Rational global representation theory

Neil Strickland
(with Luca Pol; thanks to the Hausdorff Institute)

January 24, 2023

Rational global representation theory

- Let \mathcal{G} be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G}, such as finite abelian p-groups.
- Put $\mathcal{A U}=\left[\mathcal{U}^{\text {op }}\right.$, Vect $]$; then $D(\mathcal{A U})$ is equivalent to the category of globally equivariant spectra with rational homotopy groups, via $X \mapsto\left(G \mapsto \pi_{*}\left(\phi^{G}(X)\right)\right)$.
- For each $G \in \mathcal{U}$ we have a projective generator $e_{G}(K)=\mathbb{Q}[\mathcal{U}(K, G)]$ (which is 0 if $|K|<|G|$).
- $\mathcal{A U}$ is closed symmetric monoidal with $(X \otimes Y)(G)=X(G) \otimes Y(G)$ and $\mathbb{1}=e_{1}=(G \mapsto \mathbb{Q})$ and $\underline{\operatorname{Hom}}(X, Y)(G)=\mathcal{A} \mathcal{U}\left(e_{G} \otimes X, Y\right)$.
- Goal: study $\mathcal{A} \mathcal{U}$, derived category $D(\mathcal{A} \mathcal{U})$, Balmer spectrum of compact objects in $D(\mathcal{A U})$.
- Problem: projective generators are not strongly dualisable in $\mathcal{A U}$; compact objects are not strongly dualisable in $D(\mathcal{A U})$.
This blocks most known approaches to the Balmer spectrum.
- Älthough duality phenomena are unfamiliar, they are still concrete and tractable.
- Another unusual feature: all projectives are injective, but not conversely.
- For abelian p-groups, or elementary abelian p-groups, or cyclic groups: the category $\mathcal{A} \mathcal{U}$ is locally noetherian, i.e. subobjects of finitely generated objects are finitely generated.

Rational global representation theory

- Let \mathcal{G} be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G}, such as finite abelian p-groups.
- Put $\mathcal{A U}=\left[\mathcal{U}^{\text {op }}\right.$, Vect $]$; then $D(\mathcal{A U})$ is equivalent to the category of globally equivariant spectra with rational homotopy groups, via $X \mapsto\left(G \mapsto \pi_{*}\left(\phi^{G}(X)\right)\right)$
- For each $G \in \mathcal{U}$ we have a projective generator $e_{G}(K)=\mathbb{Q}[\mathcal{U}(K, G)]$ (which is 0 if $|K|<|G|$)
- $\mathcal{A U}$ is closed symmetric monoidal with $(X \otimes Y)(G)=X(G) \otimes Y(G)$ and $\mathbb{1}=e_{1}=(G \mapsto \mathbb{Q})$ and $\underline{\operatorname{Hom}}(X, Y)(G)=\mathcal{A} \mathcal{U}\left(e_{G} \otimes X, Y\right)$.
\checkmark Goal: study $\mathcal{A} \mathcal{U}$, derived category $D(\mathcal{A} \mathcal{U})$, Balmer spectrum of compact objects in $D(\mathcal{A} \mathcal{U})$
- Problem: projective generators are not strongly dualisable in $\mathcal{A U}$; compact objects are not strongly dualisable in $D(\mathcal{A U})$
This blocks most known approaches to the Balmer spectrum.
- Although duality phenomena are unfamiliar, they are still concrete and tractable.
- Another unusual feature: all projectives are injective, but not conversely.
- For abelian p-groups, or elementary abelian p-groups, or cyclic groups: the category $\mathcal{A U}$ is locally noetherian, i.e. subobjects of finitely generated objects are finitely generated

Rational global representation theory

- Let \mathcal{G} be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G}, such as finite abelian p-groups.
\Rightarrow Put $\mathcal{A U}=\left[\mathcal{U}^{\text {op }}\right.$, Vect $]$; then $D(\mathcal{A U})$ is equivalent to the category of globally equivariant spectra with rational homotopy groups, via $X \mapsto\left(G \mapsto \pi_{*}\left(\phi^{G}(X)\right)\right)$
- For each $G \in \mathcal{U}$ we have a projective generator $e_{G}(K)=\mathbb{Q}[\mathcal{U}(K, G)]$ (which is 0 if $|K|<|G|$)
- $\mathcal{A U}$ is closed symmetric monoidal with $(X \otimes Y)(G)=X(G) \otimes Y(G)$ and $\mathbb{1}=e_{1}=(G \mapsto \mathbb{Q})$ and $\underline{\operatorname{Hom}}(X, Y)(G)=\mathcal{A U}\left(e_{G} \otimes X, Y\right)$.
- Goal: study $\mathcal{A} \mathcal{U}$, derived category $D(\mathcal{A} \mathcal{U})$, Balmer spectrum of compact objects in $D(\mathcal{A} \mathcal{U})$
- Problem: projective generators are not strongly dualisable in $\mathcal{A} \mathcal{U}$; compact objects are not strongly dualisable in $D(\mathcal{A U})$ This blocks most known approaches to the Balmer spectrum
- Although duality phenomena are unfamiliar, they are still concrete and tractable.
- Another unusual feature: all projectives are injective, but not conversely.
- For abelian p-groups, or elementary abelian p-groups, or cyclic groups: the category $\mathcal{A} \mathcal{U}$ is locally noetherian, i.e. subobjects of finitely generated objects are finitely generated

Rational global representation theory

- Let \mathcal{G} be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G}, such as finite abelian p-groups.
- Put $\mathcal{A U}=\left[\mathcal{U}^{\text {op }}\right.$, Vect $]$; then $D(\mathcal{A U})$ is equivalent to the category of globally equivariant spectra with rational homotopy groups, via $X \mapsto\left(G \mapsto \pi_{*}\left(\phi^{G}(X)\right)\right)$.
- $\mathcal{A U}$ is closed symmetric monoidal with $(X \otimes Y)(G)=X(G) \otimes Y(G)$ and
\Rightarrow Goal: study $\mathcal{A} \mathcal{U}$, derived category $D(\mathcal{A} \mathcal{U})$, Balmer spectrum of compact objects in $D(\mathcal{A} \mathcal{U})$
- Problem: projective generators are not strongly dualisable in $\mathcal{A} \mathcal{U}$ compact objects are not strongly dualisable in $D(\mathcal{A U})$ This blocks most known approaches to the Balmer spectrum.
- Although duality phenomena are unfamiliar, they are still concrete and tractable.
\rightarrow Another unusual feature: all projectives are injective, but not conversely.
\rightarrow For abelian p-groups, or elementary abelian p-groups, or cyclic groups: the category $\mathcal{A \mathcal { U }}$ is locally noetherian, i.e. subobjects of finitely generated
objects are finitely generated

Rational global representation theory

- Let \mathcal{G} be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G}, such as finite abelian p-groups.
- Put $\mathcal{A U}=\left[\mathcal{U}^{\text {op }}\right.$, Vect $]$; then $D(\mathcal{A U})$ is equivalent to the category of globally equivariant spectra with rational homotopy groups, via $X \mapsto\left(G \mapsto \pi_{*}\left(\phi^{G}(X)\right)\right)$.
- For each $G \in \mathcal{U}$ we have a projective generator $e_{G}(K)=\mathbb{Q}[\mathcal{U}(K, G)]$ (which is 0 if $|K|<|G|$).
$\Rightarrow \mathcal{A} \mathcal{U}$ is closed symmetric monoidal with $(X \otimes Y)(G)=X(G) \otimes Y(G)$ and
\checkmark Goal: study $\mathcal{A} \mathcal{U}$, derived category $D(\mathcal{A} \mathcal{U})$, Balmer spectrum of compact objects in $D(\mathcal{A U})$.
- Problem: projective generators are not strongly dualisable in $\mathcal{A} \mathcal{U}$; compact objects are not strongly dualisable in $D(\mathcal{A U})$ This blocks most known approaches to the Balmer spectrum.
\Rightarrow Although duality phenomena are unfamiliar, they are still concrete and tractable.
\rightarrow Another unusual feature: all projectives are injective, but not conversely.
\rightarrow For abelian p-groups, or elementary abelian p-groups, or cyclic groups: the category $\mathcal{A \mathcal { U }}$ is locally noetherian, i.e. subobjects of finitely generated
objects are finitely generated

Rational global representation theory

- Let \mathcal{G} be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G}, such as finite abelian p-groups.
- Put $\mathcal{A U}=\left[\mathcal{U}^{\text {op }}\right.$, Vect $]$; then $D(\mathcal{A U})$ is equivalent to the category of globally equivariant spectra with rational homotopy groups, via $X \mapsto\left(G \mapsto \pi_{*}\left(\phi^{G}(X)\right)\right)$.
- For each $G \in \mathcal{U}$ we have a projective generator $e_{G}(K)=\mathbb{Q}[\mathcal{U}(K, G)]$ (which is 0 if $|K|<|G|$).
- $\mathcal{A U}$ is closed symmetric monoidal with $(X \otimes Y)(G)=X(G) \otimes Y(G)$ and $\mathbb{1}=e_{1}=(G \mapsto \mathbb{Q})$ and $\underline{\operatorname{Hom}}(X, Y)(G)=\mathcal{A U}\left(e_{G} \otimes X, Y\right)$.
\rightarrow Problem: projective generators are not strongly dualisable in $\mathcal{A} \mathcal{U}$; compact objects are not strongly dualisable in $D(\mathcal{A U})$
This blocks most known approaches to the Balmer spectrum.
\rightarrow Although duality phenomena are unfamiliar, they are still concrete and tractable.
\rightarrow Another unusual feature: all projectives are injective, but not conversely.
- For abelian p-groups, or elementary abelian p-groups, or cyclic groups: the category $\mathcal{A \mathcal { U }}$ is locally noetherian, i.e. subobjects of finitely generated

