, m)_*(X) = 0$ for m < n. Let $\mathcal{F}(p, n)$ be the category of X of type at least n at p.
- Nilpotence theorem: if $u : \Sigma^d X \to X$ and $K(p, n)_*(u) = 0$ for all (p, n) then $u^k = 0 : \Sigma^{dk} X \to X$ for $k \gg 0$.
- Periodicity theorem: if $X \in \mathcal{F}(p,n)$ with n > 0 then there is a map $v \colon \Sigma^d X \to X$ (for some d > 0) giving an isomorphism on $K(p,n)_*(X)$ (and having a number of other properties, making it "almost unique").
- ▶ Thick subcategory theorem: if C is a subcategory of \mathcal{F} satisfying some natural conditions, then it must be one of the categories $\mathcal{F}(p, n)$.
- ▶ Chromatic convergence theorem: $\pi_*^5(X) = \mathcal{F}(S^*, X)$ can be built up in layers. The difference between layers n and n-1 is in some sense controlled by K(p, n), and consists of families that are periodic of period $2(p^n-1)p^k$ for large k.

- ▶ Fact: if $K(p, n)_*(X) = 0$, then $K(p, m)_*(X) = 0$ for all m < n (including $K(p, 0)_*(X) = H_*(X; \mathbb{Q})$).
- ▶ Also, if $K(p, n)_*(X) = 0$ for all p and n then X = 0.
- Say X has type n at p if $K(p, n)_*(X) \neq 0$ and $K(p, m)_*(X) = 0$ for m < n. Let $\mathcal{F}(p, n)$ be the category of X of type at least n at p.
- Nilpotence theorem: if $u : \Sigma^d X \to X$ and $K(p, n)_*(u) = 0$ for all (p, n) then $u^k = 0 : \Sigma^{dk} X \to X$ for $k \gg 0$.
- Periodicity theorem: if $X \in \mathcal{F}(p,n)$ with n > 0 then there is a map $v \colon \Sigma^d X \to X$ (for some d > 0) giving an isomorphism on $K(p,n)_*(X)$ (and having a number of other properties, making it "almost unique").
- ▶ Thick subcategory theorem: if \mathcal{C} is a subcategory of \mathcal{F} satisfying some natural conditions, then it must be one of the categories $\mathcal{F}(p, n)$.
- ▶ Chromatic convergence theorem: $\pi_*^5(X) = \mathcal{F}(S^*, X)$ can be built up in layers. The difference between layers n and n-1 is in some sense controlled by K(p, n), and consists of families that are periodic of period $2(p^n-1)p^k$ for large k.

- ▶ Fact: if $K(p, n)_*(X) = 0$, then $K(p, m)_*(X) = 0$ for all m < n (including $K(p, 0)_*(X) = H_*(X; \mathbb{Q})$).
- ▶ Also, if $K(p, n)_*(X) = 0$ for all p and n then X = 0.
- ▶ Say X has type n at p if $K(p, n)_*(X) \neq 0$ and $K(p, m)_*(X) = 0$ for m < n. Let $\mathcal{F}(p, n)$ be the category of X of type at least n at p.
- Nilpotence theorem: if $u : \Sigma^d X \to X$ and $K(p, n)_*(u) = 0$ for all (p, n) then $u^k = 0 : \Sigma^{dk} X \to X$ for $k \gg 0$.
- Periodicity theorem: if $X \in \mathcal{F}(p,n)$ with n > 0 then there is a map $v \colon \Sigma^d X \to X$ (for some d > 0) giving an isomorphism on $K(p,n)_*(X)$ (and having a number of other properties, making it "almost unique").
- ▶ Thick subcategory theorem: if \mathcal{C} is a subcategory of \mathcal{F} satisfying some natural conditions, then it must be one of the categories $\mathcal{F}(p, n)$.
- ▶ Chromatic convergence theorem: $\pi_*^S(X) = \mathcal{F}(S^*, X)$ can be built up in layers. The difference between layers n and n-1 is in some sense controlled by K(p, n), and consists of families that are periodic of period $2(p^n-1)p^k$ for large k.