
Semi-formal verification
as a routine tool

Neil Strickland



The Goal

I Goal: Computer checkable proofs as a routine tool in ongoing
mathematical research.

I As far as I know, this is not really happening at the moment.

I I have tried to start doing this (with Agda, Coq, Isabelle) but
have not succeeded.

I However, I have used a kind of semi-formal verification based
on Maple for a wide range of projects, some of which are large.

I In this talk I will discuss my experience of this, in the hope
that it might provoke new ideas about the move to fully
formal verification.



The Goal

I Goal: Computer checkable proofs as a routine tool in ongoing
mathematical research.

I As far as I know, this is not really happening at the moment.

I I have tried to start doing this (with Agda, Coq, Isabelle) but
have not succeeded.

I However, I have used a kind of semi-formal verification based
on Maple for a wide range of projects, some of which are large.

I In this talk I will discuss my experience of this, in the hope
that it might provoke new ideas about the move to fully
formal verification.



The Goal

I Goal: Computer checkable proofs as a routine tool in ongoing
mathematical research.

I As far as I know, this is not really happening at the moment.

I I have tried to start doing this (with Agda, Coq, Isabelle) but
have not succeeded.

I However, I have used a kind of semi-formal verification based
on Maple for a wide range of projects, some of which are large.

I In this talk I will discuss my experience of this, in the hope
that it might provoke new ideas about the move to fully
formal verification.



The Goal

I Goal: Computer checkable proofs as a routine tool in ongoing
mathematical research.

I As far as I know, this is not really happening at the moment.

I I have tried to start doing this (with Agda, Coq, Isabelle) but
have not succeeded.

I However, I have used a kind of semi-formal verification based
on Maple for a wide range of projects, some of which are large.

I In this talk I will discuss my experience of this, in the hope
that it might provoke new ideas about the move to fully
formal verification.



The Goal

I Goal: Computer checkable proofs as a routine tool in ongoing
mathematical research.

I As far as I know, this is not really happening at the moment.

I I have tried to start doing this (with Agda, Coq, Isabelle) but
have not succeeded.

I However, I have used a kind of semi-formal verification based
on Maple for a wide range of projects, some of which are large.

I In this talk I will discuss my experience of this, in the hope
that it might provoke new ideas about the move to fully
formal verification.



The Goal

I Goal: Computer checkable proofs as a routine tool in ongoing
mathematical research.

I As far as I know, this is not really happening at the moment.

I I have tried to start doing this (with Agda, Coq, Isabelle) but
have not succeeded.

I However, I have used a kind of semi-formal verification based
on Maple for a wide range of projects, some of which are large.

I In this talk I will discuss my experience of this, in the hope
that it might provoke new ideas about the move to fully
formal verification.



Geometry of embedded surfaces

EX ∗ = {x ∈ S3 | (3x23 − 2)x4 +
√

2(x21 − x22 )x3 = 0},

This is a large and complex project, with a 160 page monograph,
30000 lines of Maple code, and 2500 assertions checked by Maple.
It involves Riemannian geometry of surfaces embedded in S3



Geometry of embedded surfaces

. . . equivariant combinatorics of simplicial complexes with finite
group action



Geometry of embedded surfaces

. . . equivariant combinatorics of simplicial complexes with finite
group action



Geometry of embedded surfaces

. . . hyperbolic geometry and combinatorial group theory of
Fuchsian groups



Geometry of embedded surfaces

. . . analytic and geometric theory of differential equations,
Schwarzian derivatives and conformal mappings



Geometry of embedded surfaces

. . . theory of automorphic forms



Geometry of embedded surfaces

. . . brute force solution of multivariable diophantine equations



Geometry of embedded surfaces

. . . brute force solution of multivariable diophantine equations

. . . and various other ingredients.



