Symmetric Powers of Spheres

Neil Strickland
(with Johann Sigurdsson)

August 9, 2007
Overview of homotopy theory

\[\pi_* (S^*) \]
Overview of homotopy theory

\[\pi_\ast(S^\ast) \quad \longrightarrow \quad H_\ast(S^0) \]
Overview of homotopy theory

\[\pi_*(S^*) \rightarrow \pi_*^S(S^0) \rightarrow MU_*^*(S^0) \rightarrow H_*^*(S^0) \]
Overview of homotopy theory

\[\pi_\ast(S^\ast) \rightarrow \pi^S_\ast(S^0) \rightarrow MU_\ast(S^0) \rightarrow H_\ast(S^0) \]

Formal groups
Overview of homotopy theory

\[\pi_{k+1}S^1 \xrightarrow{E} \pi_{k+2}S^2 \xrightarrow{E} \pi_{k+3}S^3 \xrightarrow{E} \pi_{k+4}S^4 \xrightarrow{} \pi_k(QS^0) = \pi_k(S^0) \]

\[\pi_*(S^*) \xrightarrow{} \pi_*(S^0) \xrightarrow{} MU_*(S^0) \xrightarrow{} H_*(S^0) \]

Formal groups
Overview of homotopy theory

\[\pi_{k+1}S^1 \rightarrow \pi_{k+2}S^2 \rightarrow \pi_{k+3}S^3 \rightarrow \pi_{k+4}S^4 \rightarrow \pi_k QS^0 \Rightarrow \pi_k S^0 \]

Formal groups

\[\pi_*(S^*) \rightarrow \pi_* S^0 \rightarrow MU_* S^0 \rightarrow H_* S^0 \]
Overview of homotopy theory

\[\pi_\ast(S^\ast) \xrightarrow{\text{EHPSS}} \pi^S_\ast(S^0) \rightarrow \text{MU}_\ast(S^0) \rightarrow H_\ast(S^0) \]

Formal groups
Overview of homotopy theory

\[X(n) = \text{Thom}(\Omega SU(n) \rightarrow \Omega SU = BU) \]

\[S^0 = X(1) \rightarrow X(2) \rightarrow X(3) \rightarrow X(4) \rightarrow X(\infty) = MU \]

Formal groups

\[\pi_* (S^*) \rightarrow \pi_* (S^0) \rightarrow MU_* (S^0) \rightarrow H_* (S^0) \]

(Whitehead, Kuhn, Priddy)
Overview of homotopy theory

\[X(n, k) \text{ from the James filtration on } \Omega(SU(n+1)/SU(n)) = \Omega S^{2n+1} = JS^{2n} \]

\[X(n) = X(n, 0) \rightarrow X(n, 1) \rightarrow X(n, 2) \rightarrow X(n, 2) \rightarrow X(n, \infty) = X(n+1) \]

\[S^0 = X(1) \rightarrow X(2) \rightarrow X(3) \rightarrow X(4) \rightarrow X(\infty) = MU \]

\[\pi_*(S^*) \rightarrow \pi_*(S^0) \rightarrow \pi_*(S^0) \rightarrow MU_*(S^0) \rightarrow H_*(S^0) \]

Formal groups
Overview of homotopy theory

\[
\pi_*(S^*) \xrightarrow{\text{EHPSS}} \pi_*^S(S^0) \xrightarrow{\text{Nilpotence filtration}} \pi_*^S(S^0) \xrightarrow{\text{Adams-Novikov SS}} MU_*(S^0) \xrightarrow{\text{H_*}(S^0)}
\]
Overview of homotopy theory

\[\pi_*(S^*) \quad \xrightarrow{\text{EHPSS}} \quad \pi_*^S(S^0) \quad \xrightarrow{\text{Nilpotence filtration}} \quad \pi_*^S(S^0) \quad \xrightarrow{\text{Koszul filtration}} \quad MU_*^S(S^0) \quad \xrightarrow{\text{Koszul filtration}} \quad H_*^S(S^0) \]
Overview of homotopy theory

\[\begin{align*}
S^0 &= SP^1(S^0)
& \xrightarrow{} SP^2(S^0)
& \xrightarrow{} SP^3(S^0)
& \xrightarrow{} SP^4(S^0)
& \xrightarrow{} SP^{\infty}(S^0) \equiv H
\end{align*} \]

\[SP^n(S^0) \text{ is a prespectrum with } k' \text{th space } (S^k)^{\times n}/\Sigma_n \]

- **EHPSS**
- **Nilpotence filtration**
- **Koszul filtration**

\[\begin{align*}
\pi_*(S^*) \xrightarrow{EHPSS} & \pi_*^S(S^0) \\
\pi_*(S^0) \xrightarrow{Nilpotence filtration} & MU_*(S^0) \\
& H_*(S^0)
\end{align*} \]
Overview of homotopy theory

\[S^0 = SP^1(S^0) \rightarrow SP^2(S^0) \rightarrow SP^3(S^0) \rightarrow SP^\infty(S^0) = H \]

\[SP^n(S^0) = \text{prespectrum with } k \text{'th space } (S^k)^n / \Sigma_n \]

- **EHPSS**
 \[\pi_* (S^*) \rightarrow \pi_*^S(S^0) \]

- **Nilpotence filtration**
 \[\pi_*^S(S^0) \rightarrow MU_* (S^0) \]

- **Koszul filtration**
 \[MU_* (S^0) \rightarrow H_* (S^0) \]
Overview of homotopy theory

\[S^0 = \text{SP}^1(S^0) \rightarrow \text{SP}^2(S^0) \rightarrow \text{SP}^3(S^0) \rightarrow \cdots \rightarrow \text{SP}^\infty(S^0) = H \]

EHPSS

\[\pi_*(S^*) \rightarrow \pi_*^S(S^0) \rightarrow \cdots \rightarrow H_*(S^0) \]

Nilpotence filtration

Koszul filtration

\[\cdots \rightarrow \pi_*^S(S^0) \rightarrow \text{MU}_*(S^0) \rightarrow H_*(S^0) \]
Overview of homotopy theory

\[S^0 = S^1(S^0) \to S^p(S^0) \to S^{p^2}(S^0) \to S^{p^3}(S^0) \to \text{SP}\infty(S^0) = H \]

\[L(0) \to \Sigma L(1) \to \Sigma^2 L(2) \to \Sigma^3 L(3) \]

\(\Omega^\infty L(*) \) is a DGA up to homotopy, chain equivalent to \(\mathbb{Z} \) (Whitehead, Kuhn, Priddy)

Nilpotence filtration

Koszul filtration

EHPSS

\(\pi_*(S^*) \to \pi_*^S(S^0) \to \pi_*^S(S^0) \to \text{MU}_*(S^0) \to \text{H}_*(S^0) \)
Overview of homotopy theory

- **Koszul filtration**
- **Nilpotence filtration**
- **Symmetric power filtration**

\[\pi_\ast(S^\ast) \rightarrow \pi^\ast(S^0) \rightarrow \pi_\ast(S^0) \rightarrow MU_\ast(S^0) \rightarrow H_\ast(S^0) \]
Overview of homotopy theory

- EHPSS
 - \(\pi_*(S^*) \)
 - \(\pi^S(S^0) \)
 - \(MU_*(S^0) \)

- Nilpotence filtration
 - \(\pi^S(S^0) \)
 - \(MU_*(S^0) \)
 - \(H_*(S^0) \)

- Symmetric power filtration

- Koszul filtration

- \(\overline{MU} \quad \rightarrow \quad S \quad \rightarrow \quad MU \)
Overview of homotopy theory

- EHPSS
- Nilpotence filtration
- Koszul filtration

\[\pi_*(S^*) \rightarrow \pi_S(S^0) \rightarrow MU_*(S^0) \rightarrow H_*(S^0) \]

\[\overline{MU}^{(2)} \rightarrow \overline{MU} \rightarrow S \]

- ΩSP (Goodwillie, Johnson, Arone, Mahowald)
- There is a similar tower for Ω SP
- It is defined using combinatorics of partitions of L_∞
- Unstable Adams SS, Lambda algebra, central series for simplicial groups

- S_n (0), S_{n+1} (1)
- $\Sigma\pi_*$ (Whitehead, Kuhn, Priddy)
- $\Sigma^3\pi_*$ (2)
- $\Sigma^4\pi_*$ (3)

- Adams SS
- Lambda algebra
- Central series for simplicial groups
Overview of homotopy theory

Symmetric power filtration

Nilpotence filtration

Koszul filtration

$\pi_*(S^*)$ \xrightarrow{EHPSS} $\pi_*(S^0)$ \xrightarrow{\text{Nilpotence filtration}} $\text{MU}_*(S^0)$ \xrightarrow{\text{Koszul filtration}} $H_*(S^0)$

$\overline{\text{MU}}^{(4)} \rightarrow \overline{\text{MU}}^{(3)} \rightarrow \overline{\text{MU}}^{(2)} \rightarrow \overline{\text{MU}} \rightarrow S$

$\text{MU} \wedge \overline{\text{MU}}^{(3)} \rightarrow \text{MU} \wedge \overline{\text{MU}}^{(2)} \rightarrow \text{MU} \wedge \overline{\text{MU}} \rightarrow \text{MU}$
Overview of homotopy theory

$\pi_*(S^*) \xrightarrow{\text{EHPSS}} \pi^S_*(S^0) \xrightarrow{\text{Nilpotence filtration}} \pi^S_*(S^0) \xrightarrow{\text{Adams-Novikov SS}} MU_*(S^0) \xrightarrow{\text{Koszul filtration}} H_*(S^0)$
Overview of homotopy theory

\[\pi_\ast(S^\ast) \xrightarrow{\text{EHPSS}} \pi_\ast(S^0) \xrightarrow{\text{Adams-Novikov SS}} \mu_\ast(S^0) \xrightarrow{\text{Koszul filtration}} H_\ast(S^0) \]

\[\text{Symmetric power filtration} \]

\[\text{Nilpotence filtration} \]

Adams-Novikov SS

Algebraic NSS
Overview of homotopy theory

\[\pi_* (S^*) \rightarrow \text{EHPSS} \]

\[\pi_* (S^0) \rightarrow \pi_*^S (S^0) \rightarrow \pi_* (S^0) \]

