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> We will write X’s for the space of isomorphism classes of such objects. It is
a compact complex manifold of dimension |S| — 2. It has been studied
extensively, especially for applications in quantum cohomology.

> There are various constructions of Xs in the literature, using abstract
methods from algebraic geometry (geometric invariant theory, Chow
quotients, iterated blowups). We will describe a more elementary model.

» One way to think about it: instead of Kapranov's carefully constructed
sequence of blowups depending on some arbitrary choices, we perform all
possible blowups simultaneously. Miraculously, this does not mess things
up.

> The cohomology of X’s was described by Sean Keel. We will give an
alternative description that fits more neatly with Singh's geometric
description of the space.
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The graph of components must be a tree.

> We write X5 for the set of isomorphism classes of such objects.
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Consider an element M = (Mr)7cs in the product Ps = [[;s PVr. We
say that M is coherent if for all U C T we have My < (p{})™*(My) or
equivalently pl,(M7) € {0, My}.

We write M for the subspace of coherent points in Ps. This is a kind of
inverse limit of a diagram involving partially defined maps PV — PVy.
Theorem: the scheme X’s is naturally isomorphic to Ms.

There is a projection map m: Ms, — Ms, and each fibre 77! {x} is
naturally an S;-marked stable curve of genus 0. We thus have a map

i Ms — Xs sending x to the isomorphism type of 7~ !{x}.

The map A\: X¢ — Us C PVs extends uniquely (via the same definition)
to give a map \: X's — PVs.

There is a “stable forgetting” map Xs — X7 as follows: given (C,x) € Xs
take (C, x|7) and collapse to a point any irreducible component that does
not contain at least thee points that are marked or singular.

By combining these stable forgetting maps with the maps Ar: X7 — PVt
we obtain a canonical map v: Xs — Ms. It works out that v is an
isomorphism of varieties, with inverse .
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» Let L7 be the line bundle over Ms whose fibre at M is Mr.
> Let x7 € H*(Ms) be the Euler class of Lt.

» If T and U overlap then the map Vryu — V1 & Vy is injective, so
Lrou < Lt & Ly, so (xruu — x7)(xTuU — Xxu) = 0.

> Now suppose that Ui, ..., U, are disjoint subsets of T. Put
m=(|T|—1) =3 .(JUi] —1). There is a short exact sequence

OH(C"’HVTH@VU,.HO.

It follows that LT+ < C" @& @, Ly,, and thus

xT H(XT —xy,) = 0.

» Theorem: H*(Ms) is generated by the classes x7 subject only to the
relations above.

> For the proof and also for further details of the structure, we need some
combinatorics.
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> A forest is a collection F of subsets of S such that for all U,V € F we
have UNV =0orUC VorV CU.

(> : ) :

> A treeis a forest with only one maximal element.
> A tree is autumnal if there are leaves on the ground, otherwise vernal.

» Suppose that M € Ms. Say that T C S is M-critical if for all strictly
larger sets U D T we have p¥(My) = 0. Let type(M) be the collection of
all M-critical sets. Then type(M) is a vernal tree. These trees correspond
to the component trees of stable curves as drawn previously.

> The stratification by tree type is an important tool for studying the
geometry of M. The pure strata are products of copies of the spaces
X‘/r ~ Ur C PVr.
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Shapes and bases

> Given a monomial y =[], x7", the shape of y is {T | nt > 0}.

> Given a forest F and aset T € F, let Ui, ..., U, be the maximal sets in
{UeF|UCT}. Then put

m(F, T)=(T|-1) =Y (U] -1),

i

so we have a relation x77" ) [.(xr — xy;) = 0 in H*(Ms).

» We say that y is admissible if shape(y) is a forest and
nt < m(shape(y), T) for all T € shape(y).

» Theorem: the admissible monomials give a basis for H*(Ms) over Z. In
particular, {x‘ss‘_z} is a basis for the top group H?I*I=*(Ms).

> We say that y is strongly inadmissible if there exists U C S such that
ZTQU nt > |U| —2.

» Theorem: if y is strongly inadmissible then it is zero in H*(Ms). If y is
not strongly inadmissible then xiy = x‘sslf2 for i = |S| — 2 — deg(y)/2.
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> A thicket is a collection L of subsets of S with the following properties:
we have Se £, andif U,V e Land UNV #Dthen UUV € L.

> Every vernal tree is a thicket, and {T C S| |T| > 1} is also a thicket.

> Given a thicket £ we put P[L] =[], PVr. We say that a point M in
this space is coherent if whenever U, T € £ and U C T we have
pl(M7) < My. We let M[L] denote the subspace of coherent points.

> All theorems stated for Ms can be adapted to be valid for M[L]. They
are proved inductively in this setting by successively discarding minimal
elements from L.

> The induction step involves a blowup square

MIL] x PVy > M[L]

P

M[L] = MIL]

where T is minimal in £; and £ = £; \ {T} and £ is an induced thicket
on S/T.
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Trees as thickets

> Let 7 be a vernal tree, and let Ty,..., T, be the maximal proper subsets
in 7. Put 7; = {U € T | U C T;}, which is a vernal tree on T;.

> The space M[T] is then the projective bundle associated to a certain
vector bundle over []; M[Ti], and both the geometry and the cohomology
can be analysed easily from this description.

> Let £ be a thicket; then we can find many different vernal trees 7 C L.

» For each such tree, there is a projection map M[L] — M[T], which is an
isomorphism over a large open subscheme of M[7]. Some facts are
established by this route rather than by induction on |£].



