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(E depends on a prime p and integer n > 0, suppressed from the
notation.)

» Consider quotient Hopf algebras B = A[x]/J = (A®g E°(CP>))/J such
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> The set of such B bijects naturally with the set of maps Ry — A of
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natural representation of ¥ ,4; this involves some combinatorics.

> Ry is naturally self-dual as an E°-module, and so is a Gorenstein ring.
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Let R(G) be the complex representation ring of G.
Put Rep(H, G) = Hom(H, G)/conjugation by G; so

v

Rep(Z, G) = Rep(i, G) = {conjugacy classes of elements}.

v

Character theory:

C ® R(G) = Map(Rep(Z, G),C)

Q® R(G) = Map(Rep(Z, G), Q)

Q® ® R(G) = Map(Rep(Z, G), Q™)
)=

Q® R(G) = Fix(Z*,Map(Rep(Z, G), Q™).

\4

Higher character theory (Hopkins, Kuhn, Ravenel):
For a certain extension L of Q ® E° with Galois group Aut(Zj) we have

L @0 E°(BG) = Map(Rep(Z), G), L)
Q ® E°(BG) = Fix(Aut(Zy), Map(Rep(Z, G), L))

~ {abelian p-subgroups of rank at most n}
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E°(BGL4(K)) = E%[c1, ..., cal/(c1 — <. .., ca — C5).

Recent work of Sam Marsh gives many more details in special cases.

» Calculations for particular groups by Kriz, Lee, Tezuka, Yagita, Schuster,
Bakuradze, Priddy.
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> Investigate Suby(G) by pure algebra: level structures on formal groups,
Galois theory for regular local rings, commutative algebra, Gorenstein
property.

» Combinatorial analysis of blocks of monomials and numbers of lattices in
Zy.

» Higher character theory of E°(BX,) and comparison with algebraic results
about Q & OSubd(G)-

» The Sylow p-subgroup in ¥4 is an iterated wreath product so its Morava
E-theory can be approached using Serre-type spectral sequences. Use this
to show that the socle generator in Osp,(g) has nontrivial image in Ry, so
the map is injective.

» Consider the space ]_[k BY i, which has a very rich algebraic structure; the
theory of Hopf rings is useful here.

» Compare with QS° and QS? by the Snaith splitting and the Thom
isomorphism. Compare QS° with Q°° BP using work of Kashiwabara and
Wilson.