Symmetric power filtration

Nilpotence filtration

Adams-Novikov SS

Adams SS

Koszul filtration

Algebraic NSS

\[\text{Adams-Novikov SS} \]

\[\text{Adams SS} \]

\[\text{Symmetric power filtration} \]

\[\text{EHPSS} \]
Overview of homotopy theory

Unstable Adams SS, Lambda algebra, central series for simplicial groups
Overview of homotopy theory

\[\pi_\ast(S^\ast) \rightarrow \pi^S_\ast(S^0) \rightarrow MU_\ast(S^0) \rightarrow H_\ast(S^0) \]

- Symmetric power filtration
- Nilpotence filtration
- Koszul filtration

\[X_2 \rightarrow X_1 = \Omega S^1 = \mathbb{Z} \rightarrow QS^0 \]
Overview of homotopy theory

Koszul filtration

Overview of homotopy theory

Nilpotence filtration

Symmetric power filtration

$\pi_*(S^*) \longrightarrow \pi^S_*(S^0) \longrightarrow MU_*(S^0) \longrightarrow H_*(S^0)$

$X_3 \longrightarrow X_2 \longrightarrow X_1 = \Omega S^1 = \mathbb{Z}$

$\Omega^\infty Q(2)_{h\Sigma_2} \longrightarrow QS^0$
Overview of homotopy theory

Symmetric power filtration

Nilpotence filtration

Koszul filtration

\[\pi_\ast(S^\ast) \rightarrow \pi_\ast(S^0) \rightarrow MU_\ast(S^0) \rightarrow H_\ast(S^0) \]

\[X_5 \rightarrow X_4 \rightarrow X_3 \rightarrow X_2 \rightarrow X_1 = \Omega S^1 \cong \mathbb{Z} \]

\[\Omega^\infty Q(4)_{hS_4} \rightarrow \Omega^\infty Q(3)_{hS_3} \rightarrow \Omega^\infty Q(2)_{hS_2} \rightarrow QS^0 \]
Overview of homotopy theory

![Diagram of homotopy theory]

- **Koszul filtration**
 - \(\pi_*(S^*) \) \(\rightarrow \) \(\pi_*^S(S^0) \) \(\rightarrow \) \(\pi_*^S(\Sigma^1) \) \(\rightarrow \) \(\pi_*^S(\Sigma^2) \) \(\rightarrow \) \(\pi_*^S(\Sigma^3) \) \(\rightarrow \) \(\pi_*^S(\Sigma^4) \) \(\rightarrow \) \(\pi_*^S(\Sigma^5) \)
 - **Nilpotence filtration**
 - \(X_5 \) \(\rightarrow \) \(X_4 \) \(\rightarrow \) \(X_3 \) \(\rightarrow \) \(X_2 \) \(\rightarrow \) \(X_1 = \Omega S^1 = \mathbb{Z} \)
 - \(\Omega^\infty Q(4)_h \Sigma_4 \) \(\rightarrow \) \(\Omega^\infty Q(3)_h \Sigma_3 \) \(\rightarrow \) \(\Omega^\infty Q(2)_h \Sigma_2 \) \(\rightarrow \) \(QS^0 \)
- **Koszul filtration**
 - \(MU_*^S(S^0) \) \(\rightarrow \) \(H_*^S(S^0) \)

\(Q(n) \) is a certain finite \(\Sigma_n \)-spectrum, with \(H_* Q(n) = H_0 Q(n) = \text{Lie}(n) \).
Overview of homotopy theory

\[\pi_\ast(S^\ast) \rightarrow \pi_\ast^S(S^0) \rightarrow \pi_\ast^S(S^0) \rightarrow MU_\ast(S^0) \rightarrow H_\ast(S^0) \]

Symmetric power filtration

Nilpotence filtration

Koszul filtration

\[X_5 \rightarrow X_4 \rightarrow X_3 \rightarrow X_2 \rightarrow X_1 = \Omega S^1 = \mathbb{Z} \]

\[\Omega^\infty Q(4)_{h\Sigma_4} \rightarrow \Omega^\infty Q(3)_{h\Sigma_3} \rightarrow \Omega^\infty Q(2)_{h\Sigma_2} \rightarrow QS^0 \]

\[Q(n) \] is a certain finite \(\Sigma_n \)-spectrum, with \(H_\ast Q(n) = H_0 Q(n) = \text{Lie}(n) \).

It is defined using combinatorics of partitions of \(n \) points, and is related to \(\text{SP}^n(S^0)/\text{SP}^{n-1}(S^0) \).
Overview of homotopy theory

Nilpotence filtration

\[\pi_\ast(S^\ast) \longrightarrow \pi_\ast^S(S^0) \longrightarrow \pi_\ast^S(MU^\ast(S^0)) \longrightarrow \pi_\ast^S(H^\ast(S^0)) \]

Koszul filtration

\[\Omega^\infty Q(4)_{h\Sigma_4} \longrightarrow \Omega^\infty Q(3)_{h\Sigma_3} \longrightarrow \Omega^\infty Q(2)_{h\Sigma_2} \longrightarrow QS^0 \]

\[X_5 \longrightarrow X_4 \longrightarrow X_3 \longrightarrow X_2 \longrightarrow X_1 = \Omega S^1 = \mathbb{Z} \]

Symmetric power filtration

Q(n) is a certain finite \(\Sigma_n\)-spectrum, with \(H_\ast Q(n) = H_0 Q(n) = \text{Lie}(n)\).

It is defined using combinatorics of partitions of \(n\) points, and is related to \(SP^n(S^0)/SP^{n-1}(S^0)\).

There is a similar tower for \(\Omega S^{k+1}\), with fibres \(\Omega^\infty (S^{nk} \wedge Q(n))_{h\Sigma_n}\).
There is a similar tower for ΩS^n.

It is defined using combinatorics of partitions of n points, and is related to $\text{SP}^n(S^0)/\text{SP}^{n-1}(S^0)$.

There is a similar tower for ΩS^{k+1}, with fibres $\Omega^\infty(S^{nk} \wedge Q(n))_{h\Sigma_n}$.

(Goodwillie, Johnson, Arone, Mahowald)
Overview of homotopy theory

Unstable Adams SS, Lambda algebra, central series for simplicial groups
Symmetric power filtration

Goodwillie tower

Adams-Novikov SS

Koszul filtration

EHPSS

Nilpotence filtration

MU*(S0)

KU*(S0)

Formal groups

MU* (S0)

H* (S0)
Overview of homotopy theory

EHPSS

$\pi_*(S^*)$

Goodwillie tower

$\pi_*^S(S^0)$

Adams-Novikov SS

Nilpotence filtration

$\pi_*^S(S^0)$

$MU_*(S^0)$

Koszul filtration

$H_*(S^0)$

Symmetric power filtration

$KU_*(S^0)$

$Ell_*(S^0)$
Overview of homotopy theory

- EHPSS
 - $\pi_*(S^*)$
 - Goodwillie tower

- Nilpotence filtration
 - $\pi^S_*(S^0)$
 - Adams-Novikov SS

- Koszul filtration
 - $MU_*(S^0)$
 - $H_*(S^0)$

- Symmetric power filtration
 - $KU_*(S^0)$
 - $K(n)_*(S^0)$
 - $Ell_*(S^0)$
Overview of homotopy theory

- **EHPSS**
- **Goodwillie tower**
- **Adams-Novikov SS**
- **Koszul filtration**
- **Nilpotence filtration**

Symmetric power filtration

- $\pi_*(S^*)$
- $\pi_*^S(S^0)$
- $\pi_*(L_K(n)S^0)$
- $K(n)_*(S^0)$
- $Ell_*^S(S^0)$

- $\pi_*(S^0)$
- $MU_*^S(S^0)$
- $K(n)_*(S^0)$
- $KU_*^S(S^0)$
- $H_*^a(S^0)$
Overview of homotopy theory

- **EHPSS**: \(\pi_*(S^*) \) → \(\pi^S_*(S^0) \) → \(MU_*(S^0) \) → \(H_*(S^0) \)
- **Goodwillie tower**: \(v_n^{-1} \pi_*(S^*) \) → \(\pi_*(L_K(n)S^0) \) → \(K(n)_*(S^0) \)
- **Adams-Novikov SS**: \(\pi_*(S^0) \) → \(MU_*(S^0) \) → \(K(n)_*(S^0) \)
- **Nilpotence filtration**: \(\pi_*(S^0) \) → \(MU_*(S^0) \) → \(K(n)_*(S^0) \)
- **Koszul filtration**: \(MU_*(S^0) \) → \(K(n)_*(S^0) \) → \(Ell_*(S^0) \)

Symmetric power filtration
Overview of homotopy theory

\[\pi_* (S^*) \xrightarrow{\nu_n^{-1}} \pi_* (S^*) \quad \xrightarrow{\text{Goodwillie tower}} \quad \pi_* (S^0) \xrightarrow{\text{EHPSS}} \pi_* (S^0) \]

\[\pi_* (S^*) \xrightarrow{\text{Bousfield-Kuhn}} \]

\[\phi_n : \text{Spaces} \rightarrow \text{Spectra} \quad \phi_n (\Omega^\infty X) = L_{K(n)}(X) \]
Symmetric powers of unstable spheres

\[SP^n(S^V) = (S^V \times \ldots \times S^V) / \Sigma n = (S^V)^n / \Sigma n = S^R_n \otimes V / \Sigma n = (\text{diagonal copy of } R^n) \oplus W^n \]

\[SP^n(S^0) = \lim_{\to V} \Sigma - V SP^n(S^V) \]

\[SP^n(S^1) = S^1 SP^n(S^2) = P^n \]

There are natural product maps

\[SP^n(S^V) \times SP^m(S^W) \to SP^{nm}(S^V \oplus W) \]

and

\[SP^n(S^V) \wedge SP^m(S^W) \to SP^{nm}(S^V \oplus W) \].
Symmetric powers of unstable spheres

