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Rational global representation theory

▶ Let G be the category of finite groups and conjugacy classes of surjective
homomorphisms.

▶ Let U be a full subcategory of G, such as finite abelian p-groups.
▶ Put AU = [Uop,Vect]; then D(AU) is equivalent to the category of

globally equivariant spectra with rational homotopy groups, via
X 7→ (G 7→ π∗(ϕ

G (X ))).
▶ For each G ∈ U we have a projective generator eG (K) = Q[U(K ,G)]

(which is 0 if |K | < |G |).
▶ AU is closed symmetric monoidal with (X ⊗ Y )(G) = X (G)⊗ Y (G) and

1 = e1 = (G 7→ Q) and Hom(X ,Y )(G) = AU(eG ⊗ X ,Y ).
▶ Goal: study AU , derived category D(AU), Balmer spectrum of compact

objects in D(AU).
▶ Problem: projective generators are not strongly dualisable in AU ;

compact objects are not strongly dualisable in D(AU).
This blocks most known approaches to the Balmer spectrum.

▶ Although duality phenomena are unfamiliar, they are still concrete and
tractable.

▶ Another unusual feature: all projectives are injective, but not conversely.
▶ For abelian p-groups, or elementary abelian p-groups, or cyclic groups: the

category AU is locally noetherian, i.e. subobjects of finitely generated
objects are finitely generated.
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Tensor structure

▶ Assume for simplicity that groups in U are abelian.

▶ Say W ≤ G × H is wide if projections to G and H are both surjective
iff there exists N ≤ G , M ≤ H, α : G/N

≃−→ H/M with
W = {(g , h) | α(gN) = hM}.

▶ Example: G × H is wide in G × H, diagonal ∆ ≤ G × G is also wide.

▶ There is an easy isomorphism eG ⊗ eH =
⊕

W eW .

▶ Put DX = Hom(X ,1) so X is strongly dualisable iff
DX ⊗ X → Hom(X ,X ) is iso.

▶ Suppose that X ̸= 0 but X (1) = 0. Then (DX ⊗ X )(1) = 0 but
Hom(X ,X )(1) = AU(X ,X ) ̸= 0 so X is not strongly dualisable.

▶ Thus eG is not strongly dualisable unless G = 1.
In fact X is only strongly dualisable if it is constant and finite-dimensional.

▶ If |C | = p then Hom(eC , eC ) = eC2 ⊕ (2p − 1)eC ⊕ (p − 1)1 but
D(eC )⊗ eC = eC2 ⊕ peC .

▶ For the nonabelian case, we need to pass to conjugacy classes in the right
way, but the details are fiddly.
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▶ Suppose that X ̸= 0 but X (1) = 0. Then (DX ⊗ X )(1) = 0 but
Hom(X ,X )(1) = AU(X ,X ) ̸= 0 so X is not strongly dualisable.

▶ Thus eG is not strongly dualisable unless G = 1.
In fact X is only strongly dualisable if it is constant and finite-dimensional.

▶ If |C | = p then Hom(eC , eC ) = eC2 ⊕ (2p − 1)eC ⊕ (p − 1)1 but
D(eC )⊗ eC = eC2 ⊕ peC .

▶ For the nonabelian case, we need to pass to conjugacy classes in the right
way, but the details are fiddly.
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More about duals and internal homs

▶ For N ≤ G we define

θN : (eG/N ⊗ eG )(K) = Q[U(K ,G/N)× U(K ,G)]→ 1(K) = Q

by θN(K
α−→ G/N,K

β−→ G) = 1 if α = π ◦ β, and θN(α, β) = 0 otherwise.
Adjoint to θN : eG/N ⊗ eG → 1 we have θ#N : eG/N → Hom(eG ,1) = D(eG ).

▶ Fact: these maps give
⊕

N eG/N
≃−→ D(eG ).

▶ We will show later that 1 is injective.
Also any X is flat, and it follows that DX is injective.
As eG is a retract of D(eG ), it is also injective.
It follows that all projectives are injective.

▶ However, tG (K) = Map(U(G ,K),Q) is injective but not projective.

▶ A virtual homomorphism from G to H is a pair (A,A′) where
A′ ≤ A ≤ G × H and A is wide and A′ ∩ (1× H) = 1 and A/A′ ∈ U .

▶ Hom(eG , eH) has a natural filtration with associated graded
⊕

(A,A′) eA/A′ .

As eA/A′ is projective, the filtration splits and Hom(eG , eH) is projective.
We do not know whether the filtration splits naturally.

