Neil Strickland (with Luca Pol; thanks to the Hausdorff Institute)

January 24, 2023

- Let G be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G} , such as finite abelian *p*-groups.
- Put AU = [U^{op}, Vect]; then D(AU) is equivalent to the category of globally equivariant spectra with rational homotopy groups, via X → (G → π_{*}(φ^G(X))).
- For each $G \in U$ we have a projective generator $e_G(K) = \mathbb{Q}[U(K, G)]$ (which is 0 if |K| < |G|).
- ▶ \mathcal{AU} is closed symmetric monoidal with $(X \otimes Y)(G) = X(G) \otimes Y(G)$ and $\mathbb{1} = e_1 = (G \mapsto \mathbb{Q})$ and $\underline{Hom}(X, Y)(G) = \mathcal{AU}(e_G \otimes X, Y)$.
- ▶ Goal: study AU, derived category D(AU), Balmer spectrum of compact objects in D(AU).
- Problem: projective generators are not strongly dualisable in AU; compact objects are not strongly dualisable in D(AU). This blocks most known approaches to the Balmer spectrum.
- Although duality phenomena are unfamiliar, they are still concrete and tractable.
- Another unusual feature: all projectives are injective, but not conversely.
- For abelian *p*-groups, or elementary abelian *p*-groups, or cyclic groups: the category AU is locally noetherian, i.e. subobjects of finitely generated objects are finitely generated.

- Let G be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G} , such as finite abelian *p*-groups.
- Put AU = [U^{op}, Vect]; then D(AU) is equivalent to the category of globally equivariant spectra with rational homotopy groups, via X → (G → π_{*}(φ^G(X))).
- For each G ∈ U we have a projective generator e_G(K) = Q[U(K, G)] (which is 0 if |K| < |G|).</p>
- ▶ \mathcal{AU} is closed symmetric monoidal with $(X \otimes Y)(G) = X(G) \otimes Y(G)$ and $\mathbb{1} = e_1 = (G \mapsto \mathbb{Q})$ and $\underline{Hom}(X, Y)(G) = \mathcal{AU}(e_G \otimes X, Y)$.
- ▶ Goal: study AU, derived category D(AU), Balmer spectrum of compact objects in D(AU).
- Problem: projective generators are not strongly dualisable in AU; compact objects are not strongly dualisable in D(AU). This blocks most known approaches to the Balmer spectrum.
- Although duality phenomena are unfamiliar, they are still concrete and tractable.
- Another unusual feature: all projectives are injective, but not conversely.
- For abelian *p*-groups, or elementary abelian *p*-groups, or cyclic groups: the category AU is locally noetherian, i.e. subobjects of finitely generated objects are finitely generated.

- Let G be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G} , such as finite abelian *p*-groups.
- Put AU = [U^{op}, Vect]; then D(AU) is equivalent to the category of globally equivariant spectra with rational homotopy groups, via X → (G → π_{*}(φ^G(X))).
- For each $G \in U$ we have a projective generator $e_G(K) = \mathbb{Q}[U(K, G)]$ (which is 0 if |K| < |G|).
- ▶ \mathcal{AU} is closed symmetric monoidal with $(X \otimes Y)(G) = X(G) \otimes Y(G)$ and $\mathbb{1} = e_1 = (G \mapsto \mathbb{Q})$ and $\underline{Hom}(X, Y)(G) = \mathcal{AU}(e_G \otimes X, Y)$.
- ▶ Goal: study AU, derived category D(AU), Balmer spectrum of compact objects in D(AU).
- Problem: projective generators are not strongly dualisable in AU; compact objects are not strongly dualisable in D(AU). This blocks most known approaches to the Balmer spectrum.
- Although duality phenomena are unfamiliar, they are still concrete and tractable.
- Another unusual feature: all projectives are injective, but not conversely.
- For abelian *p*-groups, or elementary abelian *p*-groups, or cyclic groups: the category AU is locally noetherian, i.e. subobjects of finitely generated objects are finitely generated.

- Let G be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G} , such as finite abelian *p*-groups.
- Put AU = [U^{op}, Vect]; then D(AU) is equivalent to the category of globally equivariant spectra with rational homotopy groups, via X → (G → π_{*}(φ^G(X))).
- For each $G \in U$ we have a projective generator $e_G(K) = \mathbb{Q}[U(K, G)]$ (which is 0 if |K| < |G|).
- ▶ \mathcal{AU} is closed symmetric monoidal with $(X \otimes Y)(G) = X(G) \otimes Y(G)$ and $\mathbb{1} = e_1 = (G \mapsto \mathbb{Q})$ and $\underline{Hom}(X, Y)(G) = \mathcal{AU}(e_G \otimes X, Y)$.
- ▶ Goal: study AU, derived category D(AU), Balmer spectrum of compact objects in D(AU).
- Problem: projective generators are not strongly dualisable in AU; compact objects are not strongly dualisable in D(AU). This blocks most known approaches to the Balmer spectrum.
- Although duality phenomena are unfamiliar, they are still concrete and tractable.
- Another unusual feature: all projectives are injective, but not conversely.
- For abelian *p*-groups, or elementary abelian *p*-groups, or cyclic groups: the category AU is locally noetherian, i.e. subobjects of finitely generated objects are finitely generated.

- Let G be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G} , such as finite abelian *p*-groups.
- Put AU = [U^{op}, Vect]; then D(AU) is equivalent to the category of globally equivariant spectra with rational homotopy groups, via X → (G → π_{*}(φ^G(X))).
- For each G ∈ U we have a projective generator e_G(K) = Q[U(K, G)] (which is 0 if |K| < |G|).</p>
- ▶ \mathcal{AU} is closed symmetric monoidal with $(X \otimes Y)(G) = X(G) \otimes Y(G)$ and $\mathbb{1} = e_1 = (G \mapsto \mathbb{Q})$ and $\underline{Hom}(X, Y)(G) = \mathcal{AU}(e_G \otimes X, Y)$.
- ▶ Goal: study AU, derived category D(AU), Balmer spectrum of compact objects in D(AU).

Problem: projective generators are not strongly dualisable in AU; compact objects are not strongly dualisable in D(AU). This blocks most known approaches to the Balmer spectrum.

- Although duality phenomena are unfamiliar, they are still concrete and tractable.
- Another unusual feature: all projectives are injective, but not conversely.
- For abelian *p*-groups, or elementary abelian *p*-groups, or cyclic groups: the category AU is locally noetherian, i.e. subobjects of finitely generated objects are finitely generated.

- Let G be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G} , such as finite abelian *p*-groups.
- Put AU = [U^{op}, Vect]; then D(AU) is equivalent to the category of globally equivariant spectra with rational homotopy groups, via X → (G → π_{*}(φ^G(X))).
- For each G ∈ U we have a projective generator e_G(K) = Q[U(K, G)] (which is 0 if |K| < |G|).</p>
- ▶ \mathcal{AU} is closed symmetric monoidal with $(X \otimes Y)(G) = X(G) \otimes Y(G)$ and $\mathbb{1} = e_1 = (G \mapsto \mathbb{Q})$ and $\underline{Hom}(X, Y)(G) = \mathcal{AU}(e_G \otimes X, Y)$.
- ▶ Goal: study AU, derived category D(AU), Balmer spectrum of compact objects in D(AU).

Problem: projective generators are not strongly dualisable in AU; compact objects are not strongly dualisable in D(AU). This blocks most known approaches to the Balmer spectrum.

- Although duality phenomena are unfamiliar, they are still concrete and tractable.
- Another unusual feature: all projectives are injective, but not conversely.
- For abelian *p*-groups, or elementary abelian *p*-groups, or cyclic groups: the category AU is locally noetherian, i.e. subobjects of finitely generated objects are finitely generated.

- Let G be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G} , such as finite abelian *p*-groups.
- Put AU = [U^{op}, Vect]; then D(AU) is equivalent to the category of globally equivariant spectra with rational homotopy groups, via X → (G → π_{*}(φ^G(X))).
- For each G ∈ U we have a projective generator e_G(K) = Q[U(K, G)] (which is 0 if |K| < |G|).</p>
- ▶ \mathcal{AU} is closed symmetric monoidal with $(X \otimes Y)(G) = X(G) \otimes Y(G)$ and $\mathbb{1} = e_1 = (G \mapsto \mathbb{Q})$ and $\underline{Hom}(X, Y)(G) = \mathcal{AU}(e_G \otimes X, Y)$.
- ▶ Goal: study AU, derived category D(AU), Balmer spectrum of compact objects in D(AU).
- Problem: projective generators are not strongly dualisable in AU; compact objects are not strongly dualisable in D(AU).
 This blocks most known approaches to the Balmer spectrum.
- Although duality phenomena are unfamiliar, they are still concrete and tractable.
- Another unusual feature: all projectives are injective, but not conversely.
- For abelian *p*-groups, or elementary abelian *p*-groups, or cyclic groups: the category AU is locally noetherian, i.e. subobjects of finitely generated objects are finitely generated.

- Let G be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G} , such as finite abelian *p*-groups.
- Put AU = [U^{op}, Vect]; then D(AU) is equivalent to the category of globally equivariant spectra with rational homotopy groups, via X → (G → π_{*}(φ^G(X))).
- For each G ∈ U we have a projective generator e_G(K) = Q[U(K, G)] (which is 0 if |K| < |G|).</p>
- ▶ \mathcal{AU} is closed symmetric monoidal with $(X \otimes Y)(G) = X(G) \otimes Y(G)$ and $\mathbb{1} = e_1 = (G \mapsto \mathbb{Q})$ and $\underline{Hom}(X, Y)(G) = \mathcal{AU}(e_G \otimes X, Y)$.
- ► Goal: study AU, derived category D(AU), Balmer spectrum of compact objects in D(AU).
- Problem: projective generators are not strongly dualisable in AU; compact objects are not strongly dualisable in D(AU). This blocks most known approaches to the Balmer spectrum.
- Although duality phenomena are unfamiliar, they are still concrete and tractable.
- Another unusual feature: all projectives are injective, but not conversely.
- For abelian *p*-groups, or elementary abelian *p*-groups, or cyclic groups: the category AU is locally noetherian, i.e. subobjects of finitely generated objects are finitely generated.

- Let G be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G} , such as finite abelian *p*-groups.
- Put AU = [U^{op}, Vect]; then D(AU) is equivalent to the category of globally equivariant spectra with rational homotopy groups, via X → (G → π_{*}(φ^G(X))).
- For each G ∈ U we have a projective generator e_G(K) = Q[U(K, G)] (which is 0 if |K| < |G|).</p>
- ▶ \mathcal{AU} is closed symmetric monoidal with $(X \otimes Y)(G) = X(G) \otimes Y(G)$ and $\mathbb{1} = e_1 = (G \mapsto \mathbb{Q})$ and $\underline{Hom}(X, Y)(G) = \mathcal{AU}(e_G \otimes X, Y)$.
- ► Goal: study AU, derived category D(AU), Balmer spectrum of compact objects in D(AU).
- Problem: projective generators are not strongly dualisable in AU; compact objects are not strongly dualisable in D(AU). This blocks most known approaches to the Balmer spectrum.
- Although duality phenomena are unfamiliar, they are still concrete and tractable.
- Another unusual feature: all projectives are injective, but not conversely.
- For abelian *p*-groups, or elementary abelian *p*-groups, or cyclic groups: the category AU is locally noetherian, i.e. subobjects of finitely generated objects are finitely generated.

- Let G be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G} , such as finite abelian *p*-groups.
- Put AU = [U^{op}, Vect]; then D(AU) is equivalent to the category of globally equivariant spectra with rational homotopy groups, via X → (G → π_{*}(φ^G(X))).
- For each G ∈ U we have a projective generator e_G(K) = Q[U(K, G)] (which is 0 if |K| < |G|).</p>
- ▶ \mathcal{AU} is closed symmetric monoidal with $(X \otimes Y)(G) = X(G) \otimes Y(G)$ and $\mathbb{1} = e_1 = (G \mapsto \mathbb{Q})$ and $\underline{Hom}(X, Y)(G) = \mathcal{AU}(e_G \otimes X, Y)$.
- ▶ Goal: study AU, derived category D(AU), Balmer spectrum of compact objects in D(AU).
- Problem: projective generators are not strongly dualisable in AU; compact objects are not strongly dualisable in D(AU). This blocks most known approaches to the Balmer spectrum.
- Although duality phenomena are unfamiliar, they are still concrete and tractable.
- Another unusual feature: all projectives are injective, but not conversely.
- For abelian *p*-groups, or elementary abelian *p*-groups, or cyclic groups: the category AU is locally noetherian, i.e. subobjects of finitely generated objects are finitely generated.

- Let G be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G} , such as finite abelian *p*-groups.
- Put AU = [U^{op}, Vect]; then D(AU) is equivalent to the category of globally equivariant spectra with rational homotopy groups, via X → (G → π_{*}(φ^G(X))).
- For each G ∈ U we have a projective generator e_G(K) = Q[U(K, G)] (which is 0 if |K| < |G|).</p>
- ▶ \mathcal{AU} is closed symmetric monoidal with $(X \otimes Y)(G) = X(G) \otimes Y(G)$ and $\mathbb{1} = e_1 = (G \mapsto \mathbb{Q})$ and $\underline{Hom}(X, Y)(G) = \mathcal{AU}(e_G \otimes X, Y)$.
- ▶ Goal: study AU, derived category D(AU), Balmer spectrum of compact objects in D(AU).
- Problem: projective generators are not strongly dualisable in AU; compact objects are not strongly dualisable in D(AU). This blocks most known approaches to the Balmer spectrum.
- Although duality phenomena are unfamiliar, they are still concrete and tractable.
- ▶ Another unusual feature: all projectives are injective, but not conversely.
- For abelian *p*-groups, or elementary abelian *p*-groups, or cyclic groups: the category AU is locally noetherian, i.e. subobjects of finitely generated objects are finitely generated.