$SP^n(S^V) = (S^V \times \ldots \times S^V)/\Sigma_n = (S^V)^n/\Sigma_n$
Symmetric powers of unstable spheres

$$\text{SP}^n(S^V) = (S^V \times \ldots \times S^V)/\Sigma_n = (S^V)^n/\Sigma_n$$

$$\overline{\text{SP}}^n(S^V) = \text{SP}^n(S^V)/\text{SP}^{n-1}(S^V) = (S^V)^{(n)}/\Sigma_n = S^{nv}/\Sigma_n = S^{\mathbb{R}^n}\otimes V/\Sigma_n$$
Symmetric powers of unstable spheres

\[\text{SP}^n(S^V) = (S^V \times \ldots \times S^V)/\Sigma_n = (S^V)^n/\Sigma_n \]
\[\overline{\text{SP}}^n(S^V) = \text{SP}^n(S^V)/\text{SP}^{n-1}(S^V) = (S^V)^{(n)}/\Sigma_n = S^{nV}/\Sigma_n = S^{n \otimes V}/\Sigma_n \]
\[\mathbb{R}^n = (\text{diagonal copy of } \mathbb{R}) \oplus W_n \]
Symmetric powers of unstable spheres

\[SP^n(S^V) = (S^V \times \ldots \times S^V) / \Sigma_n = (S^V)^n / \Sigma_n \]

\[\overline{SP}^n(S^V) = SP^n(S^V) / SP^{n-1}(S^V) = (S^V)^{(n)} / \Sigma_n = S^{nV} / \Sigma_n = S^{\mathbb{R}^n \otimes V} / \Sigma_n \]

\[\mathbb{R}^n = (\text{diagonal copy of } \mathbb{R}) \oplus W_n \]

\[\overline{SP}^n(S^V) = S^{V \oplus (W_n \otimes V)} / \Sigma_n = \Sigma^V (S^{W_n \otimes V} / \Sigma_n) \]
Symmetric powers of unstable spheres

\[SP^n(S^V) = (S^V \times \ldots \times S^V)/\Sigma_n = (S^V)^n/\Sigma_n \]

\[\overline{SP^n}(S^V) = SP^n(S^V)/SP^{n-1}(S^V) = (S^V)^{(n)}/\Sigma_n = S^{nV}/\Sigma_n = S^{\mathbb{R}^n \otimes V}/\Sigma_n \]

\[\mathbb{R}^n = (\text{diagonal copy of } \mathbb{R}) \oplus W_n \]

\[\overline{SP^n}(S^V) = S^V \oplus (W_n \otimes V)/\Sigma_n = \Sigma^V (S^{W_n \otimes V}/\Sigma_n) \]

\[SP^n(S^0) = \lim_{\longrightarrow_V} \Sigma^{-V} SP^n(S^V) \]
\[\text{Symmetric powers of unstable spheres} \]

\[\text{SP}^n(S^V) = (S^V \times \ldots \times S^V)/\Sigma_n = (S^V)^\times n/\Sigma_n \]

\[\text{SP}^n(S^V) = S^V/\Sigma_n = S^V/\Sigma_n = S^{\mathbb{R}^n \otimes V}/\Sigma_n \]

\[\mathbb{R}^n = (\text{diagonal copy of } \mathbb{R}) \oplus W_n \]

\[\text{SP}^n(S^V) = S^V \oplus (W_n \otimes V)/\Sigma_n = S^V(W_n \otimes V)/\Sigma_n \]

\[\text{SP}^n(S^0) = \lim_{\rightarrow V} \Sigma^{-V} \text{SP}^n(S^V) \]

\[\text{SP}^n(S^0) = \lim_{\rightarrow V} S^W_n \otimes V/\Sigma_n = S^\infty W_n/\Sigma_n = \tilde{\Sigma}(S(\infty W_n)/\Sigma_n). \]
Symmetric powers of unstable spheres

\[\text{SP}^n(S^V) = (S^V \times \ldots \times S^V)/\Sigma_n = (S^V)^n/\Sigma_n \]
\[\overline{\text{SP}}^n(S^V) = \text{SP}^n(S^V)/\text{SP}^{n-1}(S^V) = (S^V)^{(n)}/\Sigma_n = S^{nV}/\Sigma_n = S^{\mathbb{R}^n \otimes V}/\Sigma_n \]
\[\mathbb{R}^n = (\text{diagonal copy of } \mathbb{R}) \oplus W_n \]
\[\overline{\text{SP}}^n(S^V) = S^{V \oplus (W_n \otimes V)}/\Sigma_n = \Sigma^V (S^{W_n \otimes V}/\Sigma_n) \]
\[\text{SP}^n(S^0) = \lim_{\longrightarrow V} \Sigma^{-V} \text{SP}^n(S^V) \]
\[\overline{\text{SP}}^n(S^0) = \lim_{\longrightarrow V} S^{W_n \otimes V}/\Sigma_n = S^{\infty W_n}/\Sigma_n = \widetilde{\Sigma}(S(\infty W_n)/\Sigma_n). \]

\[\text{SP}^n(S^1) = S^1 \quad \text{SP}^n(S^2) = P^n \]
\[\overline{\text{SP}}^n(S^1) = 0 \quad \overline{\text{SP}}^n(S^2) = S^{2n} \]
Symmetric powers of unstable spheres

\[SP^n(S^V) = (S^V \times \ldots \times S^V)/\Sigma_n = (S^V)^n/\Sigma_n \]

\[\overline{SP}^n(S^V) = SP^n(S^V)/SP^{n-1}(S^V) = (S^V)^n/\Sigma_n = S^{nV}/\Sigma_n = S^{\mathbb{R}^n \otimes V}/\Sigma_n \]

\[\mathbb{R}^n = (\text{diagonal copy of } \mathbb{R}) \oplus W_n \]

\[\overline{SP}^n(S^V) = S^{V \oplus (W_n \otimes V)}/\Sigma_n = \Sigma^V (S^{W_n \otimes V}/\Sigma_n) \]

\[SP^n(S^0) = \lim_{\rightarrow V} \Sigma^{-V} SP^n(S^V) \]

\[\overline{SP}^n(S^0) = \lim_{\rightarrow V} S^{W_n \otimes V}/\Sigma_n = S^{\infty W_n}/\Sigma_n = \tilde{\Sigma}(S^{(\infty W_n)}/\Sigma_n). \]

\[SP^n(S^1) = S^1 \quad SP^n(S^2) = \mathcal{P}^n \]

\[\overline{SP}^n(S^1) = 0 \quad \overline{SP}^n(S^2) = S^{2n} \]

There are natural product maps \(SP^n(S^V) \times SP^m(S^W) \rightarrow SP^{nm}(S^{V \oplus W}) \) and \(\overline{SP}^n(S^V) \wedge \overline{SP}^m(S^W) \rightarrow \overline{SP}^{nm}(S^{V \oplus W}). \)
Nontransitive subgroups

Let F be a family of subgroups of a finite group G, closed under subconjugacy. Then there is a G-space E_F with $E_F H = \{\text{contractible if } H \in F, \emptyset \text{ if } H \not\in F\}$. We put $B_F = E_F / G$.

Take $P_n = \{\text{nontransitive subgroups of } \Sigma_n\}$; then $E_{P_n} = S(W_n)$ and so $S \Sigma^{SP_n}(S_0) = \tilde{\Sigma} B_{P_n}$.
Nontransitive subgroups

Let \mathcal{F} be a family of subgroups of a finite group G, closed under subconjugacy. Then there is a G-space $E\mathcal{F}$ with

$$E\mathcal{F}^H = \begin{cases} \text{contractible} & \text{if } H \in \mathcal{F} \\ \emptyset & \text{if } H \notin \mathcal{F}. \end{cases}$$
Let \mathcal{F} be a family of subgroups of a finite group G, closed under subconjugacy. Then there is a G-space $E\mathcal{F}$ with

$$E\mathcal{F}^H = \begin{cases} \text{contractible} & \text{if } H \in \mathcal{F} \\ \emptyset & \text{if } H \notin \mathcal{F}. \end{cases}$$

We put $B\mathcal{F} = E\mathcal{F}/G$.
Let \mathcal{F} be a family of subgroups of a finite group G, closed under subconjugacy. Then there is a G-space $E\mathcal{F}$ with

$$E\mathcal{F}^H = \begin{cases}
\text{contractible} & \text{if } H \in \mathcal{F} \\
\emptyset & \text{if } H \notin \mathcal{F}.
\end{cases}$$

We put $B\mathcal{F} = E\mathcal{F}/G$.

Take $\mathcal{P}_n = \{\text{nontransitive subgroups of } \Sigma_n\}$; then $E\mathcal{P}_n = S(\infty W_n)$ and so $\overline{SP}^n(S^0) = \tilde{\Sigma}B\mathcal{P}_n$.

A multiset is a finite set with multiplicities. Morphisms are functions, bijective up to multiplicity.

\[M = \{ \text{multisets} \} \] is symmetric bimonoidal under \(\oplus \) and \(\times \), so \(K(M) \) is a ring spectrum. In fact \(K(M) = H \).

- \(M_n \): maximum multiplicity \(\leq n \);
- \(M_k \): total multiplicity \(k \);

\[M_k^n = M_n \cap M_k \]

Theorem (Lesh):

\[K(M_n) = \text{SP}_n(S^0) \text{ and } B_{M_n}^{n-1} = B_P^n \text{ and } K(M_n) / K(M_{n-1}) = \tilde{\Sigma} B_{M_n}^{n-1}. \]

\[\text{Free}(M_{n-1}) \to M_{n-1} \to \Sigma^\infty + B_{M_n}^{n-1} \to K(M_{n-1}) \to \text{Free}(M_n) \to M_n \to S^0 \to K(M_n) \]
A multiset is a finite set with multiplicities.
A multiset is a finite set with multiplicities.
A multiset is a finite set with multiplicities. Morphisms are functions, bijective up to multiplicity.
A multiset is a finite set with multiplicities. Morphisms are functions, bijective up to multiplicity.

\[\mathcal{M} = \{ \text{multisets} \} \] is symmetric bimonoidal under \(\oplus \) and \(\times \), so \(K(\mathcal{M}) \) is a ring spectrum. In fact \(K(\mathcal{M}) = H \).
A multiset is a finite set with multiplicities. Morphisms are functions, bijective up to multiplicity.