▶ For the nonabelian case, we need to pass to conjugacy classes in the right
way, but the details are even more fiddly.
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Asymptotic freedom

▶ Let Fnm be the quotient of the free group on n generators by the
intersection of all normal subgroups N with quotient in U≤m.
Under mild conditions on U we have Fnm ∈ U .

▶ Given morphisms Fnm
ϕ−→ H

α←− G in U with |G | ≤ min(n,m), we can
choose ψ : Fnm → G in U with αψ = ϕ.
(Some care is needed to ensure that ψ is surjective.)

▶ We can choose a tower G0 ←− G1 ←− G2 ←− · · · in U such that Gn gets
rapidly larger and freer as n→∞.

▶ We then find that

lim
−→

G∈Uop

X (G) = lim
−→
n

X (Gn)Out(Gn),

and this is an exact functor of X (because we work over Q).

▶ AU(X ,1) is hom from the above colimit to Q; so 1 is injective.

▶ As mentioned previously: it follows that D(eG ) is injective, then that eG is
injective, then that all projectives are injective.

▶ Using this: any object of finite projective dimension is projective.



Asymptotic freedom

▶ Let Fnm be the quotient of the free group on n generators by the
intersection of all normal subgroups N with quotient in U≤m.
Under mild conditions on U we have Fnm ∈ U .

▶ Given morphisms Fnm
ϕ−→ H

α←− G in U with |G | ≤ min(n,m), we can
choose ψ : Fnm → G in U with αψ = ϕ.
(Some care is needed to ensure that ψ is surjective.)

▶ We can choose a tower G0 ←− G1 ←− G2 ←− · · · in U such that Gn gets
rapidly larger and freer as n→∞.

▶ We then find that

lim
−→

G∈Uop

X (G) = lim
−→
n

X (Gn)Out(Gn),

and this is an exact functor of X (because we work over Q).

▶ AU(X ,1) is hom from the above colimit to Q; so 1 is injective.

▶ As mentioned previously: it follows that D(eG ) is injective, then that eG is
injective, then that all projectives are injective.

▶ Using this: any object of finite projective dimension is projective.



Asymptotic freedom

▶ Let Fnm be the quotient of the free group on n generators by the
intersection of all normal subgroups N with quotient in U≤m.
Under mild conditions on U we have Fnm ∈ U .

▶ Given morphisms Fnm
ϕ−→ H

α←− G in U with |G | ≤ min(n,m), we can
choose ψ : Fnm → G in U with αψ = ϕ.
(Some care is needed to ensure that ψ is surjective.)

▶ We can choose a tower G0 ←− G1 ←− G2 ←− · · · in U such that Gn gets
rapidly larger and freer as n→∞.

▶ We then find that

lim
−→

G∈Uop

X (G) = lim
−→
n

X (Gn)Out(Gn),

and this is an exact functor of X (because we work over Q).

▶ AU(X ,1) is hom from the above colimit to Q; so 1 is injective.

▶ As mentioned previously: it follows that D(eG ) is injective, then that eG is
injective, then that all projectives are injective.

▶ Using this: any object of finite projective dimension is projective.



Asymptotic freedom

▶ Let Fnm be the quotient of the free group on n generators by the
intersection of all normal subgroups N with quotient in U≤m.
Under mild conditions on U we have Fnm ∈ U .

▶ Given morphisms Fnm
ϕ−→ H

α←− G in U with |G | ≤ min(n,m), we can
choose ψ : Fnm → G in U with αψ = ϕ.
(Some care is needed to ensure that ψ is surjective.)
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Rates of growth

▶ If n is large, the proportion of n-tuples in G n that generate G is close to 1
(theorem of Lynne Butler, 1994).

▶ Using this plus nearly free groups as on the previous slide:
if X is a nontrivial summand of eG , then an appropriate lim sup of
dim(X (T ))/|G |δ(T ) is nonzero and finite, where δ(T ) is the minimal size
of a generating set.

▶ We can define Serre subcategories and then quotient categories using rates
of growth. We have not yet exploited this fully.

▶ This approach show that monomorphisms between projective objects split,
even for some U where projectives are not injective.
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The order filtration

▶ For a Q[Out(G)]-module V , put

eG ,V (K) = V ⊗Q[Out(G)] eG (K)

This is projective. Every indecomposable projective has the form eG ,S for
some indecomposable Q[Out(G)]-module S . We define the order of eG ,S

to be the order of G .

▶ We say that X is pure of order k if it is isomorphic to a sum of
indecomposable projectives of order k.