- Assume for simplicity that groups in U are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G$, $M \leq H$, $\alpha \colon G/N \xrightarrow{\simeq} H/M$ with $W = \{(g, h) \mid \alpha(gN) = hM\}.$
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_G \otimes e_H = \bigoplus_W e_W$.
- Put DX = Hom(X, 1) so X is strongly dualisable iff DX ⊗ X → Hom(X, X) is iso.
- Suppose that $X \neq 0$ but X(1) = 0. Then $(DX \otimes X)(1) = 0$ but $\underline{Hom}(X, X)(1) = \mathcal{AU}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_G is not strongly dualisable unless G = 1. In fact X is only strongly dualisable if it is constant and finite-dimensional.
- ▶ If |C| = p then $Hom(e_C, e_C) = e_{C^2} \oplus (2p-1)e_C \oplus (p-1)\mathbb{1}$ but $D(e_C) \otimes e_C = e_{C^2} \oplus pe_C$.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

• Assume for simplicity that groups in \mathcal{U} are abelian.

- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G$, $M \leq H$, $\alpha \colon G/N \xrightarrow{\simeq} H/M$ with $W = \{(g, h) \mid \alpha(gN) = hM\}.$
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_G \otimes e_H = \bigoplus_W e_W$.
- Put DX = Hom(X, 1) so X is strongly dualisable iff DX ⊗ X → Hom(X, X) is iso.
- Suppose that $X \neq 0$ but X(1) = 0. Then $(DX \otimes X)(1) = 0$ but $\underline{Hom}(X, X)(1) = \mathcal{AU}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_G is not strongly dualisable unless G = 1. In fact X is only strongly dualisable if it is constant and finite-dimensional.
- ▶ If |C| = p then $Hom(e_C, e_C) = e_{C^2} \oplus (2p-1)e_C \oplus (p-1)\mathbb{1}$ but $D(e_C) \otimes e_C = e_{C^2} \oplus pe_C$.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

- Assume for simplicity that groups in U are abelian.
- ► Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G$, $M \leq H$, $\alpha : G/N \xrightarrow{\simeq} H/M$ with $W = \{(g, h) \mid \alpha(gN) = hM\}.$
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_G \otimes e_H = \bigoplus_W e_W$.
- Put DX = Hom(X, 1) so X is strongly dualisable iff DX ⊗ X → Hom(X, X) is iso.
- Suppose that $X \neq 0$ but X(1) = 0. Then $(DX \otimes X)(1) = 0$ but $\underline{Hom}(X, X)(1) = \mathcal{AU}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_G is not strongly dualisable unless G = 1. In fact X is only strongly dualisable if it is constant and finite-dimensional.
- ▶ If |C| = p then $\underline{Hom}(e_C, e_C) = e_{C^2} \oplus (2p-1)e_C \oplus (p-1)\mathbb{1}$ but $D(e_C) \otimes e_C = e_{C^2} \oplus pe_C$.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

- Assume for simplicity that groups in U are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G$, $M \leq H$, $\alpha \colon G/N \xrightarrow{\simeq} H/M$ with $W = \{(g, h) \mid \alpha(gN) = hM\}.$
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_G \otimes e_H = \bigoplus_W e_W$.
- Put DX = Hom(X, 1) so X is strongly dualisable iff DX ⊗ X → Hom(X, X) is iso.
- Suppose that $X \neq 0$ but X(1) = 0. Then $(DX \otimes X)(1) = 0$ but $\underline{Hom}(X, X)(1) = \mathcal{AU}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_G is not strongly dualisable unless G = 1. In fact X is only strongly dualisable if it is constant and finite-dimensional.
- ▶ If |C| = p then $Hom(e_C, e_C) = e_{C^2} \oplus (2p-1)e_C \oplus (p-1)\mathbb{1}$ but $D(e_C) \otimes e_C = e_{C^2} \oplus pe_C$.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

- Assume for simplicity that groups in \mathcal{U} are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G$, $M \leq H$, $\alpha \colon G/N \xrightarrow{\simeq} H/M$ with $W = \{(g, h) \mid \alpha(gN) = hM\}.$
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_G \otimes e_H = \bigoplus_W e_W$.
- Put DX = Hom(X, 1) so X is strongly dualisable iff DX ⊗ X → Hom(X, X) is iso.
- Suppose that $X \neq 0$ but X(1) = 0. Then $(DX \otimes X)(1) = 0$ but $\underline{Hom}(X, X)(1) = \mathcal{AU}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_G is not strongly dualisable unless G = 1. In fact X is only strongly dualisable if it is constant and finite-dimensional.
- ▶ If |C| = p then $Hom(e_C, e_C) = e_{C^2} \oplus (2p-1)e_C \oplus (p-1)\mathbb{1}$ but $D(e_C) \otimes e_C = e_{C^2} \oplus pe_C$.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

- Assume for simplicity that groups in U are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G$, $M \leq H$, $\alpha \colon G/N \xrightarrow{\simeq} H/M$ with $W = \{(g, h) \mid \alpha(gN) = hM\}.$
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_G \otimes e_H = \bigoplus_W e_W$.
- Put DX = Hom(X, 1) so X is strongly dualisable iff DX ⊗ X → Hom(X, X) is iso.
- Suppose that $X \neq 0$ but X(1) = 0. Then $(DX \otimes X)(1) = 0$ but $\underline{Hom}(X, X)(1) = \mathcal{AU}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_G is not strongly dualisable unless G = 1. In fact X is only strongly dualisable if it is constant and finite-dimensional.
- ▶ If |C| = p then $\underline{\text{Hom}}(e_C, e_C) = e_{C^2} \oplus (2p-1)e_C \oplus (p-1)\mathbb{1}$ but $D(e_C) \otimes e_C = e_{C^2} \oplus pe_C$.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

- Assume for simplicity that groups in U are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G$, $M \leq H$, $\alpha \colon G/N \xrightarrow{\simeq} H/M$ with $W = \{(g, h) \mid \alpha(gN) = hM\}.$
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_G \otimes e_H = \bigoplus_W e_W$.
- Put DX = <u>Hom</u>(X, 1) so X is strongly dualisable iff DX ⊗ X → <u>Hom</u>(X, X) is iso.
- Suppose that $X \neq 0$ but X(1) = 0. Then $(DX \otimes X)(1) = 0$ but $\underline{Hom}(X, X)(1) = \mathcal{AU}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_G is not strongly dualisable unless G = 1. In fact X is only strongly dualisable if it is constant and finite-dimensional.
- ▶ If |C| = p then $Hom(e_C, e_C) = e_{C^2} \oplus (2p-1)e_C \oplus (p-1)\mathbb{1}$ but $D(e_C) \otimes e_C = e_{C^2} \oplus pe_C$.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

- Assume for simplicity that groups in U are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G$, $M \leq H$, $\alpha \colon G/N \xrightarrow{\simeq} H/M$ with $W = \{(g, h) \mid \alpha(gN) = hM\}.$
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_G \otimes e_H = \bigoplus_W e_W$.
- Put DX = Hom(X, 1) so X is strongly dualisable iff DX ⊗ X → Hom(X, X) is iso.
- Suppose that $X \neq 0$ but X(1) = 0. Then $(DX \otimes X)(1) = 0$ but <u>Hom</u> $(X, X)(1) = \mathcal{AU}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_G is not strongly dualisable unless G = 1. In fact X is only strongly dualisable if it is constant and finite-dimensional.
- ▶ If |C| = p then $Hom(e_C, e_C) = e_{C^2} \oplus (2p-1)e_C \oplus (p-1)\mathbb{1}$ but $D(e_C) \otimes e_C = e_{C^2} \oplus pe_C$.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

- Assume for simplicity that groups in U are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G$, $M \leq H$, $\alpha \colon G/N \xrightarrow{\simeq} H/M$ with $W = \{(g, h) \mid \alpha(gN) = hM\}.$
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_G \otimes e_H = \bigoplus_W e_W$.
- Put DX = Hom(X, 1) so X is strongly dualisable iff DX ⊗ X → Hom(X, X) is iso.
- Suppose that $X \neq 0$ but X(1) = 0. Then $(DX \otimes X)(1) = 0$ but $\underline{Hom}(X, X)(1) = \mathcal{AU}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_G is not strongly dualisable unless G = 1. In fact X is only strongly dualisable if it is constant and finite-dimensional.
- ▶ If |C| = p then $Hom(e_C, e_C) = e_{C^2} \oplus (2p-1)e_C \oplus (p-1)\mathbb{1}$ but $D(e_C) \otimes e_C = e_{C^2} \oplus pe_C$.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

- Assume for simplicity that groups in U are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G$, $M \leq H$, $\alpha \colon G/N \xrightarrow{\simeq} H/M$ with $W = \{(g, h) \mid \alpha(gN) = hM\}.$
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_G \otimes e_H = \bigoplus_W e_W$.
- Put DX = Hom(X, 1) so X is strongly dualisable iff DX ⊗ X → Hom(X, X) is iso.
- Suppose that $X \neq 0$ but X(1) = 0. Then $(DX \otimes X)(1) = 0$ but $\underline{Hom}(X, X)(1) = \mathcal{AU}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_G is not strongly dualisable unless G = 1. In fact X is only strongly dualisable if it is constant and finite-dimensional.
- ▶ If |C| = p then $Hom(e_C, e_C) = e_{C^2} \oplus (2p-1)e_C \oplus (p-1)\mathbb{1}$ but $D(e_C) \otimes e_C = e_{C^2} \oplus pe_C$.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

- Assume for simplicity that groups in U are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G$, $M \leq H$, $\alpha \colon G/N \xrightarrow{\simeq} H/M$ with $W = \{(g, h) \mid \alpha(gN) = hM\}.$
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_G \otimes e_H = \bigoplus_W e_W$.
- Put DX = Hom(X, 1) so X is strongly dualisable iff DX ⊗ X → Hom(X, X) is iso.
- Suppose that $X \neq 0$ but X(1) = 0. Then $(DX \otimes X)(1) = 0$ but $\underline{Hom}(X, X)(1) = \mathcal{AU}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_G is not strongly dualisable unless G = 1. In fact X is only strongly dualisable if it is constant and finite-dimensional.
- ▶ If |C| = p then $\underline{\text{Hom}}(e_C, e_C) = e_{C^2} \oplus (2p-1)e_C \oplus (p-1)\mathbb{1}$ but $D(e_C) \otimes e_C = e_{C^2} \oplus pe_C$.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

- Assume for simplicity that groups in U are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G$, $M \leq H$, $\alpha \colon G/N \xrightarrow{\simeq} H/M$ with $W = \{(g, h) \mid \alpha(gN) = hM\}.$
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_G \otimes e_H = \bigoplus_W e_W$.
- Put DX = Hom(X, 1) so X is strongly dualisable iff DX ⊗ X → Hom(X, X) is iso.
- Suppose that $X \neq 0$ but X(1) = 0. Then $(DX \otimes X)(1) = 0$ but $\underline{Hom}(X, X)(1) = \mathcal{AU}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_G is not strongly dualisable unless G = 1. In fact X is only strongly dualisable if it is constant and finite-dimensional.
- ▶ If |C| = p then $\underline{Hom}(e_C, e_C) = e_{C^2} \oplus (2p-1)e_C \oplus (p-1)\mathbb{1}$ but $D(e_C) \otimes e_C = e_{C^2} \oplus pe_C$.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

- Assume for simplicity that groups in U are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G$, $M \leq H$, $\alpha \colon G/N \xrightarrow{\simeq} H/M$ with $W = \{(g, h) \mid \alpha(gN) = hM\}.$
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_G \otimes e_H = \bigoplus_W e_W$.
- Put DX = Hom(X, 1) so X is strongly dualisable iff DX ⊗ X → Hom(X, X) is iso.
- Suppose that $X \neq 0$ but X(1) = 0. Then $(DX \otimes X)(1) = 0$ but $\underline{Hom}(X, X)(1) = \mathcal{AU}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_G is not strongly dualisable unless G = 1. In fact X is only strongly dualisable if it is constant and finite-dimensional.
- ▶ If |C| = p then $\underline{\text{Hom}}(e_C, e_C) = e_{C^2} \oplus (2p-1)e_C \oplus (p-1)\mathbb{1}$ but $D(e_C) \otimes e_C = e_{C^2} \oplus pe_C$.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

 $\theta_N \colon (e_{G/N} \otimes e_G)(K) = \mathbb{Q}[\mathcal{U}(K, G/N) \times \mathcal{U}(K, G)] \to \mathbb{1}(K) = \mathbb{Q}$

by $\theta_N(K \xrightarrow{\alpha} G/N, K \xrightarrow{\beta} G) = 1$ if $\alpha = \pi \circ \beta$, and $\theta_N(\alpha, \beta) = 0$ otherwise. Adjoint to $\theta_N : e_{G/N} \otimes e_G \to 1$ we have $\theta_N^{\#} : e_{G/N} \to \underline{\operatorname{Hom}}(e_G, 1) = D(e_G)$.

▶ Fact: these maps give $\bigoplus_N e_{G/N} \xrightarrow{\simeq} D(e_G)$.

We will show later that 1 is injective. Also any X is flat, and it follows that DX is injective As e_G is a retract of D(e_G), it is also injective. It follows that all projectives are injective.