\(\mathcal{M} = \{ \text{multisets} \} \) is symmetric bimonoidal under \(\amalg \) and \(\times \), so \(K(\mathcal{M}) \) is a ring spectrum. In fact \(K(\mathcal{M}) = \mathbb{H} \).

\(\mathcal{M}_n \): maximum multiplicity \(\leq n \); \(\mathcal{M}^k \): total multiplicity \(k \); \(\mathcal{M}_n^k = \mathcal{M}_n \cap \mathcal{M}^k \)
A multiset is a finite set with multiplicities. Morphisms are functions, bijective up to multiplicity.

\[\mathcal{M} = \{ \text{multisets} \} \] is symmetric bimonoidal under \(\amalg \) and \(\times \), so \(K(\mathcal{M}) \) is a ring spectrum. In fact \(K(\mathcal{M}) = H \).

\(\mathcal{M}_n \): maximum multiplicity \(\leq n \); \(\mathcal{M}^k \): total multiplicity \(k \); \(\mathcal{M}_n^k = \mathcal{M}_n \cap \mathcal{M}^k \)

Theorem (Lesh): \(K(\mathcal{M}_n) = SP^n(S^0) \) and \(B\mathcal{M}_n = B\mathcal{P}_n \) and \(K(\mathcal{M}_n)/K(\mathcal{M}_{n-1}) = \tilde{SP}^n(S^0) = \tilde{\Sigma}B\mathcal{M}_n^{n-1} \).
K-theory of multisets

A multiset is a finite set with multiplicities. Morphisms are functions, bijective up to multiplicity.

$\mathcal{M} = \{\text{multisets}\}$ is symmetric bimonoidal under \amalg and \times, so $K(\mathcal{M})$ is a ring spectrum. In fact $K(\mathcal{M}) = H$.

\mathcal{M}_n: maximum multiplicity $\leq n$; \mathcal{M}^k: total multiplicity k; $\mathcal{M}^k_n = \mathcal{M}_n \cap \mathcal{M}^k$

Theorem (Lesh): $K(\mathcal{M}_n) = \text{SP}^n(S^0)$ and $B\mathcal{M}^n_{n-1} = B\mathcal{P}_n$ and $K(\mathcal{M}_n)/K(\mathcal{M}_{n-1}) = \tilde{\text{SP}}^n(S^0) = \tilde{\Sigma}B\mathcal{M}^n_{n-1}$.

\[
\begin{align*}
\text{Free}(\mathcal{M}^n_{n-1}) &\longrightarrow \mathcal{M}_{n-1} & \Sigma^\infty B\mathcal{M}^n_{n-1} &\longrightarrow K(\mathcal{M}_{n-1}) \\
\downarrow & & \downarrow & \downarrow \\
\text{Free}(\mathcal{M}^n_n) &\longrightarrow \mathcal{M}_n & S^0 &\longrightarrow K(\mathcal{M}_n)
\end{align*}
\]
Mod p (co)homology
The filtration of $H = H\mathbb{Z}$ by the spectra $H(k) = \text{SP}^p(S^0)$ gives rise to a filtration of $\overline{H} = H\mathbb{Z}/p$ by spectra $\overline{H}(k)$.
The filtration of $H = H\mathbb{Z}$ by the spectra $H(k) = \text{SP}^k(S^0)$ gives rise to a filtration of $\overline{H} = H\mathbb{Z}/p$ by spectra $\overline{H}(k)$.

Theorem (Nakaoka): $\overline{H}^*\overline{H} = \mathcal{A}^* = \text{Steenrod algebra}$; $\overline{H}^*\overline{H}(k) = \mathcal{A}^*/(\text{admissibles of length } > k)$.
The filtration of $H = H\mathbb{Z}$ by the spectra $H(k) = \text{SP}^p S^0$ gives rise to a filtration of $\overline{H} = H\mathbb{Z}/p$ by spectra $\overline{H}(k)$.

Theorem (Nakaoka): $\overline{H}^* \overline{H} = \mathcal{A}^* = \text{Steenrod algebra};$ $\overline{H}^* \overline{H}(k) = \mathcal{A}^*/(\text{admissibles of length } > k).$

Operations of length k are related to $\overline{H}^*(B\Sigma_p k)$ and to $\overline{H}^*(B(\mathbb{Z}/p)^k)^{GL_k(\mathbb{Z}/p)}$ by the extended power construction.
The filtration of $H = H\mathbb{Z}$ by the spectra $H(k) = \text{SP}^k_p(S^0)$ gives rise to a filtration of $\overline{H} = H\mathbb{Z}/p$ by spectra $\overline{H}(k)$.

Theorem (Nakaoka): $\overline{H}^*\overline{H} = A^* = \text{Steenrod algebra};$ $\overline{H}^*\overline{H}(k) = A^*/(\text{admissibles of length} > k)$.

Operations of length k are related to $\overline{H}^*(B\Sigma_p^k)$ and to $\overline{H}^*(B(\mathbb{Z}/p)^k)^{GL_k(\mathbb{Z}/p)}$ by the extended power construction.

There are still some open questions about how all this fits together, and how it dualises.
Partitions

\[\pi, \pi', \perp, \top, P_A = \{ \text{partitions of } A \}; \]

\[\partial P_A = \text{union of simplices not containing } \{ \perp, \top \}; \]

\[\hat{P}_A = P_A / \partial P_A; \]

\[A = P_A \cong S^2 \cup \text{(equatorial disc)} \cong S^2 \lor S^2. \]
Partitions

\[\pi \quad \quad \quad \quad \quad \quad \quad \]

\[\pi = \{ \text{partitions of } A \} \]

\[\partial \pi = \text{union of simplices not containing } \{ \bot, \top \} \]

\[\hat{\pi} = \pi / \partial \pi \]

\[A = \hat{\pi}(A) \cong S^2 \cup (\text{equatorial disc}) \cong S^2 \vee S^2. \]
Partitions

\[A_{\pi} \prec A_{\pi'} \]

\[\partial A_{\pi} = \text{union of simplices not containing } \{ \bot, \top \} \]

\[\hat{A}_{\pi} = A_{\pi} / \partial A_{\pi} \]

\[A_{\pi} = \hat{A}(A) \cong S^2 \cup (\text{equatorial disc}) \cong S^2 \vee S^2 \]
Partitions

\[\pi < \perp \]
Partitions

\[\pi, \pi' \subset P_A = \{ \text{partitions of } A \}; \]

\[\partial P_A = \text{union of simplices not containing } \{\bot, \top\}; \]

\[\hat{P}_A = P_A / \partial P_A; \]

\[A = P_A \approx S^2 \cup \text{(equatorial disc)} \approx S^2 \lor S^2. \]
\[\mathcal{P}A = \{ \text{partitions of } A \}; \quad P\!A = \text{geometric realisation of } \mathcal{P}A = |\mathcal{P}A| \]
\[\mathcal{P}A = \{ \text{partitions of } A \}; \quad PA = \text{geometric realisation of } \mathcal{P}A = |\mathcal{P}A|. \]
\[\partial PA = \text{union of simplices not containing } \{ \bot, \top \}; \quad \hat{P}A = PA/\partial PA \]
\[\mathcal{P}A = \{ \text{partitions of } A \}; \quad \mathcal{P}A = \text{geometric realisation of } \mathcal{P}A = |\mathcal{P}A|. \]
\[\partial \mathcal{P}A = \text{union of simplices not containing } \{ \bot, \top \}; \quad \hat{\mathcal{P}}A = \mathcal{P}A/\partial \mathcal{P}A \]

\[A = \triangle \]
\[P \mathcal{A} = \{ \text{partitions of } A \}; \quad P \mathcal{A} = \text{geometric realisation of } P \mathcal{A} = |P \mathcal{A}|. \]

\[\partial P \mathcal{A} = \text{union of simplices not containing } \{ \bot, \top \}; \quad \hat{P} \mathcal{A} = P \mathcal{A}/\partial P \mathcal{A} \]
\(\mathcal{P}A = \{ \text{partitions of } A \}; \quad PA = \text{geometric realisation of } \mathcal{P}A = |\mathcal{P}A|.
\partial PA = \text{union of simplices not containing } \{\bot, \top\}; \quad \hat{P}A = PA/\partial PA

\[A = \triangle \quad \mathcal{P}A = \begin{array}{c}
\triangle \\
\triangle \\
\triangle
\end{array} \quad PA = \begin{array}{c}
\text{tetrahedron}
\end{array} \]
\(\mathcal{P}A = \{ \text{partitions of} \ A \}; \quad PA = \text{geometric realisation of} \ \mathcal{P}A = |\mathcal{P}A|.
\partial PA = \text{union of simplices not containing} \ \{ \bot, \top \}; \quad \hat{P}A = PA/\partial PA

\hat{P}(A) \cong S^2 \cup (\text{equatorial disc}) \cong S^2 \lor S^2.
Products of partitions
Products of partitions

\(\mathcal{P}(A) \) is a lattice with \(\pi \lor \pi' = \{ B \cap B' \mid B \in \pi, \ B' \in \pi', \ B \cap B' \neq \emptyset \} \).
Products of partitions

\(\mathcal{P}(A) \) is a lattice with \(\pi \lor \pi' = \{ B \cap B' \mid B \in \pi, \quad B' \in \pi', \quad B \cap B' \neq \emptyset \} \).

The map \(\lor : \mathcal{P}(A) \times \mathcal{P}(A) \to \mathcal{P}(A) \) makes \(PA \) a (contractible) commutative topological monoid.
Products of partitions

\(\mathcal{P}(A) \) is a lattice with \(\pi \lor \pi' = \{ B \cap B' \mid B \in \pi, \ B' \in \pi', \ B \cap B' \neq \emptyset \} \).

The map \(\lor : \mathcal{P}(A) \times \mathcal{P}(A) \to \mathcal{P}(A) \) makes \(PA \) a (contractible) commutative topological monoid.