Rational global representation theory

- Let \mathcal{G} be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G}, such as finite abelian p-groups.
- Put $\mathcal{A U}=\left[\mathcal{U}^{\text {op }}\right.$, Vect $]$; then $D(\mathcal{A U})$ is equivalent to the category of globally equivariant spectra with rational homotopy groups, via $X \mapsto\left(G \mapsto \pi_{*}\left(\phi^{G}(X)\right)\right)$.
- For each $G \in \mathcal{U}$ we have a projective generator $e_{G}(K)=\mathbb{Q}[\mathcal{U}(K, G)]$ (which is 0 if $|K|<|G|$).
- $\mathcal{A U}$ is closed symmetric monoidal with $(X \otimes Y)(G)=X(G) \otimes Y(G)$ and $\mathbb{1}=e_{1}=(G \mapsto \mathbb{Q})$ and $\underline{\operatorname{Hom}}(X, Y)(G)=\mathcal{A U}\left(e_{G} \otimes X, Y\right)$.
- Goal: study $\mathcal{A} \mathcal{U}$, derived category $D(\mathcal{A} \mathcal{U})$, Balmer spectrum of compact objects in $D(\mathcal{A} \mathcal{U})$.

[^0]
Rational global representation theory

- Let \mathcal{G} be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G}, such as finite abelian p-groups.
- Put $\mathcal{A U}=\left[\mathcal{U}^{\text {op }}\right.$, Vect $]$; then $D(\mathcal{A U})$ is equivalent to the category of globally equivariant spectra with rational homotopy groups, via $X \mapsto\left(G \mapsto \pi_{*}\left(\phi^{G}(X)\right)\right)$.
- For each $G \in \mathcal{U}$ we have a projective generator $e_{G}(K)=\mathbb{Q}[\mathcal{U}(K, G)]$ (which is 0 if $|K|<|G|$).
- $\mathcal{A} \mathcal{U}$ is closed symmetric monoidal with $(X \otimes Y)(G)=X(G) \otimes Y(G)$ and $\mathbb{1}=e_{1}=(G \mapsto \mathbb{Q})$ and $\underline{\operatorname{Hom}}(X, Y)(G)=\mathcal{A U}\left(e_{G} \otimes X, Y\right)$.
- Goal: study $\mathcal{A} \mathcal{U}$, derived category $D(\mathcal{A} \mathcal{U})$, Balmer spectrum of compact objects in $D(\mathcal{A} \mathcal{U})$.
- Problem: projective generators are not strongly dualisable in $\mathcal{A} \mathcal{U}$; compact objects are not strongly dualisable in $D(\mathcal{A} \mathcal{U})$.
This blocks most known approaches to the Balmer spectrum.
\rightarrow Although duality phenomena are unfamiliar, they are still concrete and tractable.
\rightarrow Another unusual feature: all projectives are injective, but not conversely.
\rightarrow For abelian p-groups, or elementary abelian p-groups, or cyclic groups: the category $\mathcal{A} \mathcal{U}$ is locally noetherian, i.e. subobjects of finitely generated

Rational global representation theory

- Let \mathcal{G} be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G}, such as finite abelian p-groups.
- Put $\mathcal{A U}=\left[\mathcal{U}^{\text {op }}\right.$, Vect $]$; then $D(\mathcal{A U})$ is equivalent to the category of globally equivariant spectra with rational homotopy groups, via $X \mapsto\left(G \mapsto \pi_{*}\left(\phi^{G}(X)\right)\right)$.
- For each $G \in \mathcal{U}$ we have a projective generator $e_{G}(K)=\mathbb{Q}[\mathcal{U}(K, G)]$ (which is 0 if $|K|<|G|$).
- $\mathcal{A} \mathcal{U}$ is closed symmetric monoidal with $(X \otimes Y)(G)=X(G) \otimes Y(G)$ and $\mathbb{1}=e_{1}=(G \mapsto \mathbb{Q})$ and $\underline{\operatorname{Hom}}(X, Y)(G)=\mathcal{A U}\left(e_{G} \otimes X, Y\right)$.
- Goal: study $\mathcal{A} \mathcal{U}$, derived category $D(\mathcal{A U})$, Balmer spectrum of compact objects in $D(\mathcal{A} \mathcal{U})$.
- Problem: projective generators are not strongly dualisable in $\mathcal{A} \mathcal{U}$; compact objects are not strongly dualisable in $D(\mathcal{A} \mathcal{U})$.
This blocks most known approaches to the Balmer spectrum.
- Although duality phenomena are unfamiliar, they are still concrete and tractable.

[^1]\rightarrow For abelian p-groups, or elementary abelian p-groups, or cyclic groups: the category $\mathcal{A} \mathcal{U}$ is locally noetherian, i.e. subobjects of finitely generated

Rational global representation theory

- Let \mathcal{G} be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G}, such as finite abelian p-groups.
- Put $\mathcal{A U}=\left[\mathcal{U}^{\text {op }}\right.$, Vect $]$; then $D(\mathcal{A U})$ is equivalent to the category of globally equivariant spectra with rational homotopy groups, via $X \mapsto\left(G \mapsto \pi_{*}\left(\phi^{G}(X)\right)\right)$.
- For each $G \in \mathcal{U}$ we have a projective generator $e_{G}(K)=\mathbb{Q}[\mathcal{U}(K, G)]$ (which is 0 if $|K|<|G|$).
- $\mathcal{A} \mathcal{U}$ is closed symmetric monoidal with $(X \otimes Y)(G)=X(G) \otimes Y(G)$ and $\mathbb{1}=e_{1}=(G \mapsto \mathbb{Q})$ and $\underline{\operatorname{Hom}}(X, Y)(G)=\mathcal{A U}\left(e_{G} \otimes X, Y\right)$.
- Goal: study $\mathcal{A} \mathcal{U}$, derived category $D(\mathcal{A} \mathcal{U})$, Balmer spectrum of compact objects in $D(\mathcal{A} \mathcal{U})$.
- Problem: projective generators are not strongly dualisable in $\mathcal{A} \mathcal{U}$; compact objects are not strongly dualisable in $D(\mathcal{A} \mathcal{U})$.
This blocks most known approaches to the Balmer spectrum.
- Although duality phenomena are unfamiliar, they are still concrete and tractable.
- Another unusual feature: all projectives are injective, but not conversely.

Rational global representation theory

- Let \mathcal{G} be the category of finite groups and conjugacy classes of surjective homomorphisms.
- Let \mathcal{U} be a full subcategory of \mathcal{G}, such as finite abelian p-groups.
- Put $\mathcal{A U}=\left[\mathcal{U}^{\text {op }}\right.$, Vect $]$; then $D(\mathcal{A U})$ is equivalent to the category of globally equivariant spectra with rational homotopy groups, via $X \mapsto\left(G \mapsto \pi_{*}\left(\phi^{G}(X)\right)\right)$.
- For each $G \in \mathcal{U}$ we have a projective generator $e_{G}(K)=\mathbb{Q}[\mathcal{U}(K, G)]$ (which is 0 if $|K|<|G|$).
- $\mathcal{A} \mathcal{U}$ is closed symmetric monoidal with $(X \otimes Y)(G)=X(G) \otimes Y(G)$ and $\mathbb{1}=e_{1}=(G \mapsto \mathbb{Q})$ and $\underline{\operatorname{Hom}}(X, Y)(G)=\mathcal{A U}\left(e_{G} \otimes X, Y\right)$.
- Goal: study $\mathcal{A} \mathcal{U}$, derived category $D(\mathcal{A U})$, Balmer spectrum of compact objects in $D(\mathcal{A} \mathcal{U})$.
- Problem: projective generators are not strongly dualisable in $\mathcal{A} \mathcal{U}$; compact objects are not strongly dualisable in $D(\mathcal{A U})$.
This blocks most known approaches to the Balmer spectrum.
- Although duality phenomena are unfamiliar, they are still concrete and tractable.
- Another unusual feature: all projectives are injective, but not conversely.
- For abelian p-groups, or elementary abelian p-groups, or cyclic groups: the category $\mathcal{A} \mathcal{U}$ is locally noetherian, i.e. subobjects of finitely generated objects are finitely generated.