- ▶ However, $t_G(K) = Map(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
- A virtual homomorphism from G to H is a pair (A, A') where $A' \leq A \leq G \times H$ and A is wide and $A' \cap (1 \times H) = 1$ and $A/A' \in U$.
- $\underline{\text{Hom}}(e_G, e_H)$ has a natural filtration with associated graded $\bigoplus_{(A,A')} e_{A/A'}$. As $e_{A/A'}$ is projective, the filtration splits and $\underline{\text{Hom}}(e_G, e_H)$ is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

More about duals and internal homs

For $N \leq G$ we define

 $\theta_N \colon (e_{G/N} \otimes e_G)(K) = \mathbb{Q}[\mathcal{U}(K, G/N) \times \mathcal{U}(K, G)] \to \mathbb{1}(K) = \mathbb{Q}$

by $\theta_N(K \xrightarrow{\alpha} G/N, K \xrightarrow{\beta} G) = 1$ if $\alpha = \pi \circ \beta$, and $\theta_N(\alpha, \beta) = 0$ otherwise. Adjoint to $\theta_N : e_{G/N} \otimes e_G \to 1$ we have $\theta_N^{\#} : e_{G/N} \to \operatorname{Hom}(e_G, 1) = D(e_G)$.

▶ Fact: these maps give $\bigoplus_N e_{G/N} \xrightarrow{\simeq} D(e_G)$.

We will show later that 1 is injective. Also any X is flat, and it follows that DX is injective. As e_G is a retract of D(e_G), it is also injective. It follows that all projectives are injective.

- ▶ However, $t_G(K) = Map(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
- A virtual homomorphism from G to H is a pair (A, A') where $A' \leq A \leq G \times H$ and A is wide and $A' \cap (1 \times H) = 1$ and $A/A' \in U$.
- $\underline{\text{Hom}}(e_G, e_H)$ has a natural filtration with associated graded $\bigoplus_{(A,A')} e_{A/A'}$. As $e_{A/A'}$ is projective, the filtration splits and $\underline{\text{Hom}}(e_G, e_H)$ is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

More about duals and internal homs

► For N ≤ G we define

 $\theta_N \colon (e_{G/N} \otimes e_G)(K) = \mathbb{Q}[\mathcal{U}(K, G/N) \times \mathcal{U}(K, G)] \to \mathbb{1}(K) = \mathbb{Q}$

by $\theta_N(K \xrightarrow{\alpha} G/N, K \xrightarrow{\beta} G) = 1$ if $\alpha = \pi \circ \beta$, and $\theta_N(\alpha, \beta) = 0$ otherwise. Adjoint to $\theta_N : e_{G/N} \otimes e_G \to 1$ we have $\theta_N^{\#} : e_{G/N} \to \underline{Hom}(e_G, 1) = D(e_G)$.

▶ Fact: these maps give $\bigoplus_N e_{G/N} \xrightarrow{\simeq} D(e_G)$.

We will show later that 1 is injective. Also any X is flat, and it follows that DX is injective As e_G is a retract of D(e_G), it is also injective. It follows that all projectives are injective.

- A virtual homomorphism from G to H is a pair (A, A') where $A' \leq A \leq G \times H$ and A is wide and $A' \cap (1 \times H) = 1$ and $A/A' \in U$.
- $\underline{\text{Hom}}(e_G, e_H)$ has a natural filtration with associated graded $\bigoplus_{(A,A')} e_{A/A'}$. As $e_{A/A'}$ is projective, the filtration splits and $\underline{\text{Hom}}(e_G, e_H)$ is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

More about duals and internal homs

For $N \leq G$ we define

 $\theta_N \colon (e_{G/N} \otimes e_G)(K) = \mathbb{Q}[\mathcal{U}(K, G/N) \times \mathcal{U}(K, G)] \to \mathbb{1}(K) = \mathbb{Q}$

by $\theta_N(K \xrightarrow{\alpha} G/N, K \xrightarrow{\beta} G) = 1$ if $\alpha = \pi \circ \beta$, and $\theta_N(\alpha, \beta) = 0$ otherwise. Adjoint to $\theta_N : e_{G/N} \otimes e_G \to 1$ we have $\theta_N^{\#} : e_{G/N} \to \underline{Hom}(e_G, 1) = D(e_G)$.

▶ Fact: these maps give $\bigoplus_N e_{G/N} \xrightarrow{\simeq} D(e_G)$.

We will show later that 1 is injective. Also any X is flat, and it follows that DX is injective As e_G is a retract of D(e_G), it is also injective. It follows that all projectives are injective.

- A virtual homomorphism from G to H is a pair (A, A') where $A' \leq A \leq G \times H$ and A is wide and $A' \cap (1 \times H) = 1$ and $A/A' \in U$.
- $\underline{\text{Hom}}(e_G, e_H)$ has a natural filtration with associated graded $\bigoplus_{(A,A')} e_{A/A'}$. As $e_{A/A'}$ is projective, the filtration splits and $\underline{\text{Hom}}(e_G, e_H)$ is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

 $\theta_N \colon (e_{G/N} \otimes e_G)(K) = \mathbb{Q}[\mathcal{U}(K, G/N) \times \mathcal{U}(K, G)] \to \mathbb{1}(K) = \mathbb{Q}$

by $\theta_N(K \xrightarrow{\alpha} G/N, K \xrightarrow{\beta} G) = 1$ if $\alpha = \pi \circ \beta$, and $\theta_N(\alpha, \beta) = 0$ otherwise. Adjoint to $\theta_N : e_{G/N} \otimes e_G \to 1$ we have $\theta_N^{\#} : e_{G/N} \to \underline{\operatorname{Hom}}(e_G, 1) = D(e_G)$.

▶ Fact: these maps give $\bigoplus_N e_{G/N} \xrightarrow{\simeq} D(e_G)$.

We will show later that 1 is injective. Also any X is flat, and it follows that DX is injective As e_G is a retract of D(e_G), it is also injective. It follows that all projectives are injective.

- A virtual homomorphism from G to H is a pair (A, A') where $A' \leq A \leq G \times H$ and A is wide and $A' \cap (1 \times H) = 1$ and $A/A' \in U$.
- $\underline{\text{Hom}}(e_G, e_H)$ has a natural filtration with associated graded $\bigoplus_{(A,A')} e_{A/A'}$. As $e_{A/A'}$ is projective, the filtration splits and $\underline{\text{Hom}}(e_G, e_H)$ is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

 $\theta_N \colon (e_{G/N} \otimes e_G)(K) = \mathbb{Q}[\mathcal{U}(K, G/N) \times \mathcal{U}(K, G)] \to \mathbb{1}(K) = \mathbb{Q}$

by $\theta_N(K \xrightarrow{\alpha} G/N, K \xrightarrow{\beta} G) = 1$ if $\alpha = \pi \circ \beta$, and $\theta_N(\alpha, \beta) = 0$ otherwise. Adjoint to $\theta_N : e_{G/N} \otimes e_G \to 1$ we have $\theta_N^{\#} : e_{G/N} \to \underline{\operatorname{Hom}}(e_G, 1) = D(e_G)$.

► Fact: these maps give
$$\bigoplus_N e_{G/N} \xrightarrow{\simeq} D(e_G)$$
.

- We will show later that 1 is injective. Also any X is flat, and it follows that DX is injective. As e_G is a retract of D(e_G), it is also injective. It follows that all projectives are injective.
- ▶ However, $t_G(K) = Map(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
- A virtual homomorphism from G to H is a pair (A, A') where $A' \leq A \leq G \times H$ and A is wide and $A' \cap (1 \times H) = 1$ and $A/A' \in U$.
- $\underline{\text{Hom}}(e_G, e_H)$ has a natural filtration with associated graded $\bigoplus_{(A,A')} e_{A/A'}$. As $e_{A/A'}$ is projective, the filtration splits and $\underline{\text{Hom}}(e_G, e_H)$ is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

 $\theta_N \colon (e_{G/N} \otimes e_G)(K) = \mathbb{Q}[\mathcal{U}(K, G/N) \times \mathcal{U}(K, G)] \to \mathbb{1}(K) = \mathbb{Q}$

by $\theta_N(K \xrightarrow{\alpha} G/N, K \xrightarrow{\beta} G) = 1$ if $\alpha = \pi \circ \beta$, and $\theta_N(\alpha, \beta) = 0$ otherwise. Adjoint to $\theta_N : e_{G/N} \otimes e_G \to 1$ we have $\theta_N^{\#} : e_{G/N} \to \underline{Hom}(e_G, 1) = D(e_G)$.

- ▶ Fact: these maps give $\bigoplus_N e_{G/N} \xrightarrow{\simeq} D(e_G)$.
- We will show later that 1 is injective. Also any X is flat, and it follows that DX is injective. As e_G is a retract of D(e_G), it is also injective.

- A virtual homomorphism from G to H is a pair (A, A') where $A' \leq A \leq G \times H$ and A is wide and $A' \cap (1 \times H) = 1$ and $A/A' \in U$.
- ▶ <u>Hom</u> (e_G, e_H) has a natural filtration with associated graded $\bigoplus_{(A,A')} e_{A/A'}$. As $e_{A/A'}$ is projective, the filtration splits and <u>Hom</u> (e_G, e_H) is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

 $\theta_N \colon (e_{G/N} \otimes e_G)(K) = \mathbb{Q}[\mathcal{U}(K, G/N) \times \mathcal{U}(K, G)] \to \mathbb{1}(K) = \mathbb{Q}$

by $\theta_N(K \xrightarrow{\alpha} G/N, K \xrightarrow{\beta} G) = 1$ if $\alpha = \pi \circ \beta$, and $\theta_N(\alpha, \beta) = 0$ otherwise. Adjoint to $\theta_N : e_{G/N} \otimes e_G \to 1$ we have $\theta_N^{\#} : e_{G/N} \to \underline{Hom}(e_G, 1) = D(e_G)$.

► Fact: these maps give
$$\bigoplus_N e_{G/N} \xrightarrow{\simeq} D(e_G)$$
.

We will show later that 1 is injective.
 Also any X is flat, and it follows that DX is injective.
 As e_G is a retract of D(e_G), it is also injective.
 It follows that all projectives are injective.

- A virtual homomorphism from G to H is a pair (A, A') where $A' \leq A \leq G \times H$ and A is wide and $A' \cap (1 \times H) = 1$ and $A/A' \in U$.
- $\underline{\text{Hom}}(e_G, e_H)$ has a natural filtration with associated graded $\bigoplus_{(A,A')} e_{A/A'}$. As $e_{A/A'}$ is projective, the filtration splits and $\underline{\text{Hom}}(e_G, e_H)$ is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

 $\theta_N \colon (e_{G/N} \otimes e_G)(K) = \mathbb{Q}[\mathcal{U}(K, G/N) \times \mathcal{U}(K, G)] \to \mathbb{1}(K) = \mathbb{Q}$

by $\theta_N(K \xrightarrow{\alpha} G/N, K \xrightarrow{\beta} G) = 1$ if $\alpha = \pi \circ \beta$, and $\theta_N(\alpha, \beta) = 0$ otherwise. Adjoint to $\theta_N : e_{G/N} \otimes e_G \to 1$ we have $\theta_N^{\#} : e_{G/N} \to \underline{Hom}(e_G, 1) = D(e_G)$.

- ▶ Fact: these maps give $\bigoplus_N e_{G/N} \xrightarrow{\simeq} D(e_G)$.
- We will show later that 1 is injective.
 Also any X is flat, and it follows that DX is injective.
 As e_G is a retract of D(e_G), it is also injective.
 It follows that all projectives are injective.
- ▶ However, $t_G(K) = Map(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
- A virtual homomorphism from G to H is a pair (A, A') where $A' \leq A \leq G \times H$ and A is wide and $A' \cap (1 \times H) = 1$ and $A/A' \in U$.
- $\underline{\text{Hom}}(e_G, e_H)$ has a natural filtration with associated graded $\bigoplus_{(A,A')} e_{A/A'}$. As $e_{A/A'}$ is projective, the filtration splits and $\underline{\text{Hom}}(e_G, e_H)$ is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

 $\theta_N \colon (e_{G/N} \otimes e_G)(K) = \mathbb{Q}[\mathcal{U}(K, G/N) \times \mathcal{U}(K, G)] \to \mathbb{1}(K) = \mathbb{Q}$

by $\theta_N(K \xrightarrow{\alpha} G/N, K \xrightarrow{\beta} G) = 1$ if $\alpha = \pi \circ \beta$, and $\theta_N(\alpha, \beta) = 0$ otherwise. Adjoint to $\theta_N : e_{G/N} \otimes e_G \to 1$ we have $\theta_N^{\#} : e_{G/N} \to \underline{Hom}(e_G, 1) = D(e_G)$.

- ▶ Fact: these maps give $\bigoplus_N e_{G/N} \xrightarrow{\simeq} D(e_G)$.
- We will show later that 1 is injective.
 Also any X is flat, and it follows that DX is injective.
 As e_G is a retract of D(e_G), it is also injective.
 It follows that all projectives are injective.
- ▶ However, $t_G(K) = Map(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
- A virtual homomorphism from G to H is a pair (A, A') where $A' \leq A \leq G \times H$ and A is wide and $A' \cap (1 \times H) = 1$ and $A/A' \in U$.
- ▶ <u>Hom</u> (e_G, e_H) has a natural filtration with associated graded $\bigoplus_{(A,A')} e_{A/A'}$. As $e_{A/A'}$ is projective, the filtration splits and <u>Hom</u> (e_G, e_H) is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

 $\theta_N \colon (e_{G/N} \otimes e_G)(K) = \mathbb{Q}[\mathcal{U}(K, G/N) \times \mathcal{U}(K, G)] \to \mathbb{1}(K) = \mathbb{Q}$

by $\theta_N(K \xrightarrow{\alpha} G/N, K \xrightarrow{\beta} G) = 1$ if $\alpha = \pi \circ \beta$, and $\theta_N(\alpha, \beta) = 0$ otherwise. Adjoint to $\theta_N : e_{G/N} \otimes e_G \to 1$ we have $\theta_N^{\#} : e_{G/N} \to \underline{Hom}(e_G, 1) = D(e_G)$.