Put \(\overline{P}(A) = P(A)/(\text{simplices not containing } \bot) \). There is an induced map \(\mu : \overline{P}(A) \land \overline{P}(A) \to \overline{P}(A) \), making \(\Sigma^\infty \overline{P}(A) \) a (contractible) ring spectrum.
$\mathcal{P}(A)$ is a lattice with $\pi \lor \pi' = \{ B \cap B' \mid B \in \pi, \ B' \in \pi', \ B \cap B' \neq \emptyset \}$.

The map $\lor : \mathcal{P}(A) \times \mathcal{P}(A) \to \mathcal{P}(A)$ makes PA a (contractible) commutative topological monoid.

Put $\overline{\mathcal{P}}(A) = \mathcal{P}(A)/(\text{simplices not containing } \bot)$. There is an induced map $\mu : \overline{\mathcal{P}}(A) \land \overline{\mathcal{P}}(A) \to \overline{\mathcal{P}}(A)$, making $\Sigma^\infty \overline{\mathcal{P}}(A)$ a (contractible) ring spectrum.

There is a filtration of $\overline{\mathcal{P}}(A)$ by ranks of partitions, with associated graded $\lor \hat{\mathcal{P}}(\pi)$. The homology of this is thus a DGA, probably chain contractible.
Products of partitions

\(\mathcal{P}(A) \) is a lattice with \(\pi \lor \pi' = \{ B \cap B' \mid B \in \pi, \ B' \in \pi', \ B \cap B' \neq \emptyset \} \).

The map \(\lor : \mathcal{P}(A) \times \mathcal{P}(A) \to \mathcal{P}(A) \) makes \(\mathcal{P}(A) \) a (contractible) commutative topological monoid.

Put \(\overline{\mathcal{P}}(A) = \mathcal{P}(A)/(\text{simplices not containing } \bot) \). There is an induced map \(\mu : \overline{\mathcal{P}}(A) \wedge \overline{\mathcal{P}}(A) \to \overline{\mathcal{P}}(A) \), making \(\Sigma^\infty \overline{\mathcal{P}}(A) \) a (contractible) ring spectrum.

There is a filtration of \(\overline{\mathcal{P}}(A) \) by ranks of partitions, with associated graded \(\bigvee_{\pi} \hat{\mathcal{P}}(\pi) \). The homology of this is thus a DGA, probably chain contractible.

We have not yet understood the structure of this.
Partitions

\[\text{Partitions} \]

\[
\text{C}(A) = \{ \text{nonempty subsets of } A \}
\]

\[|C(A)| = \{ x : A \to [0, 1] | \max(x) = 1 \} \cong B(WA) \]

\[s_{C}(A) = \{ \text{chains in } C(A) \}; |s_{C}(A)| = |C(A)| \text{ by barycentric subdivision.} \]

\[
\text{We can define } \phi : s_{C}(A) \to P(A) \text{ by }
\]

\[\phi(B_{0} \subset \cdots \subset B_{r}) = \{ B_{0}, B_{1} \setminus B_{0}, \ldots, B_{r} \setminus B_{r-1}, A \setminus B_{r} \} \]

\[\text{This gives } B(WA) \to P(A) \text{ and } S_{WA} = B(WA)/\partial B(WA) \to \hat{P}(A). \]

\[\text{More generally, we can use the monoid structure on } P(A) \text{ to get } B(WA) \to P(A) \text{ and } S_{NA} \to \hat{P}(A). \]
$\mathcal{C}(A) = \{ \text{nonempty subsets of } A \}$
\(C(A) = \{ \text{nonempty subsets of } A \} \)
\(|C(A)| = \{ x: A \to [0, 1] \mid \text{max}(x) = 1 \} \simeq B(WA) \)
$C(A) = \{ \text{nonempty subsets of } A \}$

$|C(A)| = \{ x : A \to [0, 1] \mid \max(x) = 1 \} \simeq B(WA)$

$sC(A) = \{ \text{chains in } C(A) \}; \quad |sC(A)| = |C(A)| \text{ by barycentric subdivision.}$
Partitions

\[C(A) = \{ \text{nonempty subsets of } A \}\]
\[|C(A)| = \{x : A \to [0, 1] \mid \max(x) = 1\} \simeq B(WA) \]

\[sC(A) = \{ \text{chains in } C(A)\}; \; |sC(A)| = |C(A)| \text{ by barycentric subdivision.} \]

We can define \(\phi : sC(A) \to \mathcal{P}(A) \) by
\[\phi(B_0 \subset \cdots \subset B_r) = \{B_0, B_1 \setminus B_0, \ldots, B_r \setminus B_{r-1}, A \setminus B_r\} \]
Partitions

\(C(A) = \{ \text{nonempty subsets of } A \} \)
\(|C(A)| = \{ x : A \to [0, 1] \mid \max(x) = 1 \} \simeq B(WA) \)

\(sC(A) = \{ \text{chains in } C(A) \}; \ |sC(A)| = |C(A)| \) by barycentric subdivision.
We can define \(\phi : sC(A) \to \mathcal{P}(A) \) by
\(\phi(B_0 \subset \cdots \subset B_r) = \{ B_0, B_1 \setminus B_0, \ldots, B_r \setminus B_{r-1}, A \setminus B_r \} \)

This gives \(B(WA) \to \mathcal{P}(A) \) and \(S^{WA} = B(WA)/\partial B(WA) \to \hat{\mathcal{P}}(A) \).
Partitions

\[C(A) = \{ \text{nonempty subsets of } A \} \]
\[|C(A)| = \{ x: A \to [0, 1] | \max(x) = 1 \} \simeq B(WA) \]

\[sC(A) = \{ \text{chains in } C(A) \}; \quad |sC(A)| = |C(A)| \text{ by barycentric subdivision} \]
We can define \(\phi: sC(A) \to P(A) \) by
\[\phi(B_0 \subset \cdots \subset B_r) = \{ B_0, B_1 \setminus B_0, \ldots, B_r \setminus B_{r-1}, A \setminus B_r \} \]

This gives \(B(WA) \to P(A) \) and \(S^{WA} = B(WA)/\partial B(WA) \to \hat{P}(A) \).
More generally, we can use the monoid structure on \(PA \) to get
\(B(WA)^N \to P(A) \) and \(S^{NWA} \to \hat{P}(A) \).
Height functions

A height function on A is a map $h : \mathcal{A} = \{\text{nonempty subsets of } A\} \to [0, 1]$ with $h(\{a\}) = 0$, and $h(U \cup V) = \max(h(U), h(V))$ whenever $U \cap V \neq \emptyset$.

A partition π gives a height function h_π with $h_\pi(U) = 0$ if U is contained in a block of π, and 1 otherwise.

The space $H(A)$ of height functions is homeomorphic to $P(A) = |P(A)|$.

Say that a set U is h-critical if every strict superset V has $h(V) > h(U)$. These sets form a tree. This gives a cell structure on $H(A) = P(A)$ indexed by trees.

By grafting trees, we make the spaces $P(n) = P(\{1, \ldots, n\})$ into an operad. The operad structure maps are nearly embeddings. By a Pontrjagin-Thom construction, we make the spaces $\hat{P}(n)$ into a based cooperad (a theorem of Ching).
A height function on A is a map $h: CA = \{ \text{nonempty subsets of } A \} \to [0, 1]$ with $h(\{a\}) = 0$, and $h(U \cup V) = \max(h(U), h(V))$ whenever $U \cap V \neq \emptyset$.
A *height function* on A is a map $h: CA = \{\text{nonempty subsets of } A\} \to [0, 1]$ with $h(\{a\}) = 0$, and $h(U \cup V) = \max(h(U), h(V))$ whenever $U \cap V \neq \emptyset$.

A partition π gives a height function h_π with $h_\pi(U) = 0$ if U is contained in a block of π, and 1 otherwise.
Height functions

A height function on A is a map $h: \mathcal{C}A = \{ \text{nonempty subsets of } A \} \rightarrow [0, 1]$ with $h(\{a\}) = 0$, and $h(U \cup V) = \max(h(U), h(V))$ whenever $U \cap V \neq \emptyset$.

A partition π gives a height function h_π with $h_\pi(U) = 0$ if U is contained in a block of π, and 1 otherwise.

The space $H(A)$ of height functions is homeomorphic to $P(A) = |\mathcal{P}(A)|$.

A height function on A is a map $h: \mathcal{C}A = \{\text{nonempty subsets of } A\} \to [0, 1]$ with $h(\{a\}) = 0$, and $h(U \cup V) = \max(h(U), h(V))$ whenever $U \cap V \neq \emptyset$.

A partition π gives a height function h_π with $h_\pi(U) = 0$ if U is contained in a block of π, and 1 otherwise.

The space $H(A)$ of height functions is homeomorphic to $P(A) = |\mathcal{P}(A)|$.

Say that a set U is h-critical if every strict superset V has $h(V) > h(U)$. These sets form a tree. This gives a cell structure on $H(A) = P(A)$ indexed by trees.
A height function on A is a map $h: \mathcal{CA} = \{ \text{nonempty subsets of } A \} \to [0, 1]$ with $h(\{a\}) = 0$, and $h(U \cup V) = \max(h(U), h(V))$ whenever $U \cap V \neq \emptyset$.

A partition π gives a height function h_π with $h_\pi(U) = 0$ if U is contained in a block of π, and 1 otherwise.

The space $H(A)$ of height functions is homeomorphic to $P(A) = |\mathcal{P}(A)|$.

Say that a set U is h-critical if every strict superset V has $h(V) > h(U)$. These sets form a tree. This gives a cell structure on $H(A) = P(A)$ indexed by trees.
A **height function** on A is a map $h: \mathcal{C}A = \{\text{nonempty subsets of } A\} \to [0, 1]$ with $h(\{a\}) = 0$, and $h(U \cup V) = \max(h(U), h(V))$ whenever $U \cap V \neq \emptyset$.

A partition π gives a height function h_π with $h_\pi(U) = 0$ if U is contained in a block of π, and 1 otherwise.

The space $H(A)$ of height functions is homeomorphic to $P(A) = |\mathcal{P}(A)|$.

Say that a set U is **h-critical** if every strict superset V has $h(V) > h(U)$. These sets form a tree. This gives a cell structure on $H(A) = P(A)$ indexed by trees.