Tensor structure

- Assume for simplicity that groups in \mathcal{U} are abelian.
- Sav $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G, M \leq H, \alpha: G / N \xrightarrow{\simeq} H / M$ with $W=\{(g, h) \mid \alpha(g N)=h M\}$.
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
\Rightarrow There is an easy isomorphism $e_{G} \otimes e_{H}=\bigoplus_{W} e_{W}$.
- Put $D X=\underline{\operatorname{Hom}}(X, \mathbb{1})$ so X is strongly dualisable iff $D X \otimes X \rightarrow \underline{\operatorname{Hom}(X, X) \text { is iso. }}$
\Rightarrow Suppose that $X \neq 0$ but $X(1)=0$. Then $(D X \otimes X)(1)=0$ but $\operatorname{Hom}(X, X)(1)=\mathcal{A} \mathcal{U}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_{G} is not strongly dualisable unless $G=1$.

In fact X is only strongly dualisable if it is constant and finite-dimensional.

- If $|C|=p$ then $\underline{\operatorname{Hom}}\left(e_{C}, e_{C}\right)=e_{C^{2}} \oplus(2 p-1) e_{C} \oplus(p-1) \mathbb{1}$ but $D\left(e_{C}\right) \otimes e_{C}=e_{C^{2}} \oplus p e_{C}$.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

Tensor structure

- Assume for simplicity that groups in \mathcal{U} are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G, M \leq H, \alpha: G / N \xrightarrow{\leftrightharpoons} H / M$ with $W=\{(g, h) \mid \alpha(g N)=h M\}$
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
\rightarrow There is an easy isomorphism $e_{G} \otimes e_{H}=\bigoplus_{W} e_{W}$.
\rightarrow Put $D X=\operatorname{Hom}(X, \mathbb{1})$ so X is strongly dualisable iff $D X \otimes X \rightarrow \operatorname{Hom}(X, X)$ is iso.
- Suppose that $X \neq 0$ but $X(1)=0$. Then $(D X \otimes X)(1)=0$ but $\operatorname{Hom}(X, X)(1)=\mathcal{A U}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_{G} is not strongly dualisable unless $G=1$.

In fact X is only strongly dualisable if it is constant and finite-dimensional.
 $D\left(e_{C}\right) \otimes e_{C}=e_{C^{2}} \oplus p e_{C}$

- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

Tensor structure

- Assume for simplicity that groups in \mathcal{U} are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective $W=\{(g, h) \mid \alpha(\bar{g} N)=h M\}$
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
\checkmark There is an easy isomorphism $e_{G} \otimes e_{H}=\bigoplus_{W} e_{W}$.
\Rightarrow Put $D X=\underline{\operatorname{Hom}(X, \mathbb{1}) \text { so } X \text { is strongly dualisable iff }}$ $D X \otimes X \rightarrow \underline{\operatorname{Hom}}(X, X)$ is iso.
- Suppose that $X \neq 0$ but $X(1)=0$. Then $(D X \otimes X)(1)=0$ but $\operatorname{Hom}(X, X)(1)=\mathcal{A} \mathcal{U}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_{G} is not strongly dualisable unless $G=1$.

In fact X is only strongly dualisable if it is constant and finite-dimensional.
$\Rightarrow \operatorname{If}|C|=p$ then $\underline{H o m}\left(e_{C}, e_{C}\right)=e_{C^{2}} \oplus(2 p-1) e_{C} \oplus(p-1) \mathbb{1}$ but $D\left(e_{C}\right) \otimes e_{C}=e_{C^{2}} \oplus p e_{C}$

- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

Tensor structure

- Assume for simplicity that groups in \mathcal{U} are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G, M \leq H, \alpha: G / N \xrightarrow{\simeq} H / M$ with $W=\{(g, h) \mid \alpha(g N)=h M\}$.
\Rightarrow Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
\checkmark There is an easy isomorphism $e_{G} \otimes e_{H}=\bigoplus_{W} e_{W}$.
- Put $D X=\underline{\operatorname{Hom}(X, \mathbb{1}) \text { so } X \text { is strongly dualisable iff }}$ $D X \otimes X \rightarrow \underline{H o m}(X, X)$ is iso.
- Suppose that $X \neq 0$ but $X(1)=0$. Then $(D X \otimes X)(1)=0$ but Hom $(X, X)(1)=\mathcal{A} \mathcal{U}(X, X) \neq 0$ so X is not strongly dualisable.
\Rightarrow Thus e_{G} is not strongly dualisable unless $G=1$. In fact X is only strongly dualisable if it is constant and finite-dimensional.
 $D\left(e_{C}\right) \otimes e_{C}=e_{C^{2}} \oplus p e_{C}$
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

Tensor structure

- Assume for simplicity that groups in \mathcal{U} are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G, M \leq H, \alpha: G / N \xrightarrow{\simeq} H / M$ with $W=\{(g, h) \mid \alpha(g N)=h M\}$.
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.

There is an easy isomorphism $e_{G} \otimes e_{H}=\bigoplus_{W} e_{W}$.

- Put $D X=\underline{\operatorname{Hom}}(X, \mathbb{1})$ so X is strongly dualisable iff $D X \otimes X \rightarrow \underline{\operatorname{Hom}}(X, X)$ is iso.
\Rightarrow Suppose that $X \neq 0$ but $X(1)=0$. Then $(D X \otimes X)(1)=0$ but $\operatorname{Hom}(X, X)(1)=\mathcal{A} \mathcal{U}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_{G} is not strongly dualisable unless $G=1$. In fact X is only strongly dualisable if it is constant and finite-dimensional.
\checkmark If $|C|=p$ then $\underline{\operatorname{Hom}}\left(e_{C}, e_{C}\right)=e_{C^{2}} \oplus(2 p-1) e_{C} \oplus(p-1) \mathbb{1}$ but $D\left(e_{C}\right) \otimes e_{C}=e_{C^{2}} \oplus p e_{C}$
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

Tensor structure

- Assume for simplicity that groups in \mathcal{U} are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G, M \leq H, \alpha: G / N \xrightarrow{\simeq} H / M$ with $W=\{(g, h) \mid \alpha(g N)=h M\}$.
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_{G} \otimes e_{H}=\bigoplus_{W} e_{W}$.
 $D X \otimes X \rightarrow \underline{\operatorname{Hom}}(X, X)$ is iso.
- Suppose that $X \neq 0$ but $X(1)=0$. Then $(D X \otimes X)(1)=0$ but $\operatorname{Hom}(X, X)(1)=\mathcal{A} \mathcal{U}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_{G} is not strongly dualisable unless $G=1$.

In fact X is only strongly dualisable if it is constant and finite-dimensional.
$\Rightarrow \operatorname{If}|C|=p$ then H om $\left(e_{C}, e_{C}\right)=e_{C^{2}} \oplus(2 p-1) e_{C} \oplus(p-1) \mathbb{1}$ but $D\left(e_{C}\right) \otimes e_{C}=e_{C^{2}} \oplus p e_{C}$

- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

Tensor structure

- Assume for simplicity that groups in \mathcal{U} are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G, M \leq H, \alpha: G / N \xrightarrow{\simeq} H / M$ with $W=\{(g, h) \mid \alpha(g N)=h M\}$.
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_{G} \otimes e_{H}=\bigoplus_{W} e_{W}$.
- Put $D X=\underline{\operatorname{Hom}}(X, \mathbb{1})$ so X is strongly dualisable iff $D X \otimes X \rightarrow \underline{\operatorname{Hom}(X, X) \text { is iso. }}$
$\begin{aligned} & \text { Suppose that } X \neq 0 \text { but } X(1)=0 \text {. Then }(D X \otimes X)(1)=0 \text { but } \\ & H o m(X, X)(1)=\mathcal{A} \mathcal{U}(X, X) \neq 0 \text { so } X \text { is not strongly dualisable. }\end{aligned}$
- Thus e_{G} is not strongly dualisable unless $G=1$.

In fact X is only strongly dualisable if it is constant and finite-dimensional
$\Rightarrow \operatorname{If}|C|=p$ then Hom $\left(e_{C}, e_{C}\right)=e_{C^{2}} \oplus(2 p-1) e_{C} \oplus(p-1) \mathbb{1}$ but
$D\left(e_{C}\right) \otimes e_{C}=e_{C^{2}} \oplus p e_{C}$

- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

Tensor structure

- Assume for simplicity that groups in \mathcal{U} are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G, M \leq H, \alpha: G / N \xrightarrow{\simeq} H / M$ with $W=\{(g, h) \mid \alpha(\bar{g} N)=h \bar{M}\}$.
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_{G} \otimes e_{H}=\bigoplus_{W} e_{W}$.
- Put $D X=\underline{\operatorname{Hom}}(X, \mathbb{1})$ so X is strongly dualisable iff $D X \otimes X \rightarrow \underline{\operatorname{Hom}(X, X) \text { is iso. }}$
- Suppose that $X \neq 0$ but $X(1)=0$. \square $\operatorname{Hom}(X, X)(1)=\mathcal{A} \mathcal{U}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_{G} is not strongly dualisable unless $G=1$. In fact X is only strongly dualisable if it is constant and finite-dimensional
$\Rightarrow \operatorname{If}|C|=p$ then H om $\left(e_{C}, e_{C}\right)=e_{C^{2}} \oplus(2 p-1) e_{C} \oplus(p-1) \mathbb{1}$ but $D\left(e_{C}\right) \otimes e_{C}=e_{C^{2}} \oplus p e_{C}$
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

Tensor structure

- Assume for simplicity that groups in \mathcal{U} are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G, M \leq H, \alpha: G / N \xrightarrow{\simeq} H / M$ with $W=\{(g, h) \mid \alpha(g N)=h M\}$.
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_{G} \otimes e_{H}=\bigoplus_{W} e_{W}$.
- Put $D X=\underline{\operatorname{Hom}}(X, \mathbb{1})$ so X is strongly dualisable iff $D X \otimes X \rightarrow \underline{\operatorname{Hom}}(X, X)$ is iso.
- Suppose that $X \neq 0$ but $X(1)=0$. Then $(D X \otimes X)(1)=0$ but $\underline{\operatorname{Hom}}(X, X)(1)=\mathcal{A U}(X, X) \neq 0$ so X is not strongly dualisable.