Examples of data and formulae

χ0 χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9

1 1 1 1 1 1 1 1 1 2 2

λ2 1 1 1 1 1 1 1 1 −2 −2

µν 1 1 −1 −1 1 1 −1 −1 2 −2

λ2µν 1 1 −1 −1 1 1 −1 −1 −2 2

λ±1 1 −1 1 −1 −1 1 −1 1 0 0

µ, λ2µ 1 1 −1 −1 −1 −1 1 1 0 0

λ±1µ 1 −1 −1 1 1 −1 −1 1 0 0

ν, λ2ν 1 1 1 1 −1 −1 −1 −1 0 0

λ±1ν 1 −1 1 −1 1 −1 1 −1 0 0

λ±1µν 1 −1 −1 1 −1 1 1 −1 0 0



Examples of data and formulae

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 0 π
2

π −π
2

π
4

3π
4

− 3π
4

−π
4

1 0 π π
2

−π
2

2 0 π π
2

−π
2

3 π
2

−π
2

0 π

4 −π
2

π
2

0 π

5 0 π
6 0 π
7 0 π
8 0 π

λ(c0(t)) = c0(t + π/2) µ(c0(t)) = c0(−t) ν(c0(t)) = c0(−t)

λ(c1(t)) = c2(t) µ(c1(t)) = c2(t + π) ν(c1(t)) = c2(−t)

λ(c2(t)) = c1(−t) µ(c2(t)) = c1(t + π) ν(c2(t)) = c1(−t)

λ(c3(t)) = c4(t) µ(c3(t)) = c3(t + π) ν(c3(t)) = c3(−t)

λ(c4(t)) = c3(−t) µ(c4(t)) = c4(−t − π) ν(c4(t)) = c4(t)

λ(c5(t)) = c6(t) µ(c5(t)) = c7(t) ν(c5(t)) = c5(t)

λ(c6(t)) = c5(−t) µ(c6(t)) = c8(−t) ν(c6(t)) = c6(−t)

λ(c7(t)) = c8(t) µ(c7(t)) = c5(t) ν(c7(t)) = c7(t)

λ(c8(t)) = c7(−t) µ(c8(t)) = c6(−t) ν(c8(t)) = c8(−t)



Examples of data and formulae

c0(t) = j′(−
√

(a−1 − a)2 + 4 sin2(2t), e it , −e−it )

c1(t) = j′
(

1 + i

8
√
2

sin(t)
√

16 cos(t)2 + (a + a−1)2 sin(t)4,
1 + cos(t)

2
,

1− cos(t)

2
i

)
c2(t) = λ(c1(t))

c3(t) = j′
(
−i

a−1 − a

8
sin(t)

√
(1 + a)4 − (1− a)4 cos(t)2

√
(1 + a)2 − (1− a)2 cos(t)2,

(1 + a) + (1− a) cos(t)

2
,

(1 + a)− (1− a) cos(t)

2

)
c4(t) = λ(c3(t))

c5(t) = j

(
sin(t)

8

√
2a(3− cos(t))(4− a4(1− cos(t))2), a

1− cos(t)

2

)
c6(t) = λ(c5(t))

c7(t) = µ(c5(t))

c8(t) = λµ(c5(t)).

Here a ∈ (0, 1) so all square roots are of positive quantities.
Maple is able to take this into account when simplifying but there
is no documentation of the algorithm used.



Examples of data and formulae

There are morphisms of elliptic curves

E+(a)
π+

−−→ E−(a)
π−−−→ E+(a)

given generically by

π+(j(y , x)) = j

(√
2y((1− x)2 + b2−x

2)

((1− x)2 − b2−x
2)2

,
2x(x − 1)

((1− x)2 − b2−x
2)

)

π−(j(y , x)) = j

(√
2y((1− x)2 − b2+x

2)

((1− x)2 + b2+x
2)2

,
2x(x − 1)

((1− x)2 + b2+x
2)

)
.

We need to verify that the denominators do not cause trouble. For
this we use homogeneous coordinates, check some polynomial
identities that were found by Gröbner methods, and apply some
logic.