- ▶ Fact: these maps give $\bigoplus_N e_{G/N} \xrightarrow{\simeq} D(e_G)$.
- We will show later that 1 is injective.
 Also any X is flat, and it follows that DX is injective.
 As e_G is a retract of D(e_G), it is also injective.
 It follows that all projectives are injective.
- ▶ However, $t_G(K) = Map(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
- A virtual homomorphism from G to H is a pair (A, A') where $A' \leq A \leq G \times H$ and A is wide and $A' \cap (1 \times H) = 1$ and $A/A' \in U$.
- ► <u>Hom</u>(e_G, e_H) has a natural filtration with associated graded ⊕_(A,A') e_{A/A'}. As e_{A/A'} is projective, the filtration splits and <u>Hom</u>(e_G, e_H) is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.
For $N \leq G$ we define

 $\theta_N \colon (e_{G/N} \otimes e_G)(K) = \mathbb{Q}[\mathcal{U}(K, G/N) \times \mathcal{U}(K, G)] \to \mathbb{1}(K) = \mathbb{Q}$

by $\theta_N(K \xrightarrow{\alpha} G/N, K \xrightarrow{\beta} G) = 1$ if $\alpha = \pi \circ \beta$, and $\theta_N(\alpha, \beta) = 0$ otherwise. Adjoint to $\theta_N : e_{G/N} \otimes e_G \to 1$ we have $\theta_N^{\#} : e_{G/N} \to \underline{Hom}(e_G, 1) = D(e_G)$.

- ▶ Fact: these maps give $\bigoplus_N e_{G/N} \xrightarrow{\simeq} D(e_G)$.
- We will show later that 1 is injective.
 Also any X is flat, and it follows that DX is injective.
 As e_G is a retract of D(e_G), it is also injective.
 It follows that all projectives are injective.
- ▶ However, $t_G(K) = Map(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
- A virtual homomorphism from G to H is a pair (A, A') where $A' \leq A \leq G \times H$ and A is wide and $A' \cap (1 \times H) = 1$ and $A/A' \in U$.
- ▶ <u>Hom</u> (e_G, e_H) has a natural filtration with associated graded $\bigoplus_{(A,A')} e_{A/A'}$. As $e_{A/A'}$ is projective, the filtration splits and <u>Hom</u> (e_G, e_H) is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

For $N \leq G$ we define

 $\theta_N \colon (e_{G/N} \otimes e_G)(K) = \mathbb{Q}[\mathcal{U}(K, G/N) \times \mathcal{U}(K, G)] \to \mathbb{1}(K) = \mathbb{Q}$

by $\theta_N(K \xrightarrow{\alpha} G/N, K \xrightarrow{\beta} G) = 1$ if $\alpha = \pi \circ \beta$, and $\theta_N(\alpha, \beta) = 0$ otherwise. Adjoint to $\theta_N : e_{G/N} \otimes e_G \to 1$ we have $\theta_N^{\#} : e_{G/N} \to \underline{Hom}(e_G, 1) = D(e_G)$.

- ▶ Fact: these maps give $\bigoplus_N e_{G/N} \xrightarrow{\simeq} D(e_G)$.
- We will show later that 1 is injective.
 Also any X is flat, and it follows that DX is injective.
 As e_G is a retract of D(e_G), it is also injective.
 It follows that all projectives are injective.
- ▶ However, $t_G(K) = Map(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
- A virtual homomorphism from G to H is a pair (A, A') where $A' \leq A \leq G \times H$ and A is wide and $A' \cap (1 \times H) = 1$ and $A/A' \in U$.
- ▶ <u>Hom</u> (e_G, e_H) has a natural filtration with associated graded $\bigoplus_{(A,A')} e_{A/A'}$. As $e_{A/A'}$ is projective, the filtration splits and <u>Hom</u> (e_G, e_H) is projective. We do not know whether the filtration splits naturally.

For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly. For $N \leq G$ we define

 $\theta_N \colon (e_{G/N} \otimes e_G)(K) = \mathbb{Q}[\mathcal{U}(K, G/N) \times \mathcal{U}(K, G)] \to \mathbb{1}(K) = \mathbb{Q}$

by $\theta_N(K \xrightarrow{\alpha} G/N, K \xrightarrow{\beta} G) = 1$ if $\alpha = \pi \circ \beta$, and $\theta_N(\alpha, \beta) = 0$ otherwise. Adjoint to $\theta_N : e_{G/N} \otimes e_G \to 1$ we have $\theta_N^{\#} : e_{G/N} \to \underline{Hom}(e_G, 1) = D(e_G)$.

- ▶ Fact: these maps give $\bigoplus_N e_{G/N} \xrightarrow{\simeq} D(e_G)$.
- We will show later that 1 is injective.
 Also any X is flat, and it follows that DX is injective.
 As e_G is a retract of D(e_G), it is also injective.
 It follows that all projectives are injective.
- ▶ However, $t_G(K) = Map(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
- A virtual homomorphism from G to H is a pair (A, A') where $A' \leq A \leq G \times H$ and A is wide and $A' \cap (1 \times H) = 1$ and $A/A' \in U$.
- ▶ <u>Hom</u> (e_G, e_H) has a natural filtration with associated graded $\bigoplus_{(A,A')} e_{A/A'}$. As $e_{A/A'}$ is projective, the filtration splits and <u>Hom</u> (e_G, e_H) is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

- Let F_{nm} be the quotient of the free group on n generators by the intersection of all normal subgroups N with quotient in $\mathcal{U}_{\leq m}$. Under mild conditions on \mathcal{U} we have $F_{nm} \in \mathcal{U}$.
- Given morphisms F_{nm} ^φ→ H ^α← G in U with |G| ≤ min(n, m), we can choose ψ: F_{nm} → G in U with αψ = φ.
 (Some care is needed to ensure that ψ is surjective.)
- ▶ We can choose a tower $G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \cdots$ in \mathcal{U} such that G_n gets rapidly larger and freer as $n \rightarrow \infty$.
- We then find that

$$\lim_{G \in \mathcal{U}^{\mathrm{op}}} X(G) = \lim_{n \to \infty} X(G_n)_{\mathrm{Out}(G_n)},$$

- $\mathcal{AU}(X, 1)$ is hom from the above colimit to \mathbb{Q} ; so 1 is injective.
- As mentioned previously: it follows that D(e_G) is injective, then that e_G is injective, then that all projectives are injective.
- Using this: any object of finite projective dimension is projective.

- ▶ Let F_{nm} be the quotient of the free group on *n* generators by the intersection of all normal subgroups *N* with quotient in $\mathcal{U}_{\leq m}$. Under mild conditions on \mathcal{U} we have $F_{nm} \in \mathcal{U}$.
- Given morphisms F_{nm} ^φ→ H ^α← G in U with |G| ≤ min(n, m), we can choose ψ: F_{nm} → G in U with αψ = φ.
 (Some care is needed to ensure that ψ is surjective.)
- ▶ We can choose a tower $G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \cdots$ in \mathcal{U} such that G_n gets rapidly larger and freer as $n \rightarrow \infty$.
- We then find that

$$\lim_{G \in \mathcal{U}^{\mathrm{op}}} X(G) = \lim_{n \to \infty} X(G_n)_{\mathrm{Out}(G_n)},$$

- $\mathcal{AU}(X, 1)$ is hom from the above colimit to \mathbb{Q} ; so 1 is injective.
- As mentioned previously: it follows that D(e_G) is injective, then that e_G is injective, then that all projectives are injective.
- Using this: any object of finite projective dimension is projective.

- ▶ Let F_{nm} be the quotient of the free group on *n* generators by the intersection of all normal subgroups *N* with quotient in $U_{\leq m}$. Under mild conditions on U we have $F_{nm} \in U$.
- Given morphisms F_{nm} ^φ→ H ^α← G in U with |G| ≤ min(n, m), we can choose ψ: F_{nm} → G in U with αψ = φ.
 (Some care is needed to ensure that ψ is surjective.)
- ▶ We can choose a tower $G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \cdots$ in \mathcal{U} such that G_n gets rapidly larger and freer as $n \rightarrow \infty$.
- We then find that

$$\lim_{G \in \mathcal{U}^{\mathrm{op}}} X(G) = \lim_{n \to \infty} X(G_n)_{\mathrm{Out}(G_n)},$$

- $\mathcal{AU}(X, 1)$ is hom from the above colimit to \mathbb{Q} ; so 1 is injective.
- As mentioned previously: it follows that D(e_G) is injective, then that e_G is injective, then that all projectives are injective.
- Using this: any object of finite projective dimension is projective.

- ▶ Let F_{nm} be the quotient of the free group on *n* generators by the intersection of all normal subgroups *N* with quotient in $U_{\leq m}$. Under mild conditions on U we have $F_{nm} \in U$.
- ► Given morphisms $F_{nm} \xrightarrow{\phi} H \xleftarrow{\alpha} G$ in \mathcal{U} with $|G| \leq \min(n, m)$, we can choose $\psi: F_{nm} \to G$ in \mathcal{U} with $\alpha \psi = \phi$. (Some care is needed to ensure that ψ is surjective.)
- ▶ We can choose a tower $G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \cdots$ in \mathcal{U} such that G_n gets rapidly larger and freer as $n \rightarrow \infty$.
- We then find that

$$\lim_{G \in \mathcal{U}^{\mathrm{op}}} X(G) = \lim_{n \to \infty} X(G_n)_{\mathrm{Out}(G_n)},$$

- $\mathcal{AU}(X, 1)$ is hom from the above colimit to \mathbb{Q} ; so 1 is injective.
- As mentioned previously: it follows that D(e_G) is injective, then that e_G is injective, then that all projectives are injective.
- Using this: any object of finite projective dimension is projective.

- ▶ Let F_{nm} be the quotient of the free group on *n* generators by the intersection of all normal subgroups *N* with quotient in $U_{\leq m}$. Under mild conditions on U we have $F_{nm} \in U$.
- Given morphisms F_{nm} → H ← G in U with |G| ≤ min(n, m), we can choose ψ: F_{nm} → G in U with αψ = φ.
 (Some care is needed to ensure that ψ is surjective.)
- ▶ We can choose a tower $G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \cdots$ in \mathcal{U} such that G_n gets rapidly larger and freer as $n \rightarrow \infty$.
- We then find that

$$\lim_{G \in \mathcal{U}^{\mathrm{op}}} X(G) = \lim_{n \to \infty} X(G_n)_{\mathrm{Out}(G_n)},$$

- $\mathcal{AU}(X, 1)$ is hom from the above colimit to \mathbb{Q} ; so 1 is injective.
- As mentioned previously: it follows that D(e_G) is injective, then that e_G is injective, then that all projectives are injective.
- Using this: any object of finite projective dimension is projective.

- ▶ Let F_{nm} be the quotient of the free group on *n* generators by the intersection of all normal subgroups *N* with quotient in $U_{\leq m}$. Under mild conditions on U we have $F_{nm} \in U$.
- Given morphisms F_{nm} → H ← G in U with |G| ≤ min(n, m), we can choose ψ: F_{nm} → G in U with αψ = φ.
 (Some care is needed to ensure that ψ is surjective.)
- ▶ We can choose a tower $G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \cdots$ in \mathcal{U} such that G_n gets rapidly larger and freer as $n \rightarrow \infty$.

We then find that

$$\lim_{G \in \mathcal{U}^{\mathrm{op}}} X(G) = \lim_{n \to \infty} X(G_n)_{\mathrm{Out}(G_n)},$$

- $\mathcal{AU}(X, 1)$ is hom from the above colimit to \mathbb{Q} ; so 1 is injective.
- As mentioned previously: it follows that D(e_G) is injective, then that e_G is injective, then that all projectives are injective.
- Using this: any object of finite projective dimension is projective.

- ▶ Let F_{nm} be the quotient of the free group on *n* generators by the intersection of all normal subgroups *N* with quotient in $U_{\leq m}$. Under mild conditions on U we have $F_{nm} \in U$.
- Given morphisms F_{nm} → H ← G in U with |G| ≤ min(n, m), we can choose ψ: F_{nm} → G in U with αψ = φ.
 (Some care is needed to ensure that ψ is surjective.)
- ▶ We can choose a tower $G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \cdots$ in \mathcal{U} such that G_n gets rapidly larger and freer as $n \rightarrow \infty$.
- We then find that

$$\lim_{G \in \mathcal{U}^{\mathrm{op}}} X(G) = \lim_{n \to \infty} X(G_n)_{\mathrm{Out}(G_n)},$$

- $\mathcal{AU}(X, 1)$ is hom from the above colimit to \mathbb{Q} ; so 1 is injective.
- As mentioned previously: it follows that D(e_G) is injective, then that e_G is injective, then that all projectives are injective.
- Using this: any object of finite projective dimension is projective.

- ▶ Let F_{nm} be the quotient of the free group on *n* generators by the intersection of all normal subgroups *N* with quotient in $U_{\leq m}$. Under mild conditions on U we have $F_{nm} \in U$.
- Given morphisms F_{nm} → H ← G in U with |G| ≤ min(n, m), we can choose ψ: F_{nm} → G in U with αψ = φ.
 (Some care is needed to ensure that ψ is surjective.)
- ▶ We can choose a tower $G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \cdots$ in \mathcal{U} such that G_n gets rapidly larger and freer as $n \rightarrow \infty$.
- We then find that

$$\lim_{G \in \mathcal{U}^{\mathrm{op}}} X(G) = \lim_{n \to \infty} X(G_n)_{\mathrm{Out}(G_n)},$$

- $\mathcal{AU}(X, 1)$ is hom from the above colimit to \mathbb{Q} ; so 1 is injective.
- As mentioned previously: it follows that D(e_G) is injective, then that e_G is injective, then that all projectives are injective.
- Using this: any object of finite projective dimension is projective.