In fact X is only strongly dualisable if it is constant and finite-dimensional

- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

Tensor structure

- Assume for simplicity that groups in \mathcal{U} are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G, M \leq H, \alpha: G / N \xrightarrow{\simeq} H / M$ with $W=\{(g, h) \mid \alpha(g N)=h M\}$.
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_{G} \otimes e_{H}=\bigoplus_{W} e_{W}$.
- Put $D X=\underline{\operatorname{Hom}}(X, \mathbb{1})$ so X is strongly dualisable iff $D X \otimes X \rightarrow \underline{\operatorname{Hom}}(X, X)$ is iso.
- Suppose that $X \neq 0$ but $X(1)=0$. Then $(D X \otimes X)(1)=0$ but Hom $(X, X)(1)=\mathcal{A U}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_{G} is not strongly dualisable unless $G=1$.

In fact X is only strongly dualisable if it is constant and finite-dimensional

- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

Tensor structure

- Assume for simplicity that groups in \mathcal{U} are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G, M \leq H, \alpha: G / N \xrightarrow{\simeq} H / M$ with $W=\{(g, h) \mid \alpha(g N)=h M\}$.
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_{G} \otimes e_{H}=\bigoplus_{W} e_{W}$.
- Put $D X=\underline{\operatorname{Hom}}(X, \mathbb{1})$ so X is strongly dualisable iff $D X \otimes X \rightarrow \underline{\operatorname{Hom}}(X, X)$ is iso.
- Suppose that $X \neq 0$ but $X(1)=0$. Then $(D X \otimes X)(1)=0$ but $\operatorname{Hom}(X, X)(1)=\mathcal{A U}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_{G} is not strongly dualisable unless $G=1$.

In fact X is only strongly dualisable if it is constant and finite-dimensional.
\rightarrow For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

Tensor structure

- Assume for simplicity that groups in \mathcal{U} are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G, M \leq H, \alpha: G / N \xrightarrow{\simeq} H / M$ with $W=\{(g, h) \mid \alpha(g N)=h M\}$.
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_{G} \otimes e_{H}=\bigoplus_{W} e_{W}$.
- Put $D X=\underline{\operatorname{Hom}}(X, \mathbb{1})$ so X is strongly dualisable iff $D X \otimes X \rightarrow \underline{\operatorname{Hom}}(X, X)$ is iso.
- Suppose that $X \neq 0$ but $X(1)=0$. Then $(D X \otimes X)(1)=0$ but Hom $(X, X)(1)=\mathcal{A U}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_{G} is not strongly dualisable unless $G=1$.

In fact X is only strongly dualisable if it is constant and finite-dimensional.

- If $|C|=p$ then $\underline{\operatorname{Hom}}\left(e_{C}, e_{C}\right)=e_{C^{2}} \oplus(2 p-1) e_{C} \oplus(p-1) \mathbb{1}$ but $D\left(e_{C}\right) \otimes e_{C}=e_{C^{2}} \oplus p e_{C}$.
\rightarrow For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

Tensor structure

- Assume for simplicity that groups in \mathcal{U} are abelian.
- Say $W \leq G \times H$ is wide if projections to G and H are both surjective iff there exists $N \leq G, M \leq H, \alpha: G / N \xrightarrow{\simeq} H / M$ with $W=\{(g, h) \mid \alpha(g N)=h M\}$.
- Example: $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- There is an easy isomorphism $e_{G} \otimes e_{H}=\bigoplus_{W} e_{W}$.
- Put $D X=\underline{\operatorname{Hom}}(X, \mathbb{1})$ so X is strongly dualisable iff $D X \otimes X \rightarrow \underline{\operatorname{Hom}}(X, X)$ is iso.
- Suppose that $X \neq 0$ but $X(1)=0$. Then $(D X \otimes X)(1)=0$ but Hom $(X, X)(1)=\mathcal{A U}(X, X) \neq 0$ so X is not strongly dualisable.
- Thus e_{G} is not strongly dualisable unless $G=1$.

In fact X is only strongly dualisable if it is constant and finite-dimensional.

- If $|C|=p$ then $\underline{\operatorname{Hom}}\left(e_{C}, e_{C}\right)=e_{C^{2}} \oplus(2 p-1) e_{C} \oplus(p-1) \mathbb{1}$ but $D\left(e_{C}\right) \otimes e_{C}=e_{C^{2}} \oplus p e_{C}$.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are fiddly.

More about duals and internal homs

- For $N \leq G$ we define

$$
\theta_{N}:\left(e_{G / N} Q e_{G}\right)(K)=\mathbb{Q}[\mathcal{U}(K, G / N) \times \mathcal{U}(K, G)] \rightarrow \mathbb{1}(K)=\mathbb{Q}
$$

by $\theta_{N}(K \xrightarrow{\alpha} G / N, K \xrightarrow{\beta} G)=1$ if $\alpha=\pi \circ \beta$, and $\theta_{N}(\alpha, \beta)=0$ otherwise. Adjoint to $\theta_{N}: e_{G / N} \otimes e_{G} \rightarrow \mathbb{1}$ we have $\theta_{N}^{\#}: e_{G / N} \rightarrow \underline{\operatorname{Hom}}\left(e_{G}, \mathbb{1}\right)=D\left(e_{G}\right)$.

- Fact: these maps give $\bigoplus_{N} e_{G / N} \xrightarrow{\simeq} D\left(e_{G}\right)$.
- We will show later that $\mathbb{1}$ is injective. Also any X is flat, and it follows that $D X$ is injective. As e_{G} is a retract of $D\left(e_{G}\right)$, it is also injective.
It follows that all projectives are injective.
- However, $t_{G}(K)=\operatorname{Map}(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
- A virtual homomorphism from G to H is a pair $\left(A, A^{\prime}\right)$ where $A^{\prime} \leq A \leq G \times H$ and A is wide and $A^{\prime} \cap(1 \times H)=1$ and $A / A^{\prime} \in \mathcal{U}$.
$\rightarrow \underline{\operatorname{Hom}}\left(e_{G}, e_{H}\right)$ has a natural filtration with associated graded $\bigoplus_{\left(A, A^{\prime}\right)} e_{A / A^{\prime}}$. As $e_{A / A^{\prime}}$ is projective, the filtration splits and $\operatorname{Hom}\left(e_{G}, e_{H}\right)$ is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

More about duals and internal homs

- For $N \leq G$ we define

$$
\theta_{N}:\left(e_{G / N} \otimes e_{G}\right)(K)=\mathbb{Q}[\mathcal{U}(K, G / N) \times \mathcal{U}(K, G)] \rightarrow \mathbb{1}(K)=\mathbb{Q}
$$

by $\theta_{N}(K \xrightarrow{\alpha} G / N, K \xrightarrow{\beta} G)=1$ if $\alpha=\pi \circ \beta$, and $\theta_{N}(\alpha, \beta)=0$ otherwise.
\rightarrow Fact: these maps give $\bigoplus_{N} e_{G / N} \xrightarrow{\simeq} D\left(e_{G}\right)$.

- We will show later that $\mathbb{1}$ is injective.

Also any X is flat, and it follows that $D X$ is injective.
As e_{G} is a retract of $D\left(e_{G}\right)$, it is also injective.
It follows that all projectives are injective.
\Rightarrow However, $t_{G}(K)=\operatorname{Map}(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.

- A virtual homomorphism from G to H is a pair $\left(A, A^{\prime}\right)$ where $A^{\prime} \leq A \leq G \times H$ and A is wide and $A^{\prime} \cap(1 \times H)=1$ and $A / A^{\prime} \in \mathcal{U}$
$\Rightarrow \underline{\operatorname{Hom}}\left(e_{G}, e_{H}\right)$ has a natural filtration with associated graded $\bigoplus_{\left(A, A^{\prime}\right)} e_{A / A^{\prime}}$ As $e_{A / A^{\prime}}$ is projective, the filtration splits and $\operatorname{Hom}\left(e_{G}, e_{H}\right)$ is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

More about duals and internal homs

- For $N \leq G$ we define

$$
\theta_{N}:\left(e_{G / N} \otimes e_{G}\right)(K)=\mathbb{Q}[\mathcal{U}(K, G / N) \times \mathcal{U}(K, G)] \rightarrow \mathbb{1}(K)=\mathbb{Q}
$$

by $\theta_{N}(K \xrightarrow{\alpha} G / N, K \xrightarrow{\beta} G)=1$ if $\alpha=\pi \circ \beta$, and $\theta_{N}(\alpha, \beta)=0$ otherwise. Adjoint to $\theta_{N}: e_{G / N} \otimes e_{G} \rightarrow \mathbb{1}$ we have $\theta_{N}^{\#}: e_{G / N} \rightarrow \underline{\operatorname{Hom}}\left(e_{G}, \mathbb{1}\right)=D\left(e_{G}\right)$.
\Rightarrow Fact: these maps give $\bigoplus_{N} e_{G / N} \xrightarrow{\simeq} D\left(e_{G}\right)$.