Examples of data and formulae

Fuchsian group with generators β0, . . . , β7, λ, µ, ν and relations

βk+4 = β
−1
k β0β1β2β3β4β5β6β7 = 1 λ

4 = µ
2 = ν

2 = (λν)2 = 1

(λµ)2 = β7β6 (νµ)2 = β6β0β7β6 λβkλ
−1 = λ∗(βk ) µβkµ = µ∗(βk ) νβkν = ν∗(βk ).

β0 β1 β2 β3 β4 β5 β6 β7
λ∗ β2 β3 β4 β5 β6 β7 β0 β1
µ∗ β2β0β1 β5β4β3 β0β7β6 β2β3β1 β5β4β6 β7β0β1 β2β3β4 β5β7β6
ν∗ β0 β2β1β2 β6 β0β7β0 β4 β6β5β6 β2 β4β3β4

Fix b ∈ (0, 1) with b± =
√

1± b2 and consider action on unit disc
by

λ(z) = iz β0(z) =
b+z + 1

z + b+

µ(z) =
b+z − b2 − i

(b2 − i)z − b+
β1(z) =

b3+z − (2 + i)b2 − i

((i − 2)b2 + i)z + b3+

ν(z) = z β2n(z) = inβ0(z/i
n)

β2n+1(z) = inβ1(z/i
n).



Methods for semi-formal verification

I Somewhat similar philosophy to automated unit testing in
software engineering.

I For small, finite combinatorial structures: exhaustive check of
cases.

I For polynomial identities: trust Maple to verify.

I Rational function identities: clear denominators, with care.

I Polynomial identites mod relations: trust Maple’s Gröbner
package (but could ask for witnesses).

I Expressions with trig functions, radicals, positivity conditions:
trust Maple, more cautiously. Also check random examples.

I More complex proofs: isolate independent (in)equalities as far
as possible, check them as above or with random examples,
with high precision numerics where appropriate.



Methods for semi-formal verification

I Somewhat similar philosophy to automated unit testing in
software engineering.

I For small, finite combinatorial structures: exhaustive check of
cases.

I For polynomial identities: trust Maple to verify.

I Rational function identities: clear denominators, with care.

I Polynomial identites mod relations: trust Maple’s Gröbner
package (but could ask for witnesses).

I Expressions with trig functions, radicals, positivity conditions:
trust Maple, more cautiously. Also check random examples.

I More complex proofs: isolate independent (in)equalities as far
as possible, check them as above or with random examples,
with high precision numerics where appropriate.



Methods for semi-formal verification

I Somewhat similar philosophy to automated unit testing in
software engineering.

I For small, finite combinatorial structures: exhaustive check of
cases.

I For polynomial identities: trust Maple to verify.

I Rational function identities: clear denominators, with care.

I Polynomial identites mod relations: trust Maple’s Gröbner
package (but could ask for witnesses).

I Expressions with trig functions, radicals, positivity conditions:
trust Maple, more cautiously. Also check random examples.

I More complex proofs: isolate independent (in)equalities as far
as possible, check them as above or with random examples,
with high precision numerics where appropriate.



Methods for semi-formal verification

I Somewhat similar philosophy to automated unit testing in
software engineering.

I For small, finite combinatorial structures: exhaustive check of
cases.

I For polynomial identities: trust Maple to verify.

I Rational function identities: clear denominators, with care.

I Polynomial identites mod relations: trust Maple’s Gröbner
package (but could ask for witnesses).

I Expressions with trig functions, radicals, positivity conditions:
trust Maple, more cautiously. Also check random examples.

I More complex proofs: isolate independent (in)equalities as far
as possible, check them as above or with random examples,
with high precision numerics where appropriate.



Methods for semi-formal verification

I Somewhat similar philosophy to automated unit testing in
software engineering.

I For small, finite combinatorial structures: exhaustive check of
cases.

I For polynomial identities: trust Maple to verify.

I Rational function identities: clear denominators, with care.

I Polynomial identites mod relations: trust Maple’s Gröbner
package (but could ask for witnesses).

I Expressions with trig functions, radicals, positivity conditions:
trust Maple, more cautiously. Also check random examples.

I More complex proofs: isolate independent (in)equalities as far
as possible, check them as above or with random examples,
with high precision numerics where appropriate.