By grafting trees, we make the spaces $P(n) = P(\{1, \ldots, n\})$ into an operad. The operad structure maps are nearly embeddings.
A **height function** on A is a map $h: \mathcal{C}A = \{ \text{nonempty subsets of } A \} \to [0, 1]$ with $h(\{a\}) = 0$, and $h(U \cup V) = \max(h(U), h(V))$ whenever $U \cap V \neq \emptyset$.

A partition π gives a height function h_π with $h_\pi(U) = 0$ if U is contained in a block of π, and 1 otherwise.

The space $H(A)$ of height functions is homeomorphic to $P(A) = |\mathcal{P}(A)|$.

Say that a set U is **h-critical** if every strict superset V has $h(V) > h(U)$. These sets form a tree. This gives a cell structure on $H(A) = P(A)$ indexed by trees.

By grafting trees, we make the spaces $P(n) = P(\{1, \ldots, n\})$ into an operad. The operad structure maps are nearly embeddings.

By a Pontrjagin-Thom construction, we make the spaces $\hat{P}(n)$ into a based cooperad (a theorem of Ching).
Put \(\text{Inj}_0(\ast, \mathbb{R}^n) = \{ (x_1, \ldots, x_k) \in (\mathbb{R}^n)^k \mid \sum x_i = 0, x_i \neq x_j \} \subseteq W_k \otimes \mathbb{R}^n \subset S W_k \otimes \mathbb{R}^n \).

These spaces form an operad up to homotopy, as they are homotopy equivalent to the Fulton-MacPherson spaces (cf Singh).

It is well-known that \(H^\ast \text{Inj}_0(\ast, \mathbb{R}^n) \) is the operad for Poisson algebras, which are graded commutative rings with a compatible Lie bracket.

The based spaces \(S W_k \) form a (co)operad whose structure maps are homeomorphisms.

The spectra \(\Sigma^{-n} W_k \text{Inj}_0(k, \mathbb{R}^n) \) form an operad with \(H^0 = \text{Lie} \), and \(H^k = 0 \) for \(k > 0 \).

There is a natural map \(S W_k / \text{Inj}_0(k, \mathbb{R}^n) \to \hat{P}(k) \), and by duality we get a map \(Q(k) = F(\hat{P}(k), S W_k) \to \Sigma^{-n} W_k \text{Inj}_0(k, \mathbb{R}^n) \). This gives \(H^\ast Q = \text{Lie} \).

Theorem (Arone-Dwyer): \(SP_n(S_0) = (S W_n \wedge \hat{P}(n)) h \Sigma n \).

Theorem (Johnson, Arone-Mahowald): \(Q(n) \) controls the layers in the Goodwillie tower.
Put
\[\text{Inj}_0(k, \mathbb{R}^n) = \{(x_1, \ldots, x_k) \in (\mathbb{R}^n)^k \mid \sum x_i = 0, \ x_i \neq x_j \} \subseteq W_k \otimes \mathbb{R}^n \subset S^{W_k \otimes \mathbb{R}^n}. \]
Put
\[
\text{Inj}_0(k, \mathbb{R}^n) = \{(x_1, \ldots, x_k) \in (\mathbb{R}^n)^k \mid \sum x_i = 0, \ x_i \neq x_j\} \subseteq W_k \otimes \mathbb{R}^n \subset S^{W_k \otimes \mathbb{R}^n}.
\]

These spaces form an operad up to homotopy, as they are homotopy equivalent to the little n-cubes spaces.
Put \(\text{Inj}_0(k, \mathbb{R}^n) = \{(x_1, \ldots, x_k) \in (\mathbb{R}^n)^k \mid \sum x_i = 0, \ x_i \neq x_j\} \subseteq W_k \otimes \mathbb{R}^n \subset S^{W_k \otimes \mathbb{R}^n}. \)

These spaces form an operad up to homotopy, as they are homotopy equivalent to the Fulton-MacPherson spaces (cf Singh).
Put
\[\text{Inj}_0(k, \mathbb{R}^n) = \{(x_1, \ldots, x_k) \in (\mathbb{R}^n)^k \mid \sum x_i = 0, \ x_i \neq x_j \} \subseteq W_k \otimes \mathbb{R}^n \subset S^{W_k \otimes \mathbb{R}^n}. \]

These spaces form an operad up to homotopy, as they are homotopy equivalent to the Fulton-MacPherson spaces (cf Singh).

It is well-known that \(H_* \text{Inj}_0(\ast, \mathbb{R}^n) \) is the operad for Poisson algebras, which are graded commutative rings with a compatible Lie bracket.
Configuration space

Put
\[\text{Inj}_0(k, \mathbb{R}^n) = \{(x_1, \ldots, x_k) \in (\mathbb{R}^n)^k \mid \sum x_i = 0, \ x_i \neq x_j \} \subseteq W_k \otimes \mathbb{R}^n \subset S^W_k \otimes \mathbb{R}^n. \]

These spaces form an operad up to homotopy, as they are homotopy equivalent to the Fulton-MacPherson spaces (cf Singh).

It is well-known that \(H_* \text{Inj}_0(\ast, \mathbb{R}^n) \) is the operad for Poisson algebras, which are graded commutative rings with a compatible Lie bracket.

The based spaces \(S^W_k \) form a (co)operad whose structure maps are homeomorphisms.
Put
\[\text{Inj}_0(k, \mathbb{R}^n) = \{(x_1, \ldots, x_k) \in (\mathbb{R}^n)^k \mid \sum x_i = 0, \ x_i \neq x_j \} \subseteq W_k \otimes \mathbb{R}^n \subset S^{W_k \otimes \mathbb{R}^n}. \]

These spaces form an operad up to homotopy, as they are homotopy equivalent to the Fulton-MacPherson spaces (cf Singh).

It is well-known that \(H_* \text{Inj}_0(\ast, \mathbb{R}^n) \) is the operad for Poisson algebras, which are graded commutative rings with a compatible Lie bracket.

The based spaces \(S^{W_k} \) form a (co)operad whose structure maps are homeomorphisms.

The spectra \(\Sigma^{-nW_k} \text{Inj}_0(k, \mathbb{R}^n)_+ = D(S^{nW_k} / \text{Inj}_0(k, \mathbb{R}^n)) \) form an operad with \(H_0 = \text{Lie}, \) and \(H_k = 0 \) for \(k > 0. \)
Put
\[\text{Inj}_0(k, \mathbb{R}^n) = \{ (x_1, \ldots, x_k) \in (\mathbb{R}^n)^k \mid \sum x_i = 0, \ x_i \neq x_j \} \subseteq W_k \otimes \mathbb{R}^n \subset S^{W_k} \otimes \mathbb{R}^n. \]

These spaces form an operad up to homotopy, as they are homotopy equivalent to the Fulton-MacPherson spaces (cf Singh).

It is well-known that \(H_* \text{Inj}_0(*, \mathbb{R}^n) \) is the operad for Poisson algebras, which are graded commutative rings with a compatible Lie bracket.

The based spaces \(S^{W_k} \) form a (co)operad whose structure maps are homeomorphisms.

The spectra \(\Sigma^{-nW_k} \text{Inj}_0(k, \mathbb{R}^n)_+ = D(S^nW_k / \text{Inj}_0(k, \mathbb{R}^n)) \) form an operad with \(H_0 = \text{Lie} \), and \(H_k = 0 \) for \(k > 0 \).

There is a natural map \(S^nW_k / \text{Inj}_0(k, \mathbb{R}^n) \rightarrow \hat{P}(k) \), and by duality we get a map \(Q(k) = F(\hat{P}(k), S^{W_k}) \rightarrow \Sigma^{-nW_k} \text{Inj}_0(k, \mathbb{R}^n)_+ \). This gives \(H_* Q = \text{Lie} \).
Put\[\text{Inj}_0(k, \mathbb{R}^n) = \{(x_1, \ldots, x_k) \in (\mathbb{R}^n)^k \mid \sum x_i = 0, \ x_i \neq x_j\} \subseteq W_k \otimes \mathbb{R}^n \subset S^{W_k \otimes \mathbb{R}^n}.\]

These spaces form an operad up to homotopy, as they are homotopy equivalent to the Fulton-MacPherson spaces (cf Singh).

It is well-known that \(H_* \text{Inj}_0(\ast, \mathbb{R}^n)\) is the operad for Poisson algebras, which are graded commutative rings with a compatible Lie bracket.

The based spaces \(S^{W_k}\) form a (co)operad whose structure maps are homeomorphisms.

The spectra \(\Sigma^{-nW_k} \text{Inj}_0(k, \mathbb{R}^n)_+ = D(S^{nW_k} / \text{Inj}_0(k, \mathbb{R}^n))\) form an operad with \(H_0 = \text{Lie}\), and \(H_k = 0\) for \(k > 0\).

There is a natural map \(S^{nW_k} / \text{Inj}_0(k, \mathbb{R}^n) \to \hat{P}(k)\), and by duality we get a map \(Q(k) = F(\hat{P}(k), S^{W_k}) \to \Sigma^{-nW_k} \text{Inj}_0(k, \mathbb{R}^n)_+.\) This gives \(H_* Q = \text{Lie}\).

Theorem (Arone-Dwyer): \(\overline{SP}^n(S^0) = (S^{W_n} \wedge \hat{P}(n))_{\overline{n}\Sigma_n}\)
Put
\[\text{Inj}_0(k, \mathbb{R}^n) = \{(x_1, \ldots, x_k) \in (\mathbb{R}^n)^k \mid \sum x_i = 0, \ x_i \neq x_j\} \subseteq W_k \otimes \mathbb{R}^n \subset S^W_k \otimes \mathbb{R}^n. \]

These spaces form an operad up to homotopy, as they are homotopy equivalent to the Fulton-MacPherson spaces (cf Singh).

It is well-known that \(H_* \text{Inj}_0(\ast, \mathbb{R}^n) \) is the operad for Poisson algebras, which are graded commutative rings with a compatible Lie bracket.

The based spaces \(S^W_k \) form a (co)operad whose structure maps are homeomorphisms.