- We will show later that $\mathbb{1}$ is injective.

Also any X is flat, and it follows that $D X$ is injective.
As e_{G} is a retract of $D\left(e_{G}\right)$, it is also injective.
It follows that all projectives are injective.

- However, $t_{G}(K)=\operatorname{Map}(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
- A virtual homomorphism from G to H is a pair $\left(A, A^{\prime}\right)$ where
$-\underline{\operatorname{Hom}}\left(e_{G}, e_{H}\right)$ has a natural filtration with associated graded $\bigoplus_{\left(A, A^{\prime}\right)} e_{A / A^{\prime}}$ As $e_{A / A^{\prime}}$ is projective, the filtration splits and $\operatorname{Hom}\left(e_{G}, e_{H}\right)$ is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

More about duals and internal homs

- For $N \leq G$ we define

$$
\theta_{N}:\left(e_{G / N} \otimes e_{G}\right)(K)=\mathbb{Q}[\mathcal{U}(K, G / N) \times \mathcal{U}(K, G)] \rightarrow \mathbb{1}(K)=\mathbb{Q}
$$

by $\theta_{N}(K \xrightarrow{\alpha} G / N, K \xrightarrow{\beta} G)=1$ if $\alpha=\pi \circ \beta$, and $\theta_{N}(\alpha, \beta)=0$ otherwise.
Adjoint to $\theta_{N}: e_{G / N} \otimes e_{G} \rightarrow \mathbb{1}$ we have $\theta_{N}^{\#}: e_{G / N} \rightarrow \underline{\operatorname{Hom}}\left(e_{G}, \mathbb{1}\right)=D\left(e_{G}\right)$.

- Fact: these maps give $\bigoplus_{N} e_{G / N} \xrightarrow{\simeq} D\left(e_{G}\right)$.

We will show later that $\mathbb{1}$ is injective.
Also any X is flat, and it follows that $D X$ is injective.
As e_{G} is a retract of $D\left(e_{G}\right)$, it is also injective.
It follows that all projectives are injective.

- However, $t_{G}(K)=\operatorname{Map}(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
- A virtual homomorphism from G to H is a pair $\left(A, A^{\prime}\right)$ where
$-\underline{\operatorname{Hom}}\left(e_{G}, e_{H}\right)$ has a natural filtration with associated graded $\bigoplus_{\left(A, A^{\prime}\right)} e_{A / A^{\prime}}$ As $e_{A / A^{\prime}}$ is projective, the filtration splits and $\operatorname{Hom}\left(e_{G}, e_{H}\right)$ is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

More about duals and internal homs

- For $N \leq G$ we define

$$
\theta_{N}:\left(e_{G / N} \otimes e_{G}\right)(K)=\mathbb{Q}[\mathcal{U}(K, G / N) \times \mathcal{U}(K, G)] \rightarrow \mathbb{1}(K)=\mathbb{Q}
$$

by $\theta_{N}(K \xrightarrow{\alpha} G / N, K \xrightarrow{\beta} G)=1$ if $\alpha=\pi \circ \beta$, and $\theta_{N}(\alpha, \beta)=0$ otherwise.
Adjoint to $\theta_{N}: e_{G / N} \otimes e_{G} \rightarrow \mathbb{1}$ we have $\theta_{N}^{\#}: e_{G / N} \rightarrow \underline{\operatorname{Hom}}\left(e_{G}, \mathbb{1}\right)=D\left(e_{G}\right)$.

- Fact: these maps give $\bigoplus_{N} e_{G / N} \xrightarrow{\simeq} D\left(e_{G}\right)$.
- We will show later that $\mathbb{1}$ is injective.

Also any X is flat, and it follows that $D X$ is injective.
As e_{G} is a retract of $D\left(e_{G}\right)$, it is also injective.
It follows that all projectives are injective.

- However, $t_{G}(K)=\operatorname{Map}(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
- A virtual homomorphism from G to H is a pair $\left(A, A^{\prime}\right)$ where
$-\underline{\operatorname{Hom}}\left(e_{G}, e_{H}\right)$ has a natural filtration with associated graded $\bigoplus_{\left(A, A^{\prime}\right)} e_{A / A^{\prime}}$ As $e_{A / A^{\prime}}$ is projective, the filtration splits and $\operatorname{Hom}\left(e_{G}, e_{H}\right)$ is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

More about duals and internal homs

- For $N \leq G$ we define

$$
\theta_{N}:\left(e_{G / N} \otimes e_{G}\right)(K)=\mathbb{Q}[\mathcal{U}(K, G / N) \times \mathcal{U}(K, G)] \rightarrow \mathbb{1}(K)=\mathbb{Q}
$$

by $\theta_{N}(K \xrightarrow{\alpha} G / N, K \xrightarrow{\beta} G)=1$ if $\alpha=\pi \circ \beta$, and $\theta_{N}(\alpha, \beta)=0$ otherwise.
Adjoint to $\theta_{N}: e_{G / N} \otimes e_{G} \rightarrow \mathbb{1}$ we have $\theta_{N}^{\#}: e_{G / N} \rightarrow \underline{\operatorname{Hom}}\left(e_{G}, \mathbb{1}\right)=D\left(e_{G}\right)$.

- Fact: these maps give $\bigoplus_{N} e_{G / N} \xrightarrow{\simeq} D\left(e_{G}\right)$.
- We will show later that $\mathbb{1}$ is injective.

Also any X is flat, and it follows that $D X$ is injective.
It follows that all projectives are injective.

- However, $t_{G}(K)=\operatorname{Map}(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
- A virtual homomorphism from G to H is a pair $\left(A, A^{\prime}\right)$ where
$-\underline{\operatorname{Hom}}\left(e_{G}, e_{H}\right)$ has a natural filtration with associated graded $\bigoplus_{\left(A, A^{\prime}\right)} e_{A / A^{\prime}}$ As $e_{A / A^{\prime}}$ is projective, the filtration splits and $\operatorname{Hom}\left(e_{G}, e_{H}\right)$ is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

More about duals and internal homs

- For $N \leq G$ we define

$$
\theta_{N}:\left(e_{G / N} \otimes e_{G}\right)(K)=\mathbb{Q}[\mathcal{U}(K, G / N) \times \mathcal{U}(K, G)] \rightarrow \mathbb{1}(K)=\mathbb{Q}
$$

by $\theta_{N}(K \xrightarrow{\alpha} G / N, K \xrightarrow{\beta} G)=1$ if $\alpha=\pi \circ \beta$, and $\theta_{N}(\alpha, \beta)=0$ otherwise.
Adjoint to $\theta_{N}: e_{G / N} \otimes e_{G} \rightarrow \mathbb{1}$ we have $\theta_{N}^{\#}: e_{G / N} \rightarrow \underline{\operatorname{Hom}}\left(e_{G}, \mathbb{1}\right)=D\left(e_{G}\right)$.

- Fact: these maps give $\bigoplus_{N} e_{G / N} \xrightarrow{\simeq} D\left(e_{G}\right)$.
- We will show later that $\mathbb{1}$ is injective.

Also any X is flat, and it follows that $D X$ is injective. As e_{G} is a retract of $D\left(e_{G}\right)$, it is also injective.
\rightarrow However, $t_{G}(K)=\operatorname{Map}(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.

- A virtual homomorphism from G to H is a nair ($A A^{\prime}$) where
$\rightarrow \underline{\operatorname{Hom}}\left(e_{G}, e_{H}\right)$ has a natural filtration with associated graded $\bigoplus_{\left(A, A^{\prime}\right)} e_{A / A^{\prime}}$ As $e_{A / A^{\prime}}$ is projective, the filtration splits and $\operatorname{Hom}\left(e_{G}, e_{H}\right)$ is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

More about duals and internal homs

- For $N \leq G$ we define

$$
\theta_{N}:\left(e_{G / N} \otimes e_{G}\right)(K)=\mathbb{Q}[\mathcal{U}(K, G / N) \times \mathcal{U}(K, G)] \rightarrow \mathbb{1}(K)=\mathbb{Q}
$$

by $\theta_{N}(K \xrightarrow{\alpha} G / N, K \xrightarrow{\beta} G)=1$ if $\alpha=\pi \circ \beta$, and $\theta_{N}(\alpha, \beta)=0$ otherwise.
Adjoint to $\theta_{N}: e_{G / N} \otimes e_{G} \rightarrow \mathbb{1}$ we have $\theta_{N}^{\#}: e_{G / N} \rightarrow \underline{\operatorname{Hom}}\left(e_{G}, \mathbb{1}\right)=D\left(e_{G}\right)$.