Methods for semi-formal verification

I Somewhat similar philosophy to automated unit testing in
software engineering.

I For small, finite combinatorial structures: exhaustive check of
cases.

I For polynomial identities: trust Maple to verify.

I Rational function identities: clear denominators, with care.

I Polynomial identites mod relations: trust Maple’s Gröbner
package (but could ask for witnesses).

I Expressions with trig functions, radicals, positivity conditions:
trust Maple, more cautiously. Also check random examples.

I More complex proofs: isolate independent (in)equalities as far
as possible, check them as above or with random examples,
with high precision numerics where appropriate.



Methods for semi-formal verification

I Somewhat similar philosophy to automated unit testing in
software engineering.

I For small, finite combinatorial structures: exhaustive check of
cases.

I For polynomial identities: trust Maple to verify.

I Rational function identities: clear denominators, with care.

I Polynomial identites mod relations: trust Maple’s Gröbner
package (but could ask for witnesses).

I Expressions with trig functions, radicals, positivity conditions:
trust Maple, more cautiously. Also check random examples.

I More complex proofs: isolate independent (in)equalities as far
as possible, check them as above or with random examples,
with high precision numerics where appropriate.



Methods for semi-formal verification

I Somewhat similar philosophy to automated unit testing in
software engineering.

I For small, finite combinatorial structures: exhaustive check of
cases.

I For polynomial identities: trust Maple to verify.

I Rational function identities: clear denominators, with care.

I Polynomial identites mod relations: trust Maple’s Gröbner
package (but could ask for witnesses).

I Expressions with trig functions, radicals, positivity conditions:
trust Maple, more cautiously. Also check random examples.

I More complex proofs: isolate independent (in)equalities as far
as possible, check them as above or with random examples,
with high precision numerics where appropriate.



Comments on the framework

I We performed very extensive interactive explorations in Maple
to find out what was true, supported by excellent visualisation
tools etc. We then used the same framework to set up
automated verification tests. This is convenient.

I Maple can do a very wide range of things. There are some
things that it does not do especially well, but it makes life
much easier to have everything in the same package.

I Maple allows, but does not enforce, various kinds of type
checking. This limits the level of rigour that can be achieved,
but in practice it seems a good compromise.

I Automated testing definitely catches many errors. A large
fraction are just transcription problems, or arise from
adjustments in one part of the project not properly carried
over to other parts. Some others are more subtle and
interesting.



Comments on the framework

I We performed very extensive interactive explorations in Maple
to find out what was true, supported by excellent visualisation
tools etc. We then used the same framework to set up
automated verification tests. This is convenient.

I Maple can do a very wide range of things. There are some
things that it does not do especially well, but it makes life
much easier to have everything in the same package.

I Maple allows, but does not enforce, various kinds of type
checking. This limits the level of rigour that can be achieved,
but in practice it seems a good compromise.

I Automated testing definitely catches many errors. A large
fraction are just transcription problems, or arise from
adjustments in one part of the project not properly carried
over to other parts. Some others are more subtle and
interesting.



Comments on the framework

I We performed very extensive interactive explorations in Maple
to find out what was true, supported by excellent visualisation
tools etc. We then used the same framework to set up
automated verification tests. This is convenient.

I Maple can do a very wide range of things. There are some
things that it does not do especially well, but it makes life
much easier to have everything in the same package.

I Maple allows, but does not enforce, various kinds of type
checking. This limits the level of rigour that can be achieved,
but in practice it seems a good compromise.

I Automated testing definitely catches many errors. A large
fraction are just transcription problems, or arise from
adjustments in one part of the project not properly carried
over to other parts. Some others are more subtle and
interesting.



Comments on the framework

I We performed very extensive interactive explorations in Maple
to find out what was true, supported by excellent visualisation
tools etc. We then used the same framework to set up
automated verification tests. This is convenient.

I Maple can do a very wide range of things. There are some
things that it does not do especially well, but it makes life
much easier to have everything in the same package.