The spectra \(\Sigma^{-nW_k} \text{Inj}_0(k, \mathbb{R}^n)_+ = D(S^{nW_k} / \text{Inj}_0(k, \mathbb{R}^n)) \) form an operad with \(H_0 = \text{Lie} \), and \(H_k = 0 \) for \(k > 0 \).

There is a natural map \(S^{nW_k} / \text{Inj}_0(k, \mathbb{R}^n) \rightarrow \hat{P}(k) \), and by duality we get a map \(Q(k) = F(\hat{P}(k), S^W_k) \rightarrow \Sigma^{-nW_k} \text{Inj}_0(k, \mathbb{R}^n)_+ \). This gives \(H_* Q = \text{Lie} \).

Theorem (Arone-Dwyer): \(\overline{SP}^n(S^0) = (S^W_n \wedge \hat{P}(n))_{\overline{\mu}_n} \)

Theorem (Johnson, Arone-Mahowald): \(Q(n) \) controls the layers in the Goodwillie tower.
Given \(A \cong \left(\mathbb{Z} / p \mathbb{Z} \right)^d \), put \(T(A) = \{ \text{subgroups of } A \} \) and \(\hat{T}(A) = |T(A)| \).

It is well-known that this is homotopy equivalent to a wedge of spheres of dimension \(d \), the number of spheres being \(p \left(\frac{d^2 - d}{2} \right) \).

\(\text{St}(A) = H^d \left(\hat{T}(A); \mathbb{Z} / p \mathbb{Z} \right) \) is a projective cyclic module over \(\left(\mathbb{Z} / p \mathbb{Z} \right)[\text{Aut}(A)] \), called the Steinberg module.

It follows that for any \(\text{Aut}(A) \)-spectrum \(X \), the spectrum \(\Sigma^{-d} \hat{T}(A) \wedge X \) is a retract of \(X \), called the Steinberg summand of \(X \).

We can map \(\hat{T}(A) \) to \(\hat{P}(A) \) by sending \(B \in T(A) \) to the corresponding coset partition of \(A \). This respects the actions of \(\text{Aff}(A) \) on \(\hat{T}(A) \) and \(\Sigma A \) on \(\hat{P}(A) \).

Theorem (Arone-Dwyer): \((\Sigma \text{WA} \hat{T}(A))_{h\text{Aff}(A)} = (\Sigma \text{WA} \hat{P}(A))_{h\Sigma A} = \text{SP}_p d (S^0) = \Sigma d L(d) \), and so \(L(d) \) is the Steinberg summand in \((\Sigma \text{WA})_{hA} \), which is a Thom spectrum over \(BA \).
Given $A \simeq (\mathbb{Z}/p)^d$, put $\mathcal{T}(A) = \{\text{subgroups of } A\}$ and $T(A) = |\mathcal{T}(A)|$.
Given $A \simeq (\mathbb{Z}/p)^d$, put $\mathcal{T}(A) = \{ \text{subgroups of } A \}$ and $T(A) = |\mathcal{T}(A)|$.

Put $\partial \mathcal{T}(A) = \bigcup (\text{simplices not containing } \{0, A\})$, and $\hat{\mathcal{T}}(A) = \mathcal{T}(A)/\partial \mathcal{T}(A)$.
Given $A \simeq (\mathbb{Z}/p)^d$, put $\mathcal{T}(A) = \{\text{subgroups of } A\}$ and $\mathcal{T}(A) = |\mathcal{T}(A)|$.

Put $\partial \mathcal{T}(A) = \bigcup (\text{simplices not containing } \{0, A\})$, and $\widehat{\mathcal{T}}(A) = \mathcal{T}(A)/\partial \mathcal{T}(A)$.

It is well-known that this is homotopy equivalent to a wedge of spheres of dimension d, the number of spheres being $p^{(d^2 - d)/2}$.
Given $A \cong (\mathbb{Z}/p)^d$, put $T(A) = \{ \text{subgroups of } A \}$ and $T(A) = |T(A)|$.

Put $\partial T(A) = \bigcup (\text{simplices not containing } \{0, A\})$, and $\hat{T}(A) = T(A)/\partial T(A)$.

It is well-known that this is homotopy equivalent to a wedge of spheres of dimension d, the number of spheres being $p^{(d^2-d)/2}$.

$\text{St}(A) = H_d(\hat{T}(A); \mathbb{Z}/p)$ is a projective cyclic module over $(\mathbb{Z}/p)[\text{Aut}(A)]$, called the Steinberg module.
Given $A \cong (\mathbb{Z}/p)^d$, put $\mathcal{T}(A) = \{ \text{subgroups of } A \}$ and $T(A) = |\mathcal{T}(A)|$.

Put $\partial \mathcal{T}(A) = \bigcup \{ \text{simplices not containing } \{0, A\} \}$, and $\hat{T}(A) = T(A)/\partial \mathcal{T}(A)$.

It is well-known that this is homotopy equivalent to a wedge of spheres of dimension d, the number of spheres being $p^{(d^2-d)/2}$.

$\text{St}(A) = H_d(\hat{T}(A); \mathbb{Z}/p)$ is a projective cyclic module over $(\mathbb{Z}/p)[\text{Aut}(A)]$, called the *Steinberg module*.

It follows that for any $\text{Aut}(A)$-spectrum X, the spectrum $(\Sigma^{-d}\hat{T}(A) \wedge X)_{h\text{Aut}(A)}$ is a retract of X, called *Steinberg summand of X*.

Given $A \cong (\mathbb{Z}/p)^d$, put $T(A) = \{ \text{subgroups of } A \}$ and $T(A) = |T(A)|$.

Put $\partial T(A) = \bigcup (\text{simplices not containing } \{0, A\})$, and $\hat{T}(A) = T(A)/\partial T(A)$.

It is well-known that this is homotopy equivalent to a wedge of spheres of dimension d, the number of spheres being $p^{(d^2-d)/2}$.

$\text{St}(A) = H_d(\hat{T}(A); \mathbb{Z}/p)$ is a projective cyclic module over $(\mathbb{Z}/p)[\text{Aut}(A)]$, called the Steinberg module.

It follows that for any $\text{Aut}(A)$-spectrum X, the spectrum $(\Sigma^{-d} \hat{T}(A) \wedge X)_{h\text{Aut}(A)}$ is a retract of X, called Steinberg summand of X.

We can map $\hat{T}(A)$ to $\hat{P}(A)$ by sending $B \in T(A)$ to the corresponding coset partition of A. This respects the actions of $\text{Aff}(A)$ on $\hat{T}(A)$ and Σ_A on $\hat{P}(A)$.
Given $A \simeq (\mathbb{Z}/p)^d$, put $\mathcal{T}(A) = \{ \text{subgroups of } A \}$ and $T(A) = |\mathcal{T}(A)|$.

Put $\partial \mathcal{T}(A) = \bigcup (\text{simplices not containing } \{0, A\})$, and $\hat{\mathcal{T}}(A) = T(A)/\partial \mathcal{T}(A)$.

It is well-known that this is homotopy equivalent to a wedge of spheres of dimension d, the number of spheres being $p^{(d^2-d)/2}$.

$\text{St}(A) = H_d(\hat{\mathcal{T}}(A); \mathbb{Z}/p)$ is a projective cyclic module over $(\mathbb{Z}/p)[\text{Aut}(A)]$, called the Steinberg module.

It follows that for any $\text{Aut}(A)$-spectrum X, the spectrum $(\Sigma^{-d} \hat{\mathcal{T}}(A) \wedge X)_{h\text{Aut}(A)}$ is a retract of X, called Steinberg summand of X.

We can map $\hat{\mathcal{T}}(A)$ to $\hat{\mathcal{P}}(A)$ by sending $B \in \mathcal{T}(A)$ to the corresponding coset partition of A. This respects the actions of $\text{Aff}(A)$ on $\hat{\mathcal{T}}(A)$ and Σ_A on $\hat{\mathcal{P}}(A)$.

Theorem (Arone-Dwyer):

$$(\Sigma^{WA} \hat{\mathcal{T}}(A))_{h\text{Aff}(A)} = (\Sigma^{WA} \hat{\mathcal{P}}(A))_{h\Sigma_A} = \overline{\text{SP}}^p (S^0) = \Sigma^d L(d),$$

and so $L(d)$ is the Steinberg summand in $(S^{WA})_{hA}$, which is a Thom spectrum over BA.

Mitchell’s complexes

\[X(A) = (\sum_{Bases(C[A])} - d + \wedge \hat{T}(A)) h \text{Aff}(A). \]

This is the Steinberg summand in \(Bases(C[A])/A \).

Theorem (Mitchell): this has type \(n \), so \(K(m) \ast X(A) \) is nonzero iff \(m \geq n \).

This was the first known example of a family of finite spectra of type \(n \) for all \(n \); an important ingredient of the chromatic theory.
Mitchell’s complexes

Put \(X(A) = (\Sigma^{-d} \text{Bases}(\mathbb{C}[A])_+ \wedge \hat{T}(A))_{h \text{Aff}(A)}. \)
Put $X(A) = (\Sigma^{-d} \text{Bases}(\mathbb{C}[A])_+ \wedge \hat{T}(A))_{h\text{Aff}(A)}$.

This is the Steinberg summand in $\text{Bases}(\mathbb{C}[A])/A$.

Theorem (Mitchell): this has type n, so $K(m)^{\ast} X(A)$ is nonzero iff $m \geq n$.

This was the first known example of a family of finite spectra of type n for all n; an important ingredient of the chromatic theory.
Mitchell’s complexes

Put $X(A) = (\sum^{-d} \text{Bases}(\mathbb{C}[A])_+ \wedge \hat{T}(A))_{h \text{Aff}(A)}$.

This is the Steinberg summand in $\text{Bases}(\mathbb{C}[A])/A$.