- Fact: these maps give $\bigoplus_{N} e_{G / N} \xrightarrow{\simeq} D\left(e_{G}\right)$.
- We will show later that $\mathbb{1}$ is injective.

Also any X is flat, and it follows that $D X$ is injective. As e_{G} is a retract of $D\left(e_{G}\right)$, it is also injective. It follows that all projectives are injective.
\rightarrow However, $t_{G}(K)=\operatorname{Map}(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.

- A virtual homomorphism from G to H is a pair $\left(A, A^{\prime}\right)$ where
$\rightarrow \underline{\operatorname{Hom}}\left(e_{G}, e_{H}\right)$ has a natural filtration with associated graded $\bigoplus_{\left(A, A^{\prime}\right)} e_{A / A^{\prime}}$ As $e_{A / A^{\prime}}$ is projective, the filtration splits and $\operatorname{Hom}\left(e_{G}, e_{H}\right)$ is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

More about duals and internal homs

- For $N \leq G$ we define

$$
\theta_{N}:\left(e_{G / N} \otimes e_{G}\right)(K)=\mathbb{Q}[\mathcal{U}(K, G / N) \times \mathcal{U}(K, G)] \rightarrow \mathbb{1}(K)=\mathbb{Q}
$$

by $\theta_{N}(K \xrightarrow{\alpha} G / N, K \xrightarrow{\beta} G)=1$ if $\alpha=\pi \circ \beta$, and $\theta_{N}(\alpha, \beta)=0$ otherwise.
Adjoint to $\theta_{N}: e_{G / N} \otimes e_{G} \rightarrow \mathbb{1}$ we have $\theta_{N}^{\#}: e_{G / N} \rightarrow \underline{\operatorname{Hom}}\left(e_{G}, \mathbb{1}\right)=D\left(e_{G}\right)$.

- Fact: these maps give $\bigoplus_{N} e_{G / N} \xrightarrow{\simeq} D\left(e_{G}\right)$.
- We will show later that $\mathbb{1}$ is injective.

Also any X is flat, and it follows that $D X$ is injective.
As e_{G} is a retract of $D\left(e_{G}\right)$, it is also injective.
It follows that all projectives are injective.

- However, $t_{G}(K)=\operatorname{Map}(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
$\rightarrow \underline{\operatorname{Hom}}\left(e_{G}, e_{H}\right)$ has a natural filtration with associated graded $\bigoplus_{\left(A, A^{\prime}\right)} e_{A / A^{\prime}}$ As $e_{A / A^{\prime}}$ is projective, the filtration splits and $\operatorname{Hom}\left(e_{G}, e_{H}\right)$ is projective. We do not know whether the filtration splits naturally.

More about duals and internal homs

- For $N \leq G$ we define

$$
\theta_{N}:\left(e_{G / N} \otimes e_{G}\right)(K)=\mathbb{Q}[\mathcal{U}(K, G / N) \times \mathcal{U}(K, G)] \rightarrow \mathbb{1}(K)=\mathbb{Q}
$$

by $\theta_{N}(K \xrightarrow{\alpha} G / N, K \xrightarrow{\beta} G)=1$ if $\alpha=\pi \circ \beta$, and $\theta_{N}(\alpha, \beta)=0$ otherwise.
Adjoint to $\theta_{N}: e_{G / N} \otimes e_{G} \rightarrow \mathbb{1}$ we have $\theta_{N}^{\#}: e_{G / N} \rightarrow \underline{\operatorname{Hom}}\left(e_{G}, \mathbb{1}\right)=D\left(e_{G}\right)$.

- Fact: these maps give $\bigoplus_{N} e_{G / N} \xrightarrow{\simeq} D\left(e_{G}\right)$.
- We will show later that $\mathbb{1}$ is injective. Also any X is flat, and it follows that $D X$ is injective. As e_{G} is a retract of $D\left(e_{G}\right)$, it is also injective. It follows that all projectives are injective.
- However, $t_{G}(K)=\operatorname{Map}(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
- A virtual homomorphism from G to H is a pair $\left(A, A^{\prime}\right)$ where $A^{\prime} \leq A \leq G \times H$ and A is wide and $A^{\prime} \cap(1 \times H)=1$ and $A / A^{\prime} \in \mathcal{U}$.
$\rightarrow H$ Hom $\left(e_{G}, e_{H}\right)$ has a natural filtration with associated graded $\bigoplus_{\left(A, A^{\prime}\right)} e_{A / A^{\prime}}$ As $e_{A / A^{\prime}}$ is projective, the filtration splits and $\operatorname{Hom}\left(e_{G}, e_{H}\right)$ is projective. We do not know whether the filtration splits naturally.

More about duals and internal homs

- For $N \leq G$ we define

$$
\theta_{N}:\left(e_{G / N} \otimes e_{G}\right)(K)=\mathbb{Q}[\mathcal{U}(K, G / N) \times \mathcal{U}(K, G)] \rightarrow \mathbb{1}(K)=\mathbb{Q}
$$

by $\theta_{N}(K \xrightarrow{\alpha} G / N, K \xrightarrow{\beta} G)=1$ if $\alpha=\pi \circ \beta$, and $\theta_{N}(\alpha, \beta)=0$ otherwise.
Adjoint to $\theta_{N}: e_{G / N} \otimes e_{G} \rightarrow \mathbb{1}$ we have $\theta_{N}^{\#}: e_{G / N} \rightarrow \underline{\operatorname{Hom}}\left(e_{G}, \mathbb{1}\right)=D\left(e_{G}\right)$.

- Fact: these maps give $\bigoplus_{N} e_{G / N} \xrightarrow{\simeq} D\left(e_{G}\right)$.
- We will show later that $\mathbb{1}$ is injective. Also any X is flat, and it follows that $D X$ is injective. As e_{G} is a retract of $D\left(e_{G}\right)$, it is also injective. It follows that all projectives are injective.
- However, $t_{G}(K)=\operatorname{Map}(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
- A virtual homomorphism from G to H is a pair $\left(A, A^{\prime}\right)$ where $A^{\prime} \leq A \leq G \times H$ and A is wide and $A^{\prime} \cap(1 \times H)=1$ and $A / A^{\prime} \in \mathcal{U}$.
$-\underline{\operatorname{Hom}}\left(e_{G}, e_{H}\right)$ has a natural filtration with associated graded $\bigoplus_{\left(A, A^{\prime}\right)} e_{A / A^{\prime}}$.
As $e_{A / A^{\prime}}$ is projective, the filtration splits and $\operatorname{Hom}\left(e_{G}, e_{H}\right)$ is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case we need to nass to conjugacy classes in the right way, but the details are even more fiddly.

More about duals and internal homs

- For $N \leq G$ we define

$$
\theta_{N}:\left(e_{G / N} \otimes e_{G}\right)(K)=\mathbb{Q}[\mathcal{U}(K, G / N) \times \mathcal{U}(K, G)] \rightarrow \mathbb{1}(K)=\mathbb{Q}
$$

by $\theta_{N}(K \xrightarrow{\alpha} G / N, K \xrightarrow{\beta} G)=1$ if $\alpha=\pi \circ \beta$, and $\theta_{N}(\alpha, \beta)=0$ otherwise.
Adjoint to $\theta_{N}: e_{G / N} \otimes e_{G} \rightarrow \mathbb{1}$ we have $\theta_{N}^{\#}: e_{G / N} \rightarrow \underline{\operatorname{Hom}}\left(e_{G}, \mathbb{1}\right)=D\left(e_{G}\right)$.

- Fact: these maps give $\bigoplus_{N} e_{G / N} \xrightarrow{\simeq} D\left(e_{G}\right)$.
- We will show later that $\mathbb{1}$ is injective. Also any X is flat, and it follows that $D X$ is injective. As e_{G} is a retract of $D\left(e_{G}\right)$, it is also injective. It follows that all projectives are injective.
- However, $t_{G}(K)=\operatorname{Map}(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
- A virtual homomorphism from G to H is a pair $\left(A, A^{\prime}\right)$ where $A^{\prime} \leq A \leq G \times H$ and A is wide and $A^{\prime} \cap(1 \times H)=1$ and $A / A^{\prime} \in \mathcal{U}$.
$-\operatorname{Hom}\left(e_{G}, e_{H}\right)$ has a natural filtration with associated graded $\bigoplus_{\left(A, A^{\prime}\right)} e_{A / A^{\prime}}$. As $e_{A / A^{\prime}}$ is projective, the filtration splits and $\operatorname{Hom}\left(e_{G}, e_{H}\right)$ is projective.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

More about duals and internal homs

- For $N \leq G$ we define

$$
\theta_{N}:\left(e_{G / N} \otimes e_{G}\right)(K)=\mathbb{Q}[\mathcal{U}(K, G / N) \times \mathcal{U}(K, G)] \rightarrow \mathbb{1}(K)=\mathbb{Q}
$$

by $\theta_{N}(K \xrightarrow{\alpha} G / N, K \xrightarrow{\beta} G)=1$ if $\alpha=\pi \circ \beta$, and $\theta_{N}(\alpha, \beta)=0$ otherwise.
Adjoint to $\theta_{N}: e_{G / N} \otimes e_{G} \rightarrow \mathbb{1}$ we have $\theta_{N}^{\#}: e_{G / N} \rightarrow \underline{\operatorname{Hom}}\left(e_{G}, \mathbb{1}\right)=D\left(e_{G}\right)$.