I Maple allows, but does not enforce, various kinds of type
checking. This limits the level of rigour that can be achieved,
but in practice it seems a good compromise.

I Automated testing definitely catches many errors. A large
fraction are just transcription problems, or arise from
adjustments in one part of the project not properly carried
over to other parts. Some others are more subtle and
interesting.



Comments on the framework

I We performed very extensive interactive explorations in Maple
to find out what was true, supported by excellent visualisation
tools etc. We then used the same framework to set up
automated verification tests. This is convenient.

I Maple can do a very wide range of things. There are some
things that it does not do especially well, but it makes life
much easier to have everything in the same package.

I Maple allows, but does not enforce, various kinds of type
checking. This limits the level of rigour that can be achieved,
but in practice it seems a good compromise.

I Automated testing definitely catches many errors. A large
fraction are just transcription problems, or arise from
adjustments in one part of the project not properly carried
over to other parts. Some others are more subtle and
interesting.



Other projects and libraries

I I have a library of Maple code designed for semi-formal
verification. Some projects use this library, some will be
migrated, some are unsuitable for migration.

I There is a lot of code for finite combinatorial structures:
different kinds of (chains of) orders, partitions, graphs, trees,
maps, relations.

I There is code for dealing with various topological spaces.
Most of these can be thought of as compact subspaces
X ⊂ Map(A,R) (for some finite A) defined by polynomial
(in)equalities, spectral conditions etc.

I Some spaces are quotients of spaces as above.

I There is code for various rings, often arising as (generalised)
cohomology rings of specific topological spaces. This typically
involves Gröbner bases.

I There is code for many morphisms and (co)operad structures.



Other projects and libraries

I I have a library of Maple code designed for semi-formal
verification. Some projects use this library, some will be
migrated, some are unsuitable for migration.

I There is a lot of code for finite combinatorial structures:
different kinds of (chains of) orders, partitions, graphs, trees,
maps, relations.

I There is code for dealing with various topological spaces.
Most of these can be thought of as compact subspaces
X ⊂ Map(A,R) (for some finite A) defined by polynomial
(in)equalities, spectral conditions etc.

I Some spaces are quotients of spaces as above.

I There is code for various rings, often arising as (generalised)
cohomology rings of specific topological spaces. This typically
involves Gröbner bases.

I There is code for many morphisms and (co)operad structures.



Other projects and libraries

I I have a library of Maple code designed for semi-formal
verification. Some projects use this library, some will be
migrated, some are unsuitable for migration.

I There is a lot of code for finite combinatorial structures:
different kinds of (chains of) orders, partitions, graphs, trees,
maps, relations.

I There is code for dealing with various topological spaces.
Most of these can be thought of as compact subspaces
X ⊂ Map(A,R) (for some finite A) defined by polynomial
(in)equalities, spectral conditions etc.

I Some spaces are quotients of spaces as above.

I There is code for various rings, often arising as (generalised)
cohomology rings of specific topological spaces. This typically
involves Gröbner bases.

I There is code for many morphisms and (co)operad structures.



Other projects and libraries

I I have a library of Maple code designed for semi-formal
verification. Some projects use this library, some will be
migrated, some are unsuitable for migration.

I There is a lot of code for finite combinatorial structures:
different kinds of (chains of) orders, partitions, graphs, trees,
maps, relations.

I There is code for dealing with various topological spaces.
Most of these can be thought of as compact subspaces
X ⊂ Map(A,R) (for some finite A) defined by polynomial
(in)equalities, spectral conditions etc.

I Some spaces are quotients of spaces as above.

I There is code for various rings, often arising as (generalised)
cohomology rings of specific topological spaces. This typically
involves Gröbner bases.

I There is code for many morphisms and (co)operad structures.



Other projects and libraries

I I have a library of Maple code designed for semi-formal
verification. Some projects use this library, some will be
migrated, some are unsuitable for migration.

I There is a lot of code for finite combinatorial structures:
different kinds of (chains of) orders, partitions, graphs, trees,
maps, relations.

