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» Problem: projective generators are not strongly dualisable in AU;
compact objects are not strongly dualisable in D(AU).
This blocks most known approaches to the Balmer spectrum.

» Although duality phenomena are unfamiliar, they are still concrete and
tractable.
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» For abelian p-groups, or elementary abelian p-groups, or cyclic groups: the
category AU is locally noetherian, i.e. subobjects of finitely generated
objects are finitely generated.
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Under mild conditions on U we have F,, € U.

» Given morphisms Fpm 2y H<® G in U with |G| < min(n, m), we can
choose ¥: Fpm — G in U with atp = ¢.
(Some care is needed to ensure that ) is surjective.)

» We can choose a tower Gy <— Gi <= G, < - -+ in U such that G, gets
rapidly larger and freer as n — oo.

» We then find that
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Geyor n
and this is an exact functor of X (because we work over Q).
> AU(X,1) is hom from the above colimit to @; so 1 is injective.

> As mentioned previously: it follows that D(eg) is injective, then that eg is
injective, then that all projectives are injective.

» Using this: any object of finite projective dimension is projective.
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If nis large, the proportion of n-tuples in G" that generate G is close to 1
(theorem of Lynne Butler, 1994).

Using this plus nearly free groups as on the previous slide:

if X is a nontrivial summand of e, then an appropriate lim sup of
dim(X(T))/IG°™ is nonzero and finite, where §(T) is the minimal size
of a generating set.

We can define Serre subcategories and then quotient categories using rates
of growth. We have not yet exploited this fully.

This approach show that monomorphisms between projective objects split,
even for some U where projectives are not injective.
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» For a Q[Out(G)]-module V, put
ec,v(K) = V ®qjou(c) ec(K)

This is projective. Every indecomposable projective has the form eg s for
some indecomposable Q[Out(G)]-module S. We define the order of ec s
to be the order of G.

» We say that X is pure of order k if it is isomorphic to a sum of
indecomposable projectives of order k.

» The subcategory of such objects is equivalent to the semisimple category
Al = [UP, Vect].
> If X is pure of order k, and Y is pure of order m > k, then AU(X,Y) =0.

> Let (L<mX)(G) be the sum of all a*(X(H)) < X(G) for H € U<m and
a € U(G, H).
> Put LnX = LemX/LamX.

» If P is projective, then P ~ @, Px = [, P, where Py is pure of order k.
It follows that L<mX = B, Px and LmX =~ P, so the filtration splits.
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Noetherian properties

> We prove that [U4°P, Vect] is locally noetherian when U is the category of
finite abelian p-groups.
(We also cover a few other cases that are easier and/or already known.)

> By work of Sam and Snowden (2016): [L/°", Vect] is locally noetherian if
there is a category C such that

» C is close enough to U°P to allow for transfer of finiteness conditions.
» C has combinatorial /order-theoretic properties that support an analogue of
the theory of Grobner bases.

» One ingredient: a preordered set P is well-quasi-ordered (wqo) if in every
sequence u: N — P, there exists i < j with u(i) < u(j).

> If so: there always exists a subsequence v with v(i) < v(j) whenever i < j.

» Another ingredient: let ¢: X — Y be a surjective but not necessarily
monotone map between finite, totally ordered sets. Define
#'(y) = min(¢~{y}) and say that ¢ is t-monotone if ¢! is monotone.

» Ly is the category of finite, nonempty, totally ordered sets X equipped
with ex: X — N. Morphisms are f-monotone surjections ¢: X — Y with
ey o ¢ < ex.

» The category E‘;p and its slice categories are (nonobviously) wqo.

» There is a functor £y — U sending X to P, Z/peX(X). Using this we prove
that AU is locally noetherian.
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» Let PU be the subcategory of projectives in AU.

» There is an additive functor Py = hI*: AU — PU with a surjective natural
transformation Po(X) — X, where / is the inclusion U* — U.

> This extends to give an additive functor P: Ch(AU) — Ch(PU) with a
natural surjective quasiisomorphism P(X) — X.

» From this and other results:
Ch(AU)[we '] = hCh(PU) := Ch(PU)/(chain homotopy).

(For general abelian categories, the story is more subtle.)

» There is a cofibrantly generated proper stable monoidal model structure,
in which everything can be defined explicitly using P and one does not
need the small object argument.

> If X, Y € Ch(PU) then Hom(X, Y) € PU.

> Say X € Ch(PU) is thin if for every m > 0, the differential on L, X is 0,
i.e. the differential on X involves only maps eg s — ey, 7 with |H| < |G

» Every homotopy type has an essentially unique thin representative.
(But thin ® thin and Hom(thin, thin) need not be thin.)

» A thin complex X is compact iff @, X, is finitely generated.
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hsupp(X) = {G | H.(X)(G) # 0}
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There is a very general method that does most of the work of classifying
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But that is not applicable here.

The obvious prime ideals are Pg = {X | H.(X)(G) = 0}.
If X is thin and n is largest with L,X # 0, then X = H.(X) = L,X mod
terms of slower growth. Using this: 0 is also a prime ideal.

We have various partial results and examples, especially conditions under
which eg € thickid(Y').

Given X, Y with hsupp(X) C hsupp(Y), and a large integer N > 0, we
can show that thickid(X) C thickid({Y} U {ec | |G| > N}).

This work is ongoing.