▶ The subcategory of such objects is equivalent to the semisimple category
AUk = [Uop

k ,Vect].

▶ If X is pure of order k, and Y is pure of order m > k, then AU(X ,Y ) = 0.

▶ Let (L≤mX )(G) be the sum of all α∗(X (H)) ≤ X (G) for H ∈ U≤m and
α ∈ U(G ,H).

▶ Put LmX = L≤mX/L<mX .

▶ If P is projective, then P ≃
⊕

k Pk ≃
∏

k Pk , where Pk is pure of order k.
It follows that L≤mX =

⊕
k≤m Pk and LmX ≃ Pm so the filtration splits.
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Noetherian properties

▶ We prove that [Uop,Vect] is locally noetherian when U is the category of
finite abelian p-groups.
(We also cover a few other cases that are easier and/or already known.)

▶ By work of Sam and Snowden (2016): [Uop,Vect] is locally noetherian if
there is a category C such that
▶ C is close enough to Uop to allow for transfer of finiteness conditions.
▶ C has combinatorial/order-theoretic properties that support an analogue of

the theory of Gröbner bases.

▶ One ingredient: a preordered set P is well-quasi-ordered (wqo) if in every
sequence u : N→ P, there exists i < j with u(i) ≤ u(j).

▶ If so: there always exists a subsequence v with v(i) ≤ v(j) whenever i < j .

▶ Another ingredient: let ϕ : X → Y be a surjective but not necessarily
monotone map between finite, totally ordered sets. Define
ϕ†(y) = min(ϕ−1{y}) and say that ϕ is †-monotone if ϕ† is monotone.

▶ L† is the category of finite, nonempty, totally ordered sets X equipped
with eX : X → N. Morphisms are †-monotone surjections ϕ : X → Y with
eY ◦ ϕ ≤ eX .

▶ The category Lop
† and its slice categories are (nonobviously) wqo.

▶ There is a functor L† → U sending X to
⊕

x Z/p
eX (x). Using this we prove

that AU is locally noetherian.
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The derived category

▶ Let PU be the subcategory of projectives in AU .
▶ There is an additive functor P0 = l!l

∗ : AU → PU with a surjective natural
transformation P0(X )→ X , where l is the inclusion U× → U .

▶ This extends to give an additive functor P : Ch(AU)→ Ch(PU) with a
natural surjective quasiisomorphism P(X )→ X .

▶ From this and other results:

Ch(AU)[we−1] = hCh(PU) := Ch(PU)/(chain homotopy).

(For general abelian categories, the story is more subtle.)

▶ There is a cofibrantly generated proper stable monoidal model structure,
in which everything can be defined explicitly using P and one does not
need the small object argument.

▶ If X ,Y ∈ Ch(PU) then Hom(X ,Y ) ∈ PU .
▶ Say X ∈ Ch(PU) is thin if for every m > 0, the differential on LmX is 0,

i.e. the differential on X involves only maps eG ,S → eH,T with |H| < |G |.
▶ Every homotopy type has an essentially unique thin representative.

(But thin⊗ thin and Hom(thin, thin) need not be thin.)

▶ A thin complex X is compact iff
⊕

n Xn is finitely generated.
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Supports and thick ideals

▶ For compact X (represented as a thin complex), several notions of support:

▶ hsupp(X ) = {G | H∗(X )(G) ̸= 0}
▶ esupp(X ) = {G | X (G) ̸= 0}
▶ eqsupp(X ) = {G | some eG ,S is a retract of some Xd}.
▶ It is easy to see that esupp(X ) is the upwards closure of eqsupp(X ).

▶ True but less obvious: esupp(X ) is the upwards closure of hsupp(X ).

▶ Conjecture: thickid⟨X ⟩ ⊆ thickid⟨Y ⟩ iff hsupp(X ) ⊆ hsupp(Y ).

▶ There is a very general method that does most of the work of classifying
thick ideals, in cases where all compact objects are strongly dualisable.
But that is not applicable here.

▶ The obvious prime ideals are PG = {X | H∗(X )(G) = 0}.
▶ If X is thin and n is largest with LnX ̸= 0, then X = H∗(X ) = LnX mod

terms of slower growth. Using this: 0 is also a prime ideal.

▶ We have various partial results and examples, especially conditions under
which eG ∈ thickid⟨Y ⟩.

▶ Given X ,Y with hsupp(X ) ⊆ hsupp(Y ), and a large integer N > 0, we
can show that thickid⟨X ⟩ ⊆ thickid⟨{Y } ∪ {eG | |G | > N}⟩.

▶ This work is ongoing.
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