I There is code for dealing with various topological spaces.
Most of these can be thought of as compact subspaces
X ⊂ Map(A,R) (for some finite A) defined by polynomial
(in)equalities, spectral conditions etc.

I Some spaces are quotients of spaces as above.

I There is code for various rings, often arising as (generalised)
cohomology rings of specific topological spaces. This typically
involves Gröbner bases.

I There is code for many morphisms and (co)operad structures.



Other projects and libraries

I I have a library of Maple code designed for semi-formal
verification. Some projects use this library, some will be
migrated, some are unsuitable for migration.

I There is a lot of code for finite combinatorial structures:
different kinds of (chains of) orders, partitions, graphs, trees,
maps, relations.

I There is code for dealing with various topological spaces.
Most of these can be thought of as compact subspaces
X ⊂ Map(A,R) (for some finite A) defined by polynomial
(in)equalities, spectral conditions etc.

I Some spaces are quotients of spaces as above.

I There is code for various rings, often arising as (generalised)
cohomology rings of specific topological spaces. This typically
involves Gröbner bases.

I There is code for many morphisms and (co)operad structures.



Other projects and libraries

I I have a library of Maple code designed for semi-formal
verification. Some projects use this library, some will be
migrated, some are unsuitable for migration.

I There is a lot of code for finite combinatorial structures:
different kinds of (chains of) orders, partitions, graphs, trees,
maps, relations.

I There is code for dealing with various topological spaces.
Most of these can be thought of as compact subspaces
X ⊂ Map(A,R) (for some finite A) defined by polynomial
(in)equalities, spectral conditions etc.

I Some spaces are quotients of spaces as above.

I There is code for various rings, often arising as (generalised)
cohomology rings of specific topological spaces. This typically
involves Gröbner bases.

I There is code for many morphisms and (co)operad structures.



Chained preorders

I Example: given a finite set A and N > 0 let ICPN(A) be the
set of chains (Q1, . . . ,QN) of preorders on A such that Q1 is
total, QN is separated, any two elements are Qi -comparable iff
Qi−1-equivalent. This set is itself finite, and partially ordered.

I There is code to recognise elements of ICPN(A). This could
easily be converted to a definition of ICPN(A) as a dependent
type in Agda/Coq/Isabelle. Architecture is designed with this
in mind.

I There is code to define the partial order on ICPN(A); also
easily translatable. A small amount of extra work would give a
formal proof of partial order axioms.

I There is code to enumerate the elements of ICPN(A) (for
small (A,N)). Translation would implicitly involve a formal
proof of correctness; probably substantial extra work.



Chained preorders

I Example: given a finite set A and N > 0 let ICPN(A) be the
set of chains (Q1, . . . ,QN) of preorders on A such that Q1 is
total, QN is separated, any two elements are Qi -comparable iff
Qi−1-equivalent. This set is itself finite, and partially ordered.

I There is code to recognise elements of ICPN(A). This could
easily be converted to a definition of ICPN(A) as a dependent
type in Agda/Coq/Isabelle. Architecture is designed with this
in mind.

I There is code to define the partial order on ICPN(A); also
easily translatable. A small amount of extra work would give a
formal proof of partial order axioms.

I There is code to enumerate the elements of ICPN(A) (for
small (A,N)). Translation would implicitly involve a formal
proof of correctness; probably substantial extra work.



Chained preorders

I Example: given a finite set A and N > 0 let ICPN(A) be the
set of chains (Q1, . . . ,QN) of preorders on A such that Q1 is
total, QN is separated, any two elements are Qi -comparable iff
Qi−1-equivalent. This set is itself finite, and partially ordered.

I There is code to recognise elements of ICPN(A). This could
easily be converted to a definition of ICPN(A) as a dependent
type in Agda/Coq/Isabelle. Architecture is designed with this
in mind.

I There is code to define the partial order on ICPN(A); also
easily translatable. A small amount of extra work would give a
formal proof of partial order axioms.

I There is code to enumerate the elements of ICPN(A) (for
small (A,N)). Translation would implicitly involve a formal
proof of correctness; probably substantial extra work.