- ▶ Let F_{nm} be the quotient of the free group on *n* generators by the intersection of all normal subgroups *N* with quotient in $U_{\leq m}$. Under mild conditions on U we have $F_{nm} \in U$.
- Given morphisms F_{nm} → H ← G in U with |G| ≤ min(n, m), we can choose ψ: F_{nm} → G in U with αψ = φ.
 (Some care is needed to ensure that ψ is surjective.)
- ▶ We can choose a tower $G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \cdots$ in \mathcal{U} such that G_n gets rapidly larger and freer as $n \rightarrow \infty$.
- We then find that

$$\lim_{G \in \mathcal{U}^{\mathrm{op}}} X(G) = \lim_{n \to \infty} X(G_n)_{\mathrm{Out}(G_n)},$$

- $\mathcal{AU}(X, 1)$ is hom from the above colimit to \mathbb{Q} ; so 1 is injective.
- As mentioned previously: it follows that D(e_G) is injective, then that e_G is injective, then that all projectives are injective.
- Using this: any object of finite projective dimension is projective.

- ▶ Let F_{nm} be the quotient of the free group on *n* generators by the intersection of all normal subgroups *N* with quotient in $U_{\leq m}$. Under mild conditions on U we have $F_{nm} \in U$.
- Given morphisms F_{nm} → H ← G in U with |G| ≤ min(n, m), we can choose ψ: F_{nm} → G in U with αψ = φ.
 (Some care is needed to ensure that ψ is surjective.)
- ▶ We can choose a tower $G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \cdots$ in \mathcal{U} such that G_n gets rapidly larger and freer as $n \rightarrow \infty$.
- We then find that

$$\lim_{G \in \mathcal{U}^{\mathrm{op}}} X(G) = \lim_{n \to \infty} X(G_n)_{\mathrm{Out}(G_n)},$$

- $\mathcal{AU}(X, 1)$ is hom from the above colimit to \mathbb{Q} ; so 1 is injective.
- As mentioned previously: it follows that D(e_G) is injective, then that e_G is injective, then that all projectives are injective.
- Using this: any object of finite projective dimension is projective.

- If n is large, the proportion of n-tuples in Gⁿ that generate G is close to 1 (theorem of Lynne Butler, 1994).
- Using this plus nearly free groups as on the previous slide: if X is a nontrivial summand of e_G, then an appropriate lim sup of dim(X(T))/|G|^{δ(T)} is nonzero and finite, where δ(T) is the minimal size of a generating set.
- We can define Serre subcategories and then quotient categories using rates of growth. We have not yet exploited this fully.
- This approach show that monomorphisms between projective objects split, even for some U where projectives are not injective.

- If n is large, the proportion of n-tuples in Gⁿ that generate G is close to 1 (theorem of Lynne Butler, 1994).
- Using this plus nearly free groups as on the previous slide: if X is a nontrivial summand of e_G , then an appropriate lim sup of $\dim(X(T))/|G|^{\delta(T)}$ is nonzero and finite, where $\delta(T)$ is the minimal size of a generating set.
- We can define Serre subcategories and then quotient categories using rates of growth. We have not yet exploited this fully.
- This approach show that monomorphisms between projective objects split, even for some U where projectives are not injective.

- If n is large, the proportion of n-tuples in Gⁿ that generate G is close to 1 (theorem of Lynne Butler, 1994).
- Using this plus nearly free groups as on the previous slide: if X is a nontrivial summand of e_G, then an appropriate lim sup of dim(X(T))/|G|^{δ(T)} is nonzero and finite, where δ(T) is the minimal size of a generating set.
- We can define Serre subcategories and then quotient categories using rates of growth. We have not yet exploited this fully.
- This approach show that monomorphisms between projective objects split, even for some U where projectives are not injective.

- If n is large, the proportion of n-tuples in Gⁿ that generate G is close to 1 (theorem of Lynne Butler, 1994).
- Using this plus nearly free groups as on the previous slide: if X is a nontrivial summand of e_G, then an appropriate lim sup of dim(X(T))/|G|^{δ(T)} is nonzero and finite, where δ(T) is the minimal size of a generating set.
- We can define Serre subcategories and then quotient categories using rates of growth. We have not yet exploited this fully.
- This approach show that monomorphisms between projective objects split, even for some U where projectives are not injective.

- If n is large, the proportion of n-tuples in Gⁿ that generate G is close to 1 (theorem of Lynne Butler, 1994).
- Using this plus nearly free groups as on the previous slide: if X is a nontrivial summand of e_G, then an appropriate lim sup of dim(X(T))/|G|^{δ(T)} is nonzero and finite, where δ(T) is the minimal size of a generating set.
- We can define Serre subcategories and then quotient categories using rates of growth. We have not yet exploited this fully.
- This approach show that monomorphisms between projective objects split, even for some U where projectives are not injective.

$$e_{G,V}(K) = V \otimes_{\mathbb{Q}[\operatorname{Out}(G)]} e_G(K)$$

- We say that X is pure of order k if it is isomorphic to a sum of indecomposable projectives of order k.
- ▶ The subcategory of such objects is equivalent to the semisimple category $\mathcal{AU}_k = [\mathcal{U}_k^{op}, \text{Vect}].$
- ▶ If X is pure of order k, and Y is pure of order m > k, then AU(X, Y) = 0.
- ▶ Let $(L_{\leq m}X)(G)$ be the sum of all $\alpha^*(X(H)) \leq X(G)$ for $H \in \mathcal{U}_{\leq m}$ and $\alpha \in \mathcal{U}(G, H)$.
- $\blacktriangleright \text{ Put } L_m X = L_{\leq m} X / L_{< m} X.$
- ▶ If P is projective, then $P \simeq \bigoplus_k P_k \simeq \prod_k P_k$, where P_k is pure of order k. It follows that $L_{\leq m}X = \bigoplus_{k \leq m} P_k$ and $L_mX \simeq P_m$ so the filtration splits.

$$e_{G,V}(K) = V \otimes_{\mathbb{Q}[\operatorname{Out}(G)]} e_G(K)$$

- We say that X is pure of order k if it is isomorphic to a sum of indecomposable projectives of order k.
- The subcategory of such objects is equivalent to the semisimple category $\mathcal{AU}_k = [\mathcal{U}_k^{op}, \text{Vect}].$
- ▶ If X is pure of order k, and Y is pure of order m > k, then AU(X, Y) = 0.
- ▶ Let $(L_{\leq m}X)(G)$ be the sum of all $\alpha^*(X(H)) \leq X(G)$ for $H \in \mathcal{U}_{\leq m}$ and $\alpha \in \mathcal{U}(G, H)$.
- $\blacktriangleright \text{ Put } L_m X = L_{\leq m} X / L_{< m} X.$
- ▶ If P is projective, then $P \simeq \bigoplus_k P_k \simeq \prod_k P_k$, where P_k is pure of order k. It follows that $L_{\leq m}X = \bigoplus_{k \leq m} P_k$ and $L_mX \simeq P_m$ so the filtration splits.

$$e_{G,V}(K) = V \otimes_{\mathbb{Q}[\operatorname{Out}(G)]} e_G(K)$$

- We say that X is pure of order k if it is isomorphic to a sum of indecomposable projectives of order k.
- The subcategory of such objects is equivalent to the semisimple category $\mathcal{AU}_k = [\mathcal{U}_k^{op}, \text{Vect}].$
- ▶ If X is pure of order k, and Y is pure of order m > k, then AU(X, Y) = 0.
- ▶ Let $(L_{\leq m}X)(G)$ be the sum of all $\alpha^*(X(H)) \leq X(G)$ for $H \in U_{\leq m}$ and $\alpha \in U(G, H)$.
- $\blacktriangleright \text{ Put } L_m X = L_{\leq m} X / L_{< m} X.$
- ▶ If P is projective, then $P \simeq \bigoplus_k P_k \simeq \prod_k P_k$, where P_k is pure of order k. It follows that $L_{\leq m}X = \bigoplus_{k \leq m} P_k$ and $L_mX \simeq P_m$ so the filtration splits.

$$e_{G,V}(K) = V \otimes_{\mathbb{Q}[\operatorname{Out}(G)]} e_G(K)$$

- We say that X is pure of order k if it is isomorphic to a sum of indecomposable projectives of order k.
- ▶ The subcategory of such objects is equivalent to the semisimple category $\mathcal{AU}_k = [\mathcal{U}_k^{op}, \text{Vect}].$
- ▶ If X is pure of order k, and Y is pure of order m > k, then AU(X, Y) = 0.
- Let $(L_{\leq m}X)(G)$ be the sum of all $\alpha^*(X(H)) \leq X(G)$ for $H \in \mathcal{U}_{\leq m}$ and $\alpha \in \mathcal{U}(G, H)$.
- $\blacktriangleright \text{ Put } L_m X = L_{\leq m} X / L_{< m} X.$
- ▶ If P is projective, then $P \simeq \bigoplus_k P_k \simeq \prod_k P_k$, where P_k is pure of order k. It follows that $L_{\leq m}X = \bigoplus_{k \leq m} P_k$ and $L_mX \simeq P_m$ so the filtration splits.

$$e_{G,V}(K) = V \otimes_{\mathbb{Q}[\operatorname{Out}(G)]} e_G(K)$$

- We say that X is pure of order k if it is isomorphic to a sum of indecomposable projectives of order k.
- The subcategory of such objects is equivalent to the semisimple category $\mathcal{AU}_k = [\mathcal{U}_k^{op}, \text{Vect}].$
- ▶ If X is pure of order k, and Y is pure of order m > k, then AU(X, Y) = 0.
- ▶ Let $(L_{\leq m}X)(G)$ be the sum of all $\alpha^*(X(H)) \leq X(G)$ for $H \in U_{\leq m}$ and $\alpha \in U(G, H)$.
- ▶ Put $L_m X = L_{\leq m} X / L_{< m} X$.
- ▶ If P is projective, then $P \simeq \bigoplus_k P_k \simeq \prod_k P_k$, where P_k is pure of order k. It follows that $L_{\leq m}X = \bigoplus_{k \leq m} P_k$ and $L_mX \simeq P_m$ so the filtration splits.

$$e_{G,V}(K) = V \otimes_{\mathbb{Q}[\operatorname{Out}(G)]} e_G(K)$$

- We say that X is pure of order k if it is isomorphic to a sum of indecomposable projectives of order k.
- The subcategory of such objects is equivalent to the semisimple category $\mathcal{AU}_k = [\mathcal{U}_k^{op}, \text{Vect}].$
- ▶ If X is pure of order k, and Y is pure of order m > k, then AU(X, Y) = 0.
- ▶ Let $(L_{\leq m}X)(G)$ be the sum of all $\alpha^*(X(H)) \leq X(G)$ for $H \in U_{\leq m}$ and $\alpha \in U(G, H)$.
- ▶ Put $L_m X = L_{\leq m} X / L_{< m} X$.
- ▶ If P is projective, then $P \simeq \bigoplus_k P_k \simeq \prod_k P_k$, where P_k is pure of order k. It follows that $L_{\leq m}X = \bigoplus_{k \leq m} P_k$ and $L_mX \simeq P_m$ so the filtration splits.

$$e_{G,V}(K) = V \otimes_{\mathbb{Q}[\operatorname{Out}(G)]} e_G(K)$$

- We say that X is pure of order k if it is isomorphic to a sum of indecomposable projectives of order k.
- The subcategory of such objects is equivalent to the semisimple category $\mathcal{AU}_k = [\mathcal{U}_k^{op}, \text{Vect}].$
- ▶ If X is pure of order k, and Y is pure of order m > k, then AU(X, Y) = 0.
- ▶ Let $(L_{\leq m}X)(G)$ be the sum of all $\alpha^*(X(H)) \leq X(G)$ for $H \in U_{\leq m}$ and $\alpha \in U(G, H)$.
- Put $L_m X = L_{\leq m} X / L_{< m} X$.
- ▶ If P is projective, then $P \simeq \bigoplus_k P_k \simeq \prod_k P_k$, where P_k is pure of order k. It follows that $L_{\leq m}X = \bigoplus_{k \leq m} P_k$ and $L_mX \simeq P_m$ so the filtration splits.

$$e_{G,V}(K) = V \otimes_{\mathbb{Q}[\operatorname{Out}(G)]} e_G(K)$$

- We say that X is pure of order k if it is isomorphic to a sum of indecomposable projectives of order k.
- The subcategory of such objects is equivalent to the semisimple category $\mathcal{AU}_k = [\mathcal{U}_k^{op}, \text{Vect}].$
- ▶ If X is pure of order k, and Y is pure of order m > k, then AU(X, Y) = 0.
- ▶ Let $(L_{\leq m}X)(G)$ be the sum of all $\alpha^*(X(H)) \leq X(G)$ for $H \in U_{\leq m}$ and $\alpha \in U(G, H)$.
- Put $L_m X = L_{\leq m} X / L_{< m} X$.
- ▶ If P is projective, then $P \simeq \bigoplus_k P_k \simeq \prod_k P_k$, where P_k is pure of order k. It follows that $L_{\leq m}X = \bigoplus_{k < m} P_k$ and $L_mX \simeq P_m$ so the filtration splits.

- ▶ By work of Sam and Snowden (2016): [U^{op}, Vect] is locally noetherian if there is a category C such that
 - \blacktriangleright C is close enough to \mathcal{U}^{op} to allow for transfer of finiteness conditions.
 - C has combinatorial/order-theoretic properties that support an analogue of the theory of Gröbner bases.
- One ingredient: a preordered set P is well-quasi-ordered (wqo) if in every sequence $u: \mathbb{N} \to P$, there exists i < j with $u(i) \le u(j)$.
- lf so: there always exists a subsequence v with $v(i) \le v(j)$ whenever i < j.
- Another ingredient: let φ: X → Y be a surjective but not necessarily monotone map between finite, totally ordered sets. Define φ[†](y) = min(φ⁻¹{y}) and say that φ is †-monotone if φ[†] is monotone.
- ▶ \mathcal{L}_{\dagger} is the category of finite, nonempty, totally ordered sets X equipped with $e_X : X \to \mathbb{N}$. Morphisms are †-monotone surjections $\phi : X \to Y$ with $e_Y \circ \phi \leq e_X$.
- The category $\mathcal{L}_{\dagger}^{op}$ and its slice categories are (nonobviously) wqo.
- There is a functor L_↑ → U sending X to ⊕_x Z/p^{ex(x)}. Using this we prove that AU is locally noetherian.