- Fact: these maps give $\bigoplus_{N} e_{G / N} \xrightarrow{\simeq} D\left(e_{G}\right)$.
- We will show later that $\mathbb{1}$ is injective. Also any X is flat, and it follows that $D X$ is injective. As e_{G} is a retract of $D\left(e_{G}\right)$, it is also injective. It follows that all projectives are injective.
- However, $t_{G}(K)=\operatorname{Map}(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
- A virtual homomorphism from G to H is a pair $\left(A, A^{\prime}\right)$ where $A^{\prime} \leq A \leq G \times H$ and A is wide and $A^{\prime} \cap(1 \times H)=1$ and $A / A^{\prime} \in \mathcal{U}$.
$-\underline{\operatorname{Hom}}\left(e_{G}, e_{H}\right)$ has a natural filtration with associated graded $\bigoplus_{\left(A, A^{\prime}\right)} e_{A / A^{\prime}}$. As $e_{A / A^{\prime}}$ is projective, the filtration splits and $\underline{\operatorname{Hom}}\left(e_{G}, e_{H}\right)$ is projective. We do not know whether the filtration splits naturally.

More about duals and internal homs

- For $N \leq G$ we define

$$
\theta_{N}:\left(e_{G / N} \otimes e_{G}\right)(K)=\mathbb{Q}[\mathcal{U}(K, G / N) \times \mathcal{U}(K, G)] \rightarrow \mathbb{1}(K)=\mathbb{Q}
$$

by $\theta_{N}(K \xrightarrow{\alpha} G / N, K \xrightarrow{\beta} G)=1$ if $\alpha=\pi \circ \beta$, and $\theta_{N}(\alpha, \beta)=0$ otherwise.
Adjoint to $\theta_{N}: e_{G / N} \otimes e_{G} \rightarrow \mathbb{1}$ we have $\theta_{N}^{\#}: e_{G / N} \rightarrow \underline{\operatorname{Hom}}\left(e_{G}, \mathbb{1}\right)=D\left(e_{G}\right)$.

- Fact: these maps give $\bigoplus_{N} e_{G / N} \xrightarrow{\simeq} D\left(e_{G}\right)$.
- We will show later that $\mathbb{1}$ is injective. Also any X is flat, and it follows that $D X$ is injective. As e_{G} is a retract of $D\left(e_{G}\right)$, it is also injective. It follows that all projectives are injective.
- However, $t_{G}(K)=\operatorname{Map}(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
- A virtual homomorphism from G to H is a pair $\left(A, A^{\prime}\right)$ where $A^{\prime} \leq A \leq G \times H$ and A is wide and $A^{\prime} \cap(1 \times H)=1$ and $A / A^{\prime} \in \mathcal{U}$.
$-\underline{\operatorname{Hom}}\left(e_{G}, e_{H}\right)$ has a natural filtration with associated graded $\bigoplus_{\left(A, A^{\prime}\right)} e_{A / A^{\prime}}$. As $e_{A / A^{\prime}}$ is projective, the filtration splits and $\underline{\operatorname{Hom}}\left(e_{G}, e_{H}\right)$ is projective. We do not know whether the filtration splits naturally.
- For the nonabelian case, we need to pass to conjugacy classes in the right way, but the details are even more fiddly.

Asymptotic freedom

- Let $F_{n m}$ be the quotient of the free group on n generators by the intersection of all normal subgroups N with quotient in $\mathcal{U}_{\leq m}$. Under mild conditions on \mathcal{U} we have $F_{n m} \in \mathcal{U}$.
- Given morphisms $F_{n m} \xrightarrow{\phi} H \stackrel{\alpha}{\leftarrow} G$ in \mathcal{U} with $|G| \leq \min (n, m)$, we can choose $\psi: F_{n m} \rightarrow G$ in \mathcal{U} with $\alpha \psi=\phi$.
(Some care is needed to ensure that ψ is surjective.)
- We can choose a tower $G_{0} \leftarrow G_{1} \leftarrow G_{2} \leftarrow \cdots$ in \mathcal{U} such that G_{n} gets rapidly larger and freer as $n \rightarrow \infty$.
- We then find that

$$
\underset{G \in \mathcal{U}^{\text {op }}}{\lim } X(G)=\underset{n}{\lim } X\left(G_{n}\right)_{\text {Out }\left(G_{n}\right)},
$$

and this is an exact functor of X (because we work over \mathbb{Q}).
$-\mathcal{A U}(X, \mathbb{1})$ is hom from the above colimit to \mathbb{Q}; so $\mathbb{1}$ is injective.
\Rightarrow As mentioned previously: it follows that $D\left(e_{G}\right)$ is injective, then that e_{G} is injective, then that all projectives are injective.

- Using this: any object of finite projective dimension is projective.

Asymptotic freedom

- Let $F_{n m}$ be the quotient of the free group on n generators by the intersection of all normal subgroups N with quotient in $\mathcal{U}_{\leq m}$.
Under mild conditions on \mathcal{U} we have $F_{n m} \in \mathcal{U}$.
- Given morphisms $F_{n m} \xrightarrow{\phi} H \stackrel{\alpha}{\leftarrow} G$ in \mathcal{U} with $|G| \leq \min (n, m)$, we can choose $\psi: F_{n m} \rightarrow G$ in \mathcal{U} with $\alpha \psi=\phi$.
(Some care is needed to ensure that ψ is surjective.)
- We can choose a tower $G_{0} \leftarrow G_{1} \leftarrow G_{2} \leftarrow \cdots$ in \mathcal{U} such that G_{n} gets rapidly larger and freer as $n \rightarrow \infty$.
- We then find that

and this is an exact functor of X (because we work over \mathbb{Q})
$-\mathcal{A U}(X, \mathbb{1})$ is hom from the above colimit to \mathbb{Q}; so $\mathbb{1}$ is injective.
\Rightarrow As mentioned previously: it follows that $D\left(e_{G}\right)$ is injective, then that e_{G} is injective, then that all projectives are injective.
\rightarrow Using this: any object of finite projective dimension is projective.

Asymptotic freedom

- Let $F_{n m}$ be the quotient of the free group on n generators by the intersection of all normal subgroups N with quotient in $\mathcal{U}_{\leq m}$. Under mild conditions on \mathcal{U} we have $F_{n m} \in \mathcal{U}$.
\rightarrow Given morphisms $F_{n m} \xrightarrow{\phi} H \leftarrow_{\leftarrow}^{\alpha} G$ in \mathcal{U} with $|G| \leq \min (n, m)$, we can choose $\psi: F_{n m} \rightarrow G$ in \mathcal{U} with $\alpha \psi=\phi$. (Some care is needed to ensure that ψ is surjective.)
\rightarrow We can choose a tower $G_{0} \leftarrow G_{1} \leftarrow G_{2} \leftarrow \cdots$ in \mathcal{U} such that G_{n} gets rapidly larger and freer as $n \rightarrow \infty$.
- We then find that

and this is an exact functor of X (because we work over \mathbb{Q}).
$\rightarrow A 11(X, \mathbb{\pi})$ is hom from the above colimit to \mathbb{D}. so \mathbb{I} is injective.
\rightarrow As mentioned previously: it follows that $D\left(e_{G}\right)$ is injective, then that e_{G} is injective, then that all projectives are injective.
- Using this: any ohject of finite projective dimension is projective.

Asymptotic freedom

- Let $F_{n m}$ be the quotient of the free group on n generators by the intersection of all normal subgroups N with quotient in $\mathcal{U}_{\leq m}$. Under mild conditions on \mathcal{U} we have $F_{n m} \in \mathcal{U}$.
- Given morphisms $F_{n m} \xrightarrow{\phi} H \stackrel{\alpha}{\leftarrow} G$ in \mathcal{U} with $|G| \leq \min (n, m)$, we can choose $\psi: F_{n m} \rightarrow G$ in \mathcal{U} with $\alpha \psi=\phi$.
(Some care is needed to ensure that ψ is surjective.)
\rightarrow We can choose a tower $G_{0} \leftarrow G_{1} \leftarrow G_{2} \leftarrow \cdots$ in \mathcal{U} such that G_{n} gets rapidly larger and freer as $n \rightarrow \infty$.
- We then find that

and this is an exact functor of X (because we work over \mathbb{Q}).
$-\operatorname{All}(X, \mathbb{I})$ is hom from the above colimit to \mathbb{D}. so \mathbb{I} is injective.
\rightarrow As mentioned previously: it follows that $D\left(e_{G}\right)$ is injective, then that e_{G} is injective, then that all projectives are injective.
\rightarrow Using this: any obiect of finite projective dimension is projective.

Asymptotic freedom

- Let $F_{n m}$ be the quotient of the free group on n generators by the intersection of all normal subgroups N with quotient in $\mathcal{U}_{\leq m}$. Under mild conditions on \mathcal{U} we have $F_{n m} \in \mathcal{U}$.
- Given morphisms $F_{n m} \xrightarrow{\phi} H \stackrel{\alpha}{\leftarrow} G$ in \mathcal{U} with $|G| \leq \min (n, m)$, we can choose $\psi: F_{n m} \rightarrow G$ in \mathcal{U} with $\alpha \psi=\phi$.
(Some care is needed to ensure that ψ is surjective.)