Chained preorders

I Example: given a finite set A and N > 0 let ICPN(A) be the
set of chains (Q1, . . . ,QN) of preorders on A such that Q1 is
total, QN is separated, any two elements are Qi -comparable iff
Qi−1-equivalent. This set is itself finite, and partially ordered.

I There is code to recognise elements of ICPN(A). This could
easily be converted to a definition of ICPN(A) as a dependent
type in Agda/Coq/Isabelle. Architecture is designed with this
in mind.

I There is code to define the partial order on ICPN(A); also
easily translatable. A small amount of extra work would give a
formal proof of partial order axioms.

I There is code to enumerate the elements of ICPN(A) (for
small (A,N)). Translation would implicitly involve a formal
proof of correctness; probably substantial extra work.



Chained preorders

I Example: given a finite set A and N > 0 let ICPN(A) be the
set of chains (Q1, . . . ,QN) of preorders on A such that Q1 is
total, QN is separated, any two elements are Qi -comparable iff
Qi−1-equivalent. This set is itself finite, and partially ordered.

I There is code to recognise elements of ICPN(A). This could
easily be converted to a definition of ICPN(A) as a dependent
type in Agda/Coq/Isabelle. Architecture is designed with this
in mind.

I There is code to define the partial order on ICPN(A); also
easily translatable. A small amount of extra work would give a
formal proof of partial order axioms.

I There is code to enumerate the elements of ICPN(A) (for
small (A,N)). Translation would implicitly involve a formal
proof of correctness; probably substantial extra work.



Chained preorders

I There is code to generate random elements of ICPN(A)
(tractable for larger (A,N)). The algorithm overweights
special cases. This is extremely valuable for exploration and
hypothesis testing. I do not know how to fit anything like that
in standard proof assistants.

I We are interested in the homotopy theory of (the geometric
realisation of) ICPN(A) and related posets. There is code for
various general constructions in this theory (shellings, discrete
Morse theory, the geometric realisation itself).

I The discipline of coding all posets, morphisms and operad
structures helps ensure that everything is properly specified.
We can test statements on a complete list or random selection
of elements to ensure that edge cases are handled correctly.



Chained preorders

I There is code to generate random elements of ICPN(A)
(tractable for larger (A,N)). The algorithm overweights
special cases. This is extremely valuable for exploration and
hypothesis testing. I do not know how to fit anything like that
in standard proof assistants.

I We are interested in the homotopy theory of (the geometric
realisation of) ICPN(A) and related posets. There is code for
various general constructions in this theory (shellings, discrete
Morse theory, the geometric realisation itself).

I The discipline of coding all posets, morphisms and operad
structures helps ensure that everything is properly specified.
We can test statements on a complete list or random selection
of elements to ensure that edge cases are handled correctly.



Chained preorders

I There is code to generate random elements of ICPN(A)
(tractable for larger (A,N)). The algorithm overweights
special cases. This is extremely valuable for exploration and
hypothesis testing. I do not know how to fit anything like that
in standard proof assistants.

I We are interested in the homotopy theory of (the geometric
realisation of) ICPN(A) and related posets. There is code for
various general constructions in this theory (shellings, discrete
Morse theory, the geometric realisation itself).

I The discipline of coding all posets, morphisms and operad
structures helps ensure that everything is properly specified.
We can test statements on a complete list or random selection
of elements to ensure that edge cases are handled correctly.



Chained preorders

I There is code to generate random elements of ICPN(A)
(tractable for larger (A,N)). The algorithm overweights
special cases. This is extremely valuable for exploration and
hypothesis testing. I do not know how to fit anything like that
in standard proof assistants.

I We are interested in the homotopy theory of (the geometric
realisation of) ICPN(A) and related posets. There is code for
various general constructions in this theory (shellings, discrete
Morse theory, the geometric realisation itself).

I The discipline of coding all posets, morphisms and operad
structures helps ensure that everything is properly specified.
We can test statements on a complete list or random selection
of elements to ensure that edge cases are handled correctly.