(We also cover a few other cases that are easier and/or already known.)
 By work of Sam and Snowden (2016): [U^{op}, Vect] is locally noetherian if there is a starger C such that

- \triangleright C is close enough to \mathcal{U}^{op} to allow for transfer of finiteness conditions.
- C has combinatorial/order-theoretic properties that support an analogue of the theory of Gröbner bases.
- One ingredient: a preordered set P is well-quasi-ordered (wqo) if in every sequence $u: \mathbb{N} \to P$, there exists i < j with $u(i) \le u(j)$.

lf so: there always exists a subsequence v with $v(i) \le v(j)$ whenever i < j.

- Another ingredient: let φ: X → Y be a surjective but not necessarily monotone map between finite, totally ordered sets. Define φ[†](y) = min(φ⁻¹{y}) and say that φ is †-monotone if φ[†] is monotone.
- ▶ \mathcal{L}_{\dagger} is the category of finite, nonempty, totally ordered sets X equipped with $e_X : X \to \mathbb{N}$. Morphisms are †-monotone surjections $\phi : X \to Y$ with $e_Y \circ \phi \leq e_X$.
- The category $\mathcal{L}_{\dagger}^{op}$ and its slice categories are (nonobviously) wqo.
- There is a functor L_↑ → U sending X to ⊕_x Z/p^{ex(x)}. Using this we prove that AU is locally noetherian.

- By work of Sam and Snowden (2016): [U^{op}, Vect] is locally noetherian if there is a category C such that
 - \blacktriangleright C is close enough to \mathcal{U}^{op} to allow for transfer of finiteness conditions.
 - C has combinatorial/order-theoretic properties that support an analogue of the theory of Gröbner bases.
- One ingredient: a preordered set P is well-quasi-ordered (wqo) if in every sequence $u: \mathbb{N} \to P$, there exists i < j with $u(i) \le u(j)$.
- lf so: there always exists a subsequence v with $v(i) \le v(j)$ whenever i < j.
- Another ingredient: let φ: X → Y be a surjective but not necessarily monotone map between finite, totally ordered sets. Define φ[†](y) = min(φ⁻¹{y}) and say that φ is †-monotone if φ[†] is monotone.
- ▶ \mathcal{L}_{\dagger} is the category of finite, nonempty, totally ordered sets X equipped with $e_X : X \to \mathbb{N}$. Morphisms are †-monotone surjections $\phi : X \to Y$ with $e_Y \circ \phi \leq e_X$.
- The category $\mathcal{L}_{\dagger}^{op}$ and its slice categories are (nonobviously) wqo.
- There is a functor L_↑ → U sending X to ⊕_x Z/p^{ex(x)}. Using this we prove that AU is locally noetherian.

- By work of Sam and Snowden (2016): [U^{op}, Vect] is locally noetherian if there is a category C such that
 - C is close enough to \mathcal{U}^{op} to allow for transfer of finiteness conditions.
 - C has combinatorial/order-theoretic properties that support an analogue of the theory of Gröbner bases.
- One ingredient: a preordered set P is well-quasi-ordered (wqo) if in every sequence $u: \mathbb{N} \to P$, there exists i < j with $u(i) \le u(j)$.
- ▶ If so: there always exists a subsequence v with $v(i) \le v(j)$ whenever i < j.
- Another ingredient: let φ: X → Y be a surjective but not necessarily monotone map between finite, totally ordered sets. Define φ[†](y) = min(φ⁻¹{y}) and say that φ is †-monotone if φ[†] is monotone.
- \mathcal{L}_{\dagger} is the category of finite, nonempty, totally ordered sets X equipped with $e_X : X \to \mathbb{N}$. Morphisms are \dagger -monotone surjections $\phi : X \to Y$ with $e_Y \circ \phi \leq e_X$.
- The category $\mathcal{L}_{\dagger}^{op}$ and its slice categories are (nonobviously) wqo.
- There is a functor L_↑ → U sending X to ⊕_x Z/p^{e_X(x)}. Using this we prove that AU is locally noetherian.

- By work of Sam and Snowden (2016): [U^{op}, Vect] is locally noetherian if there is a category C such that
 - C is close enough to \mathcal{U}^{op} to allow for transfer of finiteness conditions.
 - C has combinatorial/order-theoretic properties that support an analogue of the theory of Gröbner bases.
- One ingredient: a preordered set P is well-quasi-ordered (wqo) if in every sequence $u: \mathbb{N} \to P$, there exists i < j with $u(i) \le u(j)$.
- lf so: there always exists a subsequence v with $v(i) \le v(j)$ whenever i < j.
- Another ingredient: let φ: X → Y be a surjective but not necessarily monotone map between finite, totally ordered sets. Define φ[†](y) = min(φ⁻¹{y}) and say that φ is †-monotone if φ[†] is monotone.
- ▶ \mathcal{L}_{\dagger} is the category of finite, nonempty, totally ordered sets X equipped with $e_X : X \to \mathbb{N}$. Morphisms are †-monotone surjections $\phi : X \to Y$ with $e_Y \circ \phi \leq e_X$.
- The category $\mathcal{L}_{\dagger}^{op}$ and its slice categories are (nonobviously) wqo.
- There is a functor L_↑ → U sending X to ⊕_x Z/p^{e_X(x)}. Using this we prove that AU is locally noetherian.

(We also cover a few other cases that are easier and/or already known.)

- By work of Sam and Snowden (2016): [U^{op}, Vect] is locally noetherian if there is a category C such that
 - C is close enough to \mathcal{U}^{op} to allow for transfer of finiteness conditions.
 - C has combinatorial/order-theoretic properties that support an analogue of the theory of Gröbner bases.
- ▶ One ingredient: a preordered set *P* is well-quasi-ordered (wqo) if in every sequence $u: \mathbb{N} \to P$, there exists i < j with $u(i) \le u(j)$.

▶ If so: there always exists a subsequence v with $v(i) \le v(j)$ whenever i < j.

- Another ingredient: let φ: X → Y be a surjective but not necessarily monotone map between finite, totally ordered sets. Define φ[†](y) = min(φ⁻¹{y}) and say that φ is †-monotone if φ[†] is monotone.
- \mathcal{L}_{\dagger} is the category of finite, nonempty, totally ordered sets X equipped with $e_X : X \to \mathbb{N}$. Morphisms are \dagger -monotone surjections $\phi : X \to Y$ with $e_Y \circ \phi \leq e_X$.
- The category $\mathcal{L}_{\dagger}^{op}$ and its slice categories are (nonobviously) wqo.
- ▶ There is a functor $\mathcal{L}_{\dagger} \to \mathcal{U}$ sending X to $\bigoplus_x \mathbb{Z}/p^{e_X(x)}$. Using this we prove that \mathcal{AU} is locally noetherian.

- By work of Sam and Snowden (2016): [U^{op}, Vect] is locally noetherian if there is a category C such that
 - C is close enough to \mathcal{U}^{op} to allow for transfer of finiteness conditions.
 - C has combinatorial/order-theoretic properties that support an analogue of the theory of Gröbner bases.
- One ingredient: a preordered set P is well-quasi-ordered (wqo) if in every sequence $u: \mathbb{N} \to P$, there exists i < j with $u(i) \le u(j)$.
- ▶ If so: there always exists a subsequence v with $v(i) \le v(j)$ whenever i < j.
- Another ingredient: let φ: X → Y be a surjective but not necessarily monotone map between finite, totally ordered sets. Define φ[†](y) = min(φ⁻¹{y}) and say that φ is †-monotone if φ[†] is monotone.
- \mathcal{L}_{\dagger} is the category of finite, nonempty, totally ordered sets X equipped with $e_X : X \to \mathbb{N}$. Morphisms are \dagger -monotone surjections $\phi : X \to Y$ with $e_Y \circ \phi \leq e_X$.
- The category $\mathcal{L}_{\dagger}^{op}$ and its slice categories are (nonobviously) wqo.
- ▶ There is a functor $\mathcal{L}_{\dagger} \to \mathcal{U}$ sending X to $\bigoplus_x \mathbb{Z}/p^{e_X(x)}$. Using this we prove that \mathcal{AU} is locally noetherian.

- ▶ By work of Sam and Snowden (2016): [U^{op}, Vect] is locally noetherian if there is a category C such that
 - C is close enough to \mathcal{U}^{op} to allow for transfer of finiteness conditions.
 - C has combinatorial/order-theoretic properties that support an analogue of the theory of Gröbner bases.
- ▶ One ingredient: a preordered set *P* is well-quasi-ordered (wqo) if in every sequence $u: \mathbb{N} \to P$, there exists i < j with $u(i) \le u(j)$.
- ▶ If so: there always exists a subsequence v with $v(i) \le v(j)$ whenever i < j.
- Another ingredient: let φ: X → Y be a surjective but not necessarily monotone map between finite, totally ordered sets. Define φ[†](y) = min(φ⁻¹{y}) and say that φ is †-monotone if φ[†] is monotone.
- \mathcal{L}_{\dagger} is the category of finite, nonempty, totally ordered sets X equipped with $e_X : X \to \mathbb{N}$. Morphisms are \dagger -monotone surjections $\phi : X \to Y$ with $e_Y \circ \phi \leq e_X$.
- The category $\mathcal{L}_{\dagger}^{op}$ and its slice categories are (nonobviously) wqo.
- There is a functor L_↑ → U sending X to ⊕_x Z/p^{ex(x)}. Using this we prove that AU is locally noetherian.

- ▶ By work of Sam and Snowden (2016): [U^{op}, Vect] is locally noetherian if there is a category C such that
 - C is close enough to \mathcal{U}^{op} to allow for transfer of finiteness conditions.
 - C has combinatorial/order-theoretic properties that support an analogue of the theory of Gröbner bases.
- One ingredient: a preordered set P is well-quasi-ordered (wqo) if in every sequence $u: \mathbb{N} \to P$, there exists i < j with $u(i) \le u(j)$.
- ▶ If so: there always exists a subsequence v with $v(i) \le v(j)$ whenever i < j.
- Another ingredient: let φ: X → Y be a surjective but not necessarily monotone map between finite, totally ordered sets. Define φ[†](y) = min(φ⁻¹{y}) and say that φ is †-monotone if φ[†] is monotone.
- \mathcal{L}_{\dagger} is the category of finite, nonempty, totally ordered sets X equipped with $e_X : X \to \mathbb{N}$. Morphisms are \dagger -monotone surjections $\phi : X \to Y$ with $e_Y \circ \phi \leq e_X$.
- The category $\mathcal{L}_{\dagger}^{op}$ and its slice categories are (nonobviously) wqo.
- There is a functor L_↑ → U sending X to ⊕_x Z/p^{ex(x)}. Using this we prove that AU is locally noetherian.

- ▶ By work of Sam and Snowden (2016): [U^{op}, Vect] is locally noetherian if there is a category C such that
 - C is close enough to \mathcal{U}^{op} to allow for transfer of finiteness conditions.
 - C has combinatorial/order-theoretic properties that support an analogue of the theory of Gröbner bases.
- One ingredient: a preordered set P is well-quasi-ordered (wqo) if in every sequence $u: \mathbb{N} \to P$, there exists i < j with $u(i) \le u(j)$.
- ▶ If so: there always exists a subsequence v with $v(i) \le v(j)$ whenever i < j.
- Another ingredient: let φ: X → Y be a surjective but not necessarily monotone map between finite, totally ordered sets. Define φ[†](y) = min(φ⁻¹{y}) and say that φ is †-monotone if φ[†] is monotone.
- \mathcal{L}_{\dagger} is the category of finite, nonempty, totally ordered sets X equipped with $e_X : X \to \mathbb{N}$. Morphisms are \dagger -monotone surjections $\phi : X \to Y$ with $e_Y \circ \phi \leq e_X$.
- The category $\mathcal{L}_{\dagger}^{op}$ and its slice categories are (nonobviously) wqo.
- There is a functor L_↑ → U sending X to ⊕_x Z/p^{e_X(x)}. Using this we prove that AU is locally noetherian.
- Let \mathcal{PU} be the subcategory of projectives in \mathcal{AU} .
- There is an additive functor P₀ = hI^{*}: AU → PU with a surjective natural transformation P₀(X) → X, where I is the inclusion U[×] → U.
- This extends to give an additive functor P: Ch(AU) → Ch(PU) with a natural surjective quasiisomorphism P(X) → X.
- From this and other results:

$$Ch(\mathcal{AU})[we^{-1}] = hCh(\mathcal{PU}) := Ch(\mathcal{PU})/(chain homotopy).$$

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.
- ▶ If $X, Y \in Ch(\mathcal{PU})$ then $\underline{Hom}(X, Y) \in \mathcal{PU}$.
- Say X ∈ Ch(PU) is thin if for every m > 0, the differential on L_mX is 0, i.e. the differential on X involves only maps e_{G,S} → e_{H,T} with |H| < |G|.</p>
- ► Every homotopy type has an essentially unique thin representative. (But thin ⊗ thin and <u>Hom</u>(thin, thin) need not be thin.)
- A thin complex X is compact iff $\bigoplus_n X_n$ is finitely generated.

• Let \mathcal{PU} be the subcategory of projectives in \mathcal{AU} .