Theorem (Mitchell): this has type n, so $K(m)\ast X(A)$ is nonzero iff $m \geq n$.
Put \(X(A) = (\Sigma^{-d} \text{Bases}(\mathbb{C}[A])_+ \wedge \hat{T}(A))_{h\text{Aff}(A)}. \)

This is the Steinberg summand in \(\text{Bases}(\mathbb{C}[A])/A. \)

Theorem (Mitchell): this has type \(n, \) so \(K(m)_X(A) \) is nonzero iff \(m \geq n. \)

This was the first known example of a family of finite spectra of type \(n \) for all \(n; \) an important ingredient of the chromatic theory.
The Steinberg algebra

Put $T(A) = T(A) / \langle{\text{simplices not containing} 0}\rangle$. This has a natural product and compatible filtration, making the associated graded homology into a graded-commutative DGA.

Put $\text{St}^*(A) = \bigoplus_{B \leq A} \text{St}(B)$; this is easily identified with the above DGA.

One can show that $\text{St}^*(A)$ has a generator $x_L \in \text{St}^1(A)$ for each $L \leq A$ of order p, subject to relations $x_L x_M + x_M x_N + x_N x_L = 0$ whenever $|L + M + N| < p^3$. The differential is given by $d(x_L) = -1$ for all L.
Put $\overline{T}(A) = T(A)/(\text{simplices not containing } 0)$. This has a natural product and compatible filtration, making the associated graded homology into a graded-commutative DGA.
The Steinberg algebra

Put $\mathcal{T}(A) = T(A)/(\text{simplices not containing} 0)$. This has a natural product and compatible filtration, making the associated graded homology into a graded-commutative DGA.

Put $St_*(A) = \bigoplus_{B \leq A} St(B)$; this is easily identified with the above DGA.
Put $\overline{T}(A) = T(A)/(\text{simplices not containing } 0)$. This has a natural product and compatible filtration, making the associated graded homology into a graded-commutative DGA.

Put $St_\ast(A) = \bigoplus_{B \leq A} St(B)$; this is easily identified with the above DGA.

One can show that $St_\ast(A)$ has a generator $x_L \in St_1(A)$ for each $L \leq A$ of order p, subject to relations

$$x_L x_M + x_M x_N + x_N x_L = 0$$

whenever $|L + M + N| < p^3$. The differential is given by $d(x_L) = -1$ for all L.
Theorem (Kuhn): $K^*(n) \ast L^*(\ast)$ is a finite, contractible DGA over $K^*(n) \ast$.

Let E be Morava E-theory (with formal group G) and put $E \vee^0 L^*(d) = \pi^0 L^K(n)(E \wedge L^*(d))$. It works out that $E \vee^0 L^*(\ast)$ is a contractible DGA over E^0.

Hopkins-Kuhn-Ravenel introduce the group $\Theta = (\mathbb{Z}/p^\infty)$, and a Galois extension E'_0 of $\mathbb{Q} \otimes E^0$, with Galois group $\text{Aut}(\Theta)$. For finite groups H, they give a natural isomorphism $E'_0 \otimes E^0 E^0 BH = \text{Map}(\text{Hom}(\Theta^* \otimes H, H) /H, E'_0)$ ("generalised character theory").

Put $\Theta[p] = \{\theta \in \Theta | p^\infty \theta = 0\}$.

Theorem: $E'_0 \otimes E^0 E \vee^0 L^*(\ast) = E'_0 \otimes \mathbb{Z}_{St^\ast} (\Theta[p])$.

It is also possible to define $G[p]$ and $\mathbb{Z}_{St^\ast} (G[p])$, and to show that $E \vee^0 L^*(\ast) = \mathbb{Z}_{St^\ast} (G[p])$.

This is closely related to old conjectures of Hopkins, about homological algebra for the ring of E-theory power operations.
Theorem (Kuhn): $K(n)_* L(*)$ is a finite, contractible DGA over $K(n)_*$.
Theorem (Kuhn): $K(n)_* L(*)$ is a finite, contractible DGA over $K(n)_*$.

Let E be Morava E-theory (with formal group G) and put $E^\wedge_0 L(d) = \pi_0 L_{K(n)}(E \wedge L(d))$. It works out that $E^\wedge_0 L(*)$ is a contractible DGA over E_0.

Hopkins-Kuhn-Ravenel introduce the group $\Theta = (\mathbb{Z}/p\infty)_d$, and a Galois extension E'_0 of $\mathbb{Q} \otimes E_0$, with Galois group Aut(Θ). For finite groups H, they give a natural isomorphism $E'_0 \otimes E_0 E_0 BH = \text{Map}(\text{Hom}(\Theta^*, H)/H, E'_0)$ ("generalised character theory").

Put $\Theta[p] = \{ \theta \in \Theta \mid p \theta = 0 \}$. Theorem: $E'_0 \otimes E_0 E^\wedge_0 L(*) = E'_0 \otimes \text{St}^* (\Theta[p])$.

It is also possible to define $G[p]$ and $\text{St}^* (G[p])$, and to show that $E^\wedge_0 L(*) = \text{St}^* (G[p])$. This is closely related to old conjectures of Hopkins, about homological algebra for the ring of E-theory power operations.
Chromatic homology

Theorem (Kuhn): $K(n)_* L(*)$ is a finite, contractible DGA over $K(n)_*$.

Let E be Morava E-theory (with formal group G) and put $E_0^\vee L(d) = \pi_0 L_{K(n)}(E \wedge L(d))$. It works out that $E_0^\vee L(*)$ is a contractible DGA over E_0.

Hopkins-Kuhn-Ravenel introduce the group $\Theta = (\mathbb{Z}/p\infty)^d$, and a Galois extension E'_0 of $\mathbb{Q} \otimes E_0$, with Galois group $\text{Aut}(\Theta)$. For finite groups H, they give a natural isomorphism

$$E'_0 \otimes_{E_0} E^0 BH = \text{Map}(\text{Hom}(\Theta^*, H)/H, E'_0)$$

(“generalised character theory”).
Chromatic homology

Theorem (Kuhn): $K(n)_*L(*)$ is a finite, contractible DGA over $K(n)_*$. Let E be Morava E-theory (with formal group G) and put $E_0^\vee L(d) = \pi_0 L_{K(n)}(E \wedge L(d))$. It works out that $E_0^\vee L(*)$ is a contractible DGA over E_0.

Hopkins-Kuhn-Ravenel introduce the group $\Theta = (\mathbb{Z}/p^\infty)^d$, and a Galois extension E'_0 of $\mathbb{Q} \otimes E_0$, with Galois group $\text{Aut}(\Theta)$. For finite groups H, they give a natural isomorphism

$$E'_0 \otimes_{E_0} E_0^0 BH = \text{Map}(\text{Hom}(\Theta^*, H)/H, E'_0)$$

(“generalised character theory”).

Put $\Theta[p] = \{ \theta \in \Theta \mid p\theta = 0\}$.

Chromatic homology

Theorem (Kuhn): $K(n)_* L(*)$ is a finite, contractible DGA over $K(n)_*$.

Let E be Morava E-theory (with formal group G) and put $E_0^v L(d) = \pi_0 L_{K(n)}(E \wedge L(d))$. It works out that $E_0^v L(*)$ is a contractible DGA over E_0.

Hopkins-Kuhn-Ravenel introduce the group $\Theta = (\mathbb{Z}/p^{\infty})^d$, and a Galois extension E'_0 of $\mathbb{Q} \otimes E_0$, with Galois group $\text{Aut}(\Theta)$. For finite groups H, they give a natural isomorphism

$$E'_0 \otimes_{E_0} E^0 BH = \text{Map}(\text{Hom}(\Theta^*, H)/H, E'_0)$$

(“generalised character theory”).

Put $\Theta[p] = \{\theta \in \Theta \mid p\theta = 0\}$.

Theorem: $E'_0 \otimes_{E_0} E_0^v L(*) = E'_0 \otimes_{\mathbb{Z}} \text{St}_*(\Theta[p])$.
Theorem (Kuhn): $K(n)_*L(*)$ is a finite, contractible DGA over $K(n)_*$.

Let E be Morava E-theory (with formal group G) and put $E^\vee_0 L(d) = \pi_0 L_{K(n)}(E \wedge L(d))$. It works out that $E^\vee_0 L(*)$ is a contractible DGA over E_0.

Hopkins-Kuhn-Ravenel introduce the group $\Theta = (\mathbb{Z}/p^\infty)^d$, and a Galois extension E'_0 of $\mathbb{Q} \otimes E_0$, with Galois group $\text{Aut}(\Theta)$. For finite groups H, they give a natural isomorphism

$$E'_0 \otimes_{E_0} E^0 BH = \text{Map}(\text{Hom}(\Theta^*, H)/H, E'_0)$$

(“generalised character theory”).

Put $\Theta[p] = \{\theta \in \Theta \mid p\theta = 0\}$.

Theorem: $E'_0 \otimes_{E_0} E^\vee_0 L(*) = E'_0 \otimes_{\mathbb{Z}} \text{St}_*(\Theta[p])$.

It is also possible to define $G[p]$ and $\text{St}_*(G[p])$, and to show that $E^\vee_0 L(*) = \text{St}_*(G[p])$.
Chromatic homology

Theorem (Kuhn): $K(n)_* L(*)$ is a finite, contractible DGA over $K(n)_*$.

Let E be Morava E-theory (with formal group G) and put $E_0^\vee L(d) = \pi_0 L_{K(n)}(E \wedge L(d))$. It works out that $E_0^\vee L(*)$ is a contractible DGA over E_0.

Hopkins-Kuhn-Ravenel introduce the group $\Theta = (\mathbb{Z}/p^\infty)^d$, and a Galois extension E'_0 of $\mathbb{Q} \otimes E_0$, with Galois group $\text{Aut}(\Theta)$. For finite groups H, they give a natural isomorphism

$$E_0' \otimes_{E_0} E^0 BH = \text{Map}(\text{Hom}(\Theta^*, H)/H, E_0')$$

(“generalised character theory”).

Put $\Theta[p] = \{ \theta \in \Theta \mid p\theta = 0 \}$.

Theorem: $E_0' \otimes_{E_0} E_0^\vee L(*) = E_0' \otimes_{\mathbb{Z}} \text{St}_*(\Theta[p])$.

It is also possible to define $G[p]$ and $\text{St}_*(G[p])$, and to show that $E_0^\vee L(*) = \text{St}_*(G[p])$.

This is closely related to old conjectures of Hopkins, about homological algebra for the ring of E-theory power operations.