- There is an additive functor P₀ = I_II^{*}: AU → PU with a surjective natural transformation P₀(X) → X, where I is the inclusion U[×] → U.
- This extends to give an additive functor P: Ch(AU) → Ch(PU) with a natural surjective quasiisomorphism P(X) → X.
- From this and other results:

$$Ch(\mathcal{AU})[we^{-1}] = hCh(\mathcal{PU}) := Ch(\mathcal{PU})/(chain homotopy).$$

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.
- ▶ If $X, Y \in Ch(\mathcal{PU})$ then $\underline{Hom}(X, Y) \in \mathcal{PU}$.
- Say X ∈ Ch(PU) is thin if for every m > 0, the differential on L_mX is 0, i.e. the differential on X involves only maps e_{G,S} → e_{H,T} with |H| < |G|.</p>
- ► Every homotopy type has an essentially unique thin representative. (But thin ⊗ thin and <u>Hom</u>(thin, thin) need not be thin.)
- A thin complex X is compact iff $\bigoplus_n X_n$ is finitely generated.

The derived category

- Let \mathcal{PU} be the subcategory of projectives in \mathcal{AU} .
- There is an additive functor P₀ = hI^{*}: AU → PU with a surjective natural transformation P₀(X) → X, where I is the inclusion U[×] → U.
- This extends to give an additive functor P: Ch(AU) → Ch(PU) with a natural surjective quasiisomorphism P(X) → X.
- From this and other results:

$$Ch(\mathcal{AU})[we^{-1}] = hCh(\mathcal{PU}) := Ch(\mathcal{PU})/(chain homotopy).$$

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.
- ▶ If $X, Y \in Ch(\mathcal{PU})$ then $\underline{Hom}(X, Y) \in \mathcal{PU}$.
- Say X ∈ Ch(PU) is thin if for every m > 0, the differential on L_mX is 0, i.e. the differential on X involves only maps e_{G,S} → e_{H,T} with |H| < |G|.</p>
- ► Every homotopy type has an essentially unique thin representative. (But thin ⊗ thin and <u>Hom</u>(thin, thin) need not be thin.)
- A thin complex X is compact iff $\bigoplus_n X_n$ is finitely generated.

The derived category

- Let \mathcal{PU} be the subcategory of projectives in \mathcal{AU} .
- ▶ There is an additive functor $P_0 = h I^* : AU \to PU$ with a surjective natural transformation $P_0(X) \to X$, where *I* is the inclusion $U^{\times} \to U$.
- This extends to give an additive functor P: Ch(AU) → Ch(PU) with a natural surjective quasiisomorphism P(X) → X.

From this and other results:

$Ch(\mathcal{AU})[we^{-1}] = hCh(\mathcal{PU}) := Ch(\mathcal{PU})/(chain homotopy).$

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.
- ▶ If $X, Y \in Ch(\mathcal{PU})$ then $\underline{Hom}(X, Y) \in \mathcal{PU}$.
- Say X ∈ Ch(PU) is thin if for every m > 0, the differential on L_mX is 0, i.e. the differential on X involves only maps e_{G,S} → e_{H,T} with |H| < |G|.</p>
- ► Every homotopy type has an essentially unique thin representative. (But thin ⊗ thin and <u>Hom</u>(thin, thin) need not be thin.)
- A thin complex X is compact iff $\bigoplus_n X_n$ is finitely generated.

- Let \mathcal{PU} be the subcategory of projectives in \mathcal{AU} .
- There is an additive functor P₀ = hI^{*}: AU → PU with a surjective natural transformation P₀(X) → X, where I is the inclusion U[×] → U.
- This extends to give an additive functor P: Ch(AU) → Ch(PU) with a natural surjective quasiisomorphism P(X) → X.
- From this and other results:

$$Ch(\mathcal{AU})[we^{-1}] = hCh(\mathcal{PU}) := Ch(\mathcal{PU})/(chain homotopy).$$

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.
- ▶ If $X, Y \in Ch(\mathcal{PU})$ then $\underline{Hom}(X, Y) \in \mathcal{PU}$.
- Say X ∈ Ch(PU) is thin if for every m > 0, the differential on L_mX is 0, i.e. the differential on X involves only maps e_{G,S} → e_{H,T} with |H| < |G|.</p>
- ► Every homotopy type has an essentially unique thin representative. (But thin ⊗ thin and <u>Hom</u>(thin, thin) need not be thin.)
- A thin complex X is compact iff $\bigoplus_n X_n$ is finitely generated.

- Let \mathcal{PU} be the subcategory of projectives in \mathcal{AU} .
- There is an additive functor P₀ = hI^{*}: AU → PU with a surjective natural transformation P₀(X) → X, where I is the inclusion U[×] → U.
- This extends to give an additive functor P: Ch(AU) → Ch(PU) with a natural surjective quasiisomorphism P(X) → X.
- From this and other results:

$$Ch(\mathcal{AU})[we^{-1}] = hCh(\mathcal{PU}) := Ch(\mathcal{PU})/(chain homotopy).$$

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.
- ▶ If $X, Y \in Ch(\mathcal{PU})$ then $\underline{Hom}(X, Y) \in \mathcal{PU}$.
- Say X ∈ Ch(PU) is thin if for every m > 0, the differential on L_mX is 0, i.e. the differential on X involves only maps e_{G,S} → e_{H,T} with |H| < |G|.</p>
- ► Every homotopy type has an essentially unique thin representative. (But thin ⊗ thin and <u>Hom</u>(thin, thin) need not be thin.)
- A thin complex X is compact iff $\bigoplus_n X_n$ is finitely generated.

- Let \mathcal{PU} be the subcategory of projectives in \mathcal{AU} .
- There is an additive functor P₀ = hI^{*}: AU → PU with a surjective natural transformation P₀(X) → X, where I is the inclusion U[×] → U.
- This extends to give an additive functor P: Ch(AU) → Ch(PU) with a natural surjective quasiisomorphism P(X) → X.
- From this and other results:

$$Ch(\mathcal{AU})[we^{-1}] = hCh(\mathcal{PU}) := Ch(\mathcal{PU})/(chain homotopy).$$

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.
- ▶ If $X, Y \in Ch(\mathcal{PU})$ then $\underline{Hom}(X, Y) \in \mathcal{PU}$.
- Say X ∈ Ch(PU) is thin if for every m > 0, the differential on L_mX is 0, i.e. the differential on X involves only maps e_{G,S} → e_{H,T} with |H| < |G|.</p>
- ► Every homotopy type has an essentially unique thin representative. (But thin ⊗ thin and <u>Hom</u>(thin, thin) need not be thin.)
- A thin complex X is compact iff $\bigoplus_n X_n$ is finitely generated.

- Let \mathcal{PU} be the subcategory of projectives in \mathcal{AU} .
- There is an additive functor P₀ = hI^{*}: AU → PU with a surjective natural transformation P₀(X) → X, where I is the inclusion U[×] → U.
- This extends to give an additive functor P: Ch(AU) → Ch(PU) with a natural surjective quasiisomorphism P(X) → X.
- From this and other results:

$$Ch(\mathcal{AU})[we^{-1}] = hCh(\mathcal{PU}) := Ch(\mathcal{PU})/(chain homotopy).$$

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.
- ▶ If $X, Y \in Ch(\mathcal{PU})$ then $\underline{Hom}(X, Y) \in \mathcal{PU}$.
- Say X ∈ Ch(PU) is thin if for every m > 0, the differential on L_mX is 0, i.e. the differential on X involves only maps e_{G,S} → e_{H,T} with |H| < |G|.</p>
- ► Every homotopy type has an essentially unique thin representative. (But thin ⊗ thin and <u>Hom</u>(thin, thin) need not be thin.)
- A thin complex X is compact iff $\bigoplus_n X_n$ is finitely generated.

- Let \mathcal{PU} be the subcategory of projectives in \mathcal{AU} .
- There is an additive functor P₀ = hI^{*}: AU → PU with a surjective natural transformation P₀(X) → X, where I is the inclusion U[×] → U.
- This extends to give an additive functor P: Ch(AU) → Ch(PU) with a natural surjective quasiisomorphism P(X) → X.
- From this and other results:

$$\mathsf{Ch}(\mathcal{AU})[\mathsf{we}^{-1}] = \mathsf{hCh}(\mathcal{PU}) := \mathsf{Ch}(\mathcal{PU})/(\mathsf{chain homotopy}).$$

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.
- ▶ If $X, Y \in Ch(\mathcal{PU})$ then $\underline{Hom}(X, Y) \in \mathcal{PU}$.
- Say X ∈ Ch(PU) is thin if for every m > 0, the differential on L_mX is 0, i.e. the differential on X involves only maps e_{G,S} → e_{H,T} with |H| < |G|.</p>
- ► Every homotopy type has an essentially unique thin representative. (But thin ⊗ thin and <u>Hom</u>(thin, thin) need not be thin.)
- A thin complex X is compact iff $\bigoplus_n X_n$ is finitely generated.

- Let \mathcal{PU} be the subcategory of projectives in \mathcal{AU} .
- There is an additive functor P₀ = hI^{*}: AU → PU with a surjective natural transformation P₀(X) → X, where I is the inclusion U[×] → U.
- This extends to give an additive functor P: Ch(AU) → Ch(PU) with a natural surjective quasiisomorphism P(X) → X.
- From this and other results:

$$Ch(\mathcal{AU})[we^{-1}] = hCh(\mathcal{PU}) := Ch(\mathcal{PU})/(chain homotopy).$$

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.
- ▶ If $X, Y \in Ch(\mathcal{PU})$ then $\underline{Hom}(X, Y) \in \mathcal{PU}$.
- Say X ∈ Ch(PU) is thin if for every m > 0, the differential on L_mX is 0, i.e. the differential on X involves only maps e_{G,S} → e_{H,T} with |H| < |G|.</p>
- ► Every homotopy type has an essentially unique thin representative. (But thin ⊗ thin and <u>Hom</u>(thin, thin) need not be thin.)
- A thin complex X is compact iff $\bigoplus_n X_n$ is finitely generated.

- Let \mathcal{PU} be the subcategory of projectives in \mathcal{AU} .
- There is an additive functor P₀ = hI^{*}: AU → PU with a surjective natural transformation P₀(X) → X, where I is the inclusion U[×] → U.
- This extends to give an additive functor P: Ch(AU) → Ch(PU) with a natural surjective quasiisomorphism P(X) → X.
- From this and other results:

$$\mathsf{Ch}(\mathcal{AU})[\mathsf{we}^{-1}] = \mathsf{hCh}(\mathcal{PU}) := \mathsf{Ch}(\mathcal{PU})/(\mathsf{chain homotopy}).$$

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.
- ▶ If $X, Y \in Ch(\mathcal{PU})$ then $\underline{Hom}(X, Y) \in \mathcal{PU}$.
- Say X ∈ Ch(PU) is thin if for every m > 0, the differential on L_mX is 0, i.e. the differential on X involves only maps e_{G,S} → e_{H,T} with |H| < |G|.</p>
- ► Every homotopy type has an essentially unique thin representative. (But thin ⊗ thin and <u>Hom</u>(thin, thin) need not be thin.)
- A thin complex X is compact iff $\bigoplus_n X_n$ is finitely generated.

- ▶ For compact X (represented as a thin complex), several notions of support:
- ▶ hsupp $(X) = \{G \mid H_*(X)(G) \neq 0\}$
- esupp(X) = { $G \mid X(G) \neq 0$ }
- eqsupp $(X) = \{G \mid \text{ some } e_{G,S} \text{ is a retract of some } X_d\}.$
- lt is easy to see that esupp(X) is the upwards closure of eqsupp(X).
- True but less obvious: esupp(X) is the upwards closure of hsupp(X).
- Conjecture: thickid $\langle X \rangle \subseteq$ thickid $\langle Y \rangle$ iff hsupp $(X) \subseteq$ hsupp(Y).
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_G = \{X \mid H_*(X)(G) = 0\}$.
- ▶ If X is thin and n is largest with $L_n X \neq 0$, then $X = H_*(X) = L_n X \mod$ terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_G \in \text{thickid}\langle Y \rangle$.
- ▶ Given X, Y with hsupp(X) ⊆ hsupp(Y), and a large integer N > 0, we can show that thickid $\langle X \rangle$ ⊆ thickid $\langle \{Y\} \cup \{e_G \mid |G| > N\}\rangle$.
- This work is ongoing.

- For compact X (represented as a thin complex), several notions of support:
- ▶ hsupp $(X) = \{G \mid H_*(X)(G) \neq 0\}$
- esupp $(X) = \{G \mid X(G) \neq 0\}$
- eqsupp $(X) = \{G \mid \text{ some } e_{G,S} \text{ is a retract of some } X_d\}.$
- lt is easy to see that esupp(X) is the upwards closure of eqsupp(X).
- True but less obvious: esupp(X) is the upwards closure of hsupp(X).
- Conjecture: thickid $\langle X \rangle \subseteq$ thickid $\langle Y \rangle$ iff hsupp $(X) \subseteq$ hsupp(Y).
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_G = \{X \mid H_*(X)(G) = 0\}$.
- ▶ If X is thin and n is largest with $L_n X \neq 0$, then $X = H_*(X) = L_n X$ mod terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_{\mathcal{G}} \in \text{thickid}\langle Y \rangle$.
- ▶ Given X, Y with hsupp(X) ⊆ hsupp(Y), and a large integer N > 0, we can show that thickid $\langle X \rangle$ ⊆ thickid $\langle \{Y\} \cup \{e_G \mid |G| > N\}\rangle$.
- This work is ongoing.

- For compact X (represented as a thin complex), several notions of support:
 hsupp(X) = {G | H_{*}(X)(G) ≠ 0}
- esupp(X) = { $G \mid X(G) \neq 0$ }
- eqsupp $(X) = \{G \mid \text{ some } e_{G,S} \text{ is a retract of some } X_d\}.$
- lt is easy to see that esupp(X) is the upwards closure of eqsupp(X).
- True but less obvious: esupp(X) is the upwards closure of hsupp(X).
- Conjecture: thickid $\langle X \rangle \subseteq$ thickid $\langle Y \rangle$ iff hsupp $(X) \subseteq$ hsupp(Y).
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_G = \{X \mid H_*(X)(G) = 0\}$.
- ▶ If X is thin and n is largest with $L_n X \neq 0$, then $X = H_*(X) = L_n X$ mod terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_{\mathcal{G}} \in \text{thickid}\langle Y \rangle$.
- ▶ Given X, Y with hsupp(X) ⊆ hsupp(Y), and a large integer N > 0, we can show that thickid $\langle X \rangle$ ⊆ thickid $\langle \{Y\} \cup \{e_G \mid |G| > N\}\rangle$.
- This work is ongoing.

- ▶ For compact X (represented as a thin complex), several notions of support:
- hsupp $(X) = \{G \mid H_*(X)(G) \neq 0\}$
- esupp(X) = { $G \mid X(G) \neq 0$ }
- eqsupp $(X) = \{G \mid \text{ some } e_{G,S} \text{ is a retract of some } X_d\}.$
- lt is easy to see that esupp(X) is the upwards closure of eqsupp(X).
- True but less obvious: esupp(X) is the upwards closure of hsupp(X).
- ▶ Conjecture: thickid $\langle X \rangle \subseteq$ thickid $\langle Y \rangle$ iff hsupp $(X) \subseteq$ hsupp(Y).
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_G = \{X \mid H_*(X)(G) = 0\}$.
- ▶ If X is thin and n is largest with $L_n X \neq 0$, then $X = H_*(X) = L_n X$ mod terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_{\mathcal{G}} \in \text{thickid}\langle Y \rangle$.
- ▶ Given X, Y with hsupp(X) ⊆ hsupp(Y), and a large integer N > 0, we can show that thickid $\langle X \rangle$ ⊆ thickid $\langle \{Y\} \cup \{e_G \mid |G| > N\}\rangle$.
- This work is ongoing.

- For compact X (represented as a thin complex), several notions of support:
- hsupp $(X) = \{G \mid H_*(X)(G) \neq 0\}$
- esupp(X) = { $G \mid X(G) \neq 0$ }
- eqsupp $(X) = \{G \mid \text{ some } e_{G,S} \text{ is a retract of some } X_d\}.$
- It is easy to see that esupp(X) is the upwards closure of eqsupp(X).
- True but less obvious: esupp(X) is the upwards closure of hsupp(X).
- Conjecture: thickid $\langle X \rangle \subseteq$ thickid $\langle Y \rangle$ iff hsupp $(X) \subseteq$ hsupp(Y).
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_G = \{X \mid H_*(X)(G) = 0\}$.
- ▶ If X is thin and n is largest with $L_n X \neq 0$, then $X = H_*(X) = L_n X$ mod terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_{\mathcal{G}} \in \text{thickid}\langle Y \rangle$.
- ▶ Given X, Y with hsupp(X) ⊆ hsupp(Y), and a large integer N > 0, we can show that thickid $\langle X \rangle$ ⊆ thickid $\langle \{Y\} \cup \{e_G \mid |G| > N\}\rangle$.
- This work is ongoing.

- For compact X (represented as a thin complex), several notions of support:
- hsupp $(X) = \{G \mid H_*(X)(G) \neq 0\}$
- esupp $(X) = \{G \mid X(G) \neq 0\}$
- eqsupp $(X) = \{G \mid \text{ some } e_{G,S} \text{ is a retract of some } X_d\}.$
- lt is easy to see that esupp(X) is the upwards closure of eqsupp(X).
- True but less obvious: esupp(X) is the upwards closure of hsupp(X).
- Conjecture: thickid $\langle X \rangle \subseteq$ thickid $\langle Y \rangle$ iff hsupp $(X) \subseteq$ hsupp(Y).
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_G = \{X \mid H_*(X)(G) = 0\}$.
- ▶ If X is thin and n is largest with $L_n X \neq 0$, then $X = H_*(X) = L_n X$ mod terms of slower growth. Using this: 0 is also a prime ideal.
- ▶ We have various partial results and examples, especially conditions under which $e_G \in \text{thickid}\langle Y \rangle$.
- ▶ Given X, Y with hsupp(X) ⊆ hsupp(Y), and a large integer N > 0, we can show that thickid $\langle X \rangle$ ⊆ thickid $\langle \{Y\} \cup \{e_G \mid |G| > N\}\rangle$.
- This work is ongoing.

- ▶ For compact X (represented as a thin complex), several notions of support:
- hsupp $(X) = \{G \mid H_*(X)(G) \neq 0\}$
- esupp $(X) = \{G \mid X(G) \neq 0\}$
- eqsupp $(X) = \{G \mid \text{ some } e_{G,S} \text{ is a retract of some } X_d\}.$
- lt is easy to see that esupp(X) is the upwards closure of eqsupp(X).
- True but less obvious: esupp(X) is the upwards closure of hsupp(X).
- Conjecture: thickid $\langle X \rangle \subseteq$ thickid $\langle Y \rangle$ iff hsupp $(X) \subseteq$ hsupp(Y).
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_G = \{X \mid H_*(X)(G) = 0\}$.
- ▶ If X is thin and n is largest with $L_n X \neq 0$, then $X = H_*(X) = L_n X \mod$ terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_{\mathcal{G}} \in \text{thickid}\langle Y \rangle$.
- ▶ Given X, Y with hsupp(X) ⊆ hsupp(Y), and a large integer N > 0, we can show that thickid $\langle X \rangle$ ⊆ thickid $\langle \{Y\} \cup \{e_G \mid |G| > N\}\rangle$.
- This work is ongoing.

- For compact X (represented as a thin complex), several notions of support:
- hsupp $(X) = \{G \mid H_*(X)(G) \neq 0\}$
- esupp $(X) = \{G \mid X(G) \neq 0\}$
- eqsupp $(X) = \{G \mid \text{ some } e_{G,S} \text{ is a retract of some } X_d\}.$
- lt is easy to see that esupp(X) is the upwards closure of eqsupp(X).
- True but less obvious: esupp(X) is the upwards closure of hsupp(X).
- Conjecture: thickid $\langle X \rangle \subseteq$ thickid $\langle Y \rangle$ iff hsupp $(X) \subseteq$ hsupp(Y).
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_G = \{X \mid H_*(X)(G) = 0\}$.
- ▶ If X is thin and n is largest with $L_n X \neq 0$, then $X = H_*(X) = L_n X \mod$ terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_{\mathcal{G}} \in \text{thickid}\langle Y \rangle$.
- ▶ Given X, Y with hsupp(X) ⊆ hsupp(Y), and a large integer N > 0, we can show that thickid $\langle X \rangle$ ⊆ thickid $\langle \{Y\} \cup \{e_G \mid |G| > N\}\rangle$.
- This work is ongoing.

- For compact X (represented as a thin complex), several notions of support:
- hsupp $(X) = \{G \mid H_*(X)(G) \neq 0\}$
- esupp $(X) = \{G \mid X(G) \neq 0\}$
- eqsupp $(X) = \{G \mid \text{ some } e_{G,S} \text{ is a retract of some } X_d\}.$
- lt is easy to see that esupp(X) is the upwards closure of eqsupp(X).
- True but less obvious: esupp(X) is the upwards closure of hsupp(X).
- Conjecture: thickid $\langle X \rangle \subseteq$ thickid $\langle Y \rangle$ iff hsupp $(X) \subseteq$ hsupp(Y).
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_G = \{X \mid H_*(X)(G) = 0\}$.
- ▶ If X is thin and n is largest with $L_n X \neq 0$, then $X = H_*(X) = L_n X$ mod terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_{\mathcal{G}} \in \text{thickid}\langle Y \rangle$.
- ▶ Given X, Y with hsupp(X) ⊆ hsupp(Y), and a large integer N > 0, we can show that thickid $\langle X \rangle$ ⊆ thickid $\langle \{Y\} \cup \{e_G \mid |G| > N\}\rangle$.
- This work is ongoing.

- For compact X (represented as a thin complex), several notions of support:
- hsupp $(X) = \{G \mid H_*(X)(G) \neq 0\}$
- esupp $(X) = \{G \mid X(G) \neq 0\}$
- eqsupp $(X) = \{G \mid \text{ some } e_{G,S} \text{ is a retract of some } X_d\}.$
- lt is easy to see that esupp(X) is the upwards closure of eqsupp(X).
- True but less obvious: esupp(X) is the upwards closure of hsupp(X).
- Conjecture: thickid $\langle X \rangle \subseteq$ thickid $\langle Y \rangle$ iff hsupp $(X) \subseteq$ hsupp(Y).
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_G = \{X \mid H_*(X)(G) = 0\}$.
- ▶ If X is thin and n is largest with $L_n X \neq 0$, then $X = H_*(X) = L_n X \mod$ terms of slower growth. Using this: 0 is also a prime ideal.
- ▶ We have various partial results and examples, especially conditions under which $e_G \in \text{thickid}\langle Y \rangle$.
- ▶ Given X, Y with hsupp(X) ⊆ hsupp(Y), and a large integer N > 0, we can show that thickid $\langle X \rangle$ ⊆ thickid $\langle \{Y\} \cup \{e_G \mid |G| > N\}\rangle$.
- This work is ongoing.

- For compact X (represented as a thin complex), several notions of support:
- hsupp $(X) = \{G \mid H_*(X)(G) \neq 0\}$
- esupp $(X) = \{G \mid X(G) \neq 0\}$
- eqsupp $(X) = \{G \mid \text{ some } e_{G,S} \text{ is a retract of some } X_d\}.$
- lt is easy to see that esupp(X) is the upwards closure of eqsupp(X).
- True but less obvious: esupp(X) is the upwards closure of hsupp(X).
- Conjecture: thickid $\langle X \rangle \subseteq$ thickid $\langle Y \rangle$ iff hsupp $(X) \subseteq$ hsupp(Y).
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_G = \{X \mid H_*(X)(G) = 0\}$.
- ▶ If X is thin and n is largest with $L_n X \neq 0$, then $X = H_*(X) = L_n X \mod$ terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_G \in \text{thickid}\langle Y \rangle$.
- ▶ Given X, Y with hsupp(X) ⊆ hsupp(Y), and a large integer N > 0, we can show that thickid $\langle X \rangle$ ⊆ thickid $\langle \{Y\} \cup \{e_G \mid |G| > N\}\rangle$.
- This work is ongoing.

- For compact X (represented as a thin complex), several notions of support:
- hsupp $(X) = \{G \mid H_*(X)(G) \neq 0\}$
- esupp $(X) = \{G \mid X(G) \neq 0\}$
- eqsupp $(X) = \{G \mid \text{ some } e_{G,S} \text{ is a retract of some } X_d\}.$
- lt is easy to see that esupp(X) is the upwards closure of eqsupp(X).
- True but less obvious: esupp(X) is the upwards closure of hsupp(X).
- Conjecture: thickid $\langle X \rangle \subseteq$ thickid $\langle Y \rangle$ iff hsupp $(X) \subseteq$ hsupp(Y).
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_G = \{X \mid H_*(X)(G) = 0\}$.
- ▶ If X is thin and n is largest with $L_n X \neq 0$, then $X = H_*(X) = L_n X \mod$ terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_G \in \text{thickid}\langle Y \rangle$.
- Given X, Y with hsupp(X) ⊆ hsupp(Y), and a large integer N > 0, we can show that thickid⟨X⟩ ⊆ thickid⟨Y} ∪ {e_G | |G| > N}⟩.
- This work is ongoing.

- For compact X (represented as a thin complex), several notions of support:
- hsupp $(X) = \{G \mid H_*(X)(G) \neq 0\}$
- esupp(X) = { $G \mid X(G) \neq 0$ }
- eqsupp $(X) = \{G \mid \text{ some } e_{G,S} \text{ is a retract of some } X_d\}.$
- lt is easy to see that esupp(X) is the upwards closure of eqsupp(X).
- True but less obvious: esupp(X) is the upwards closure of hsupp(X).
- Conjecture: thickid $\langle X \rangle \subseteq$ thickid $\langle Y \rangle$ iff hsupp $(X) \subseteq$ hsupp(Y).
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_G = \{X \mid H_*(X)(G) = 0\}$.
- ▶ If X is thin and n is largest with $L_n X \neq 0$, then $X = H_*(X) = L_n X \mod$ terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_G \in \text{thickid}\langle Y \rangle$.
- ▶ Given X, Y with hsupp(X) ⊆ hsupp(Y), and a large integer N > 0, we can show that thickid $\langle X \rangle$ ⊆ thickid $\langle \{Y\} \cup \{e_G \mid |G| > N\}\rangle$.

This work is ongoing.

- For compact X (represented as a thin complex), several notions of support:
- hsupp $(X) = \{G \mid H_*(X)(G) \neq 0\}$
- esupp $(X) = \{G \mid X(G) \neq 0\}$
- eqsupp $(X) = \{G \mid \text{ some } e_{G,S} \text{ is a retract of some } X_d\}.$
- lt is easy to see that esupp(X) is the upwards closure of eqsupp(X).
- True but less obvious: esupp(X) is the upwards closure of hsupp(X).
- Conjecture: thickid $\langle X \rangle \subseteq$ thickid $\langle Y \rangle$ iff hsupp $(X) \subseteq$ hsupp(Y).
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_G = \{X \mid H_*(X)(G) = 0\}$.
- ▶ If X is thin and n is largest with $L_n X \neq 0$, then $X = H_*(X) = L_n X \mod$ terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_G \in \text{thickid}\langle Y \rangle$.
- ▶ Given X, Y with hsupp(X) ⊆ hsupp(Y), and a large integer N > 0, we can show that thickid $\langle X \rangle \subseteq$ thickid $\langle \{Y\} \cup \{e_G \mid |G| > N\}\rangle$.
- This work is ongoing.