We can choose a tower $G_{0} \leftarrow G_{1} \leftarrow G_{2} \leftarrow \cdots$ in \mathcal{U} such that G_{n} gets rapidly larger and freer as $n \rightarrow \infty$.
 - We then find that

and this is an exact functor of X (because we work over \mathbb{Q}).
$\rightarrow \operatorname{Ald}(X, \mathbb{I})$ is hom from the above colimit to (\mathbb{D}) so \mathbb{I} is injective.
\rightarrow As mentioned previously: it follows that $D\left(e_{G}\right)$ is injective, then that e_{G} is injective, then that all projectives are injective.

Asymptotic freedom

- Let $F_{n m}$ be the quotient of the free group on n generators by the intersection of all normal subgroups N with quotient in $\mathcal{U}_{\leq m}$. Under mild conditions on \mathcal{U} we have $F_{n m} \in \mathcal{U}$.
- Given morphisms $F_{n m} \xrightarrow{\phi} H \stackrel{\alpha}{\leftarrow} G$ in \mathcal{U} with $|G| \leq \min (n, m)$, we can choose $\psi: F_{n m} \rightarrow G$ in \mathcal{U} with $\alpha \psi=\phi$.
(Some care is needed to ensure that ψ is surjective.)
- We can choose a tower $G_{0} \leftarrow G_{1} \leftarrow G_{2} \leftarrow \cdots$ in \mathcal{U} such that G_{n} gets rapidly larger and freer as $n \rightarrow \infty$.
- We then find that

and this is an exact functor of X (because we work over \mathbb{Q}).
$\rightarrow \operatorname{Ald}(X, \mathbb{I})$ is hom from the above colimit to (\mathbb{D}) so $\mathbb{1}$ is injective.
\rightarrow As mentioned previously: it follows that $D\left(e_{G}\right)$ is injective, then that e_{G} is injective, then that all projectives are injective.

Asymptotic freedom

- Let $F_{n m}$ be the quotient of the free group on n generators by the intersection of all normal subgroups N with quotient in $\mathcal{U}_{\leq m}$. Under mild conditions on \mathcal{U} we have $F_{n m} \in \mathcal{U}$.
- Given morphisms $F_{n m} \xrightarrow{\phi} H \stackrel{\alpha}{\leftarrow} G$ in \mathcal{U} with $|G| \leq \min (n, m)$, we can choose $\psi: F_{n m} \rightarrow G$ in \mathcal{U} with $\alpha \psi=\phi$.
(Some care is needed to ensure that ψ is surjective.)
- We can choose a tower $G_{0} \leftarrow G_{1} \leftarrow G_{2} \leftarrow \cdots$ in \mathcal{U} such that G_{n} gets rapidly larger and freer as $n \rightarrow \infty$.
- We then find that

$$
\underset{G \in \mathcal{U}^{\text {op }}}{\lim } X(G)=\underset{n}{\lim } X\left(G_{n}\right)_{\mathrm{Out}\left(G_{n}\right)}
$$

and this is an exact functor of X (because we work over \mathbb{Q}).
$>\mathcal{A U}(X, \mathbb{1})$ is hom from the above colimit to \mathbb{Q}; so $\mathbb{1}$ is injective.

- As mentioned previously: it follows that $D\left(e_{G}\right)$ is injective, then that e_{G} is injective, then that all projectives are injective

Asymptotic freedom

- Let $F_{n m}$ be the quotient of the free group on n generators by the intersection of all normal subgroups N with quotient in $\mathcal{U}_{\leq m}$. Under mild conditions on \mathcal{U} we have $F_{n m} \in \mathcal{U}$.
- Given morphisms $F_{n m} \xrightarrow{\phi} H \stackrel{\alpha}{\leftarrow} G$ in \mathcal{U} with $|G| \leq \min (n, m)$, we can choose $\psi: F_{n m} \rightarrow G$ in \mathcal{U} with $\alpha \psi=\phi$.
(Some care is needed to ensure that ψ is surjective.)
- We can choose a tower $G_{0} \leftarrow G_{1} \leftarrow G_{2} \leftarrow \cdots$ in \mathcal{U} such that G_{n} gets rapidly larger and freer as $n \rightarrow \infty$.
- We then find that

$$
\underset{G \in \mathcal{U}^{\mathrm{op}}}{\lim } X(G)=\underset{n}{\lim } X\left(G_{n}\right)_{\mathrm{Out}\left(G_{n}\right)},
$$

and this is an exact functor of X (because we work over \mathbb{Q}).

- $\mathcal{A} \mathcal{U}(X, \mathbb{1})$ is hom from the above colimit to \mathbb{Q}; so $\mathbb{1}$ is injective.
\Rightarrow As mentioned previously: it follows that $D\left(e_{G}\right)$ is injective, then that e_{G} is injective, then that all projectives are injective.

Asymptotic freedom

- Let $F_{n m}$ be the quotient of the free group on n generators by the intersection of all normal subgroups N with quotient in $\mathcal{U}_{\leq m}$. Under mild conditions on \mathcal{U} we have $F_{n m} \in \mathcal{U}$.
- Given morphisms $F_{n m} \xrightarrow{\phi} H \stackrel{\alpha}{\leftarrow} G$ in \mathcal{U} with $|G| \leq \min (n, m)$, we can choose $\psi: F_{n m} \rightarrow G$ in \mathcal{U} with $\alpha \psi=\phi$.
(Some care is needed to ensure that ψ is surjective.)
- We can choose a tower $G_{0} \leftarrow G_{1} \leftarrow G_{2} \leftarrow \cdots$ in \mathcal{U} such that G_{n} gets rapidly larger and freer as $n \rightarrow \infty$.
- We then find that

$$
\underset{G \in \mathcal{U}^{\text {op }}}{\lim } X(G)=\underset{n}{\lim } X\left(G_{n}\right)_{\mathrm{Out}\left(G_{n}\right)}
$$

and this is an exact functor of X (because we work over \mathbb{Q}).

- $\mathcal{A U}(X, \mathbb{1})$ is hom from the above colimit to \mathbb{Q}; so $\mathbb{1}$ is injective.
- As mentioned previously: it follows that $D\left(e_{G}\right)$ is injective, then that e_{G} is injective, then that all projectives are injective.

Asymptotic freedom

- Let $F_{n m}$ be the quotient of the free group on n generators by the intersection of all normal subgroups N with quotient in $\mathcal{U}_{\leq m}$. Under mild conditions on \mathcal{U} we have $F_{n m} \in \mathcal{U}$.
- Given morphisms $F_{n m} \xrightarrow{\phi} H \stackrel{\alpha}{\leftarrow} G$ in \mathcal{U} with $|G| \leq \min (n, m)$, we can choose $\psi: F_{n m} \rightarrow G$ in \mathcal{U} with $\alpha \psi=\phi$.
(Some care is needed to ensure that ψ is surjective.)
- We can choose a tower $G_{0} \leftarrow G_{1} \leftarrow G_{2} \leftarrow \cdots$ in \mathcal{U} such that G_{n} gets rapidly larger and freer as $n \rightarrow \infty$.
- We then find that

$$
\underset{G \in \mathcal{U}^{\text {op }}}{\lim } X(G)=\underset{n}{\lim } X\left(G_{n}\right)_{\mathrm{Out}\left(G_{n}\right)}
$$

and this is an exact functor of X (because we work over \mathbb{Q}).

- $\mathcal{A} \mathcal{U}(X, \mathbb{1})$ is hom from the above colimit to \mathbb{Q}; so $\mathbb{1}$ is injective.
- As mentioned previously: it follows that $D\left(e_{G}\right)$ is injective, then that e_{G} is injective, then that all projectives are injective.
- Using this: any object of finite projective dimension is projective.

Rates of growth

- If n is large, the proportion of n-tuples in G^{n} that generate G is close to 1 (theorem of Lynne Butler, 1994).
- Using this plus nearly free groups as on the previous slide: if X is a nontrivial summand of e_{G}, then an appropriate lim sup of $\operatorname{dim}(X(T)) /|G|^{\delta(T)}$ is nonzero and finite, where $\delta(T)$ is the minimal size of a generating set.
- We can define Serre subcategories and then quotient categories using rates of growth. We have not yet exploited this fully.
- This approach show that monomorphisms between projective objects split, even for some \mathcal{U} where projectives are not injective.

Rates of growth

- If n is large, the proportion of n-tuples in G^{n} that generate G is close to 1 (theorem of Lynne Butler, 1994).
\rightarrow Using this plus nearly free groups as on the previous slide: if X is a nontrivial summand of e_{G}, then an appropriate lim sup of $\operatorname{dim}(X(T)) /|G|^{\delta(T)}$ is nonzero and finite, where $\delta(T)$ is the minimal size of a generating set.
\rightarrow We can define Serre subcategories and then quotient categories using rates of growth. We have not yet exploited this fully.
- This approach show that monomorphisms between projective objects split, even for some \mathcal{U} where projectives are not injective.

Rates of growth

- If n is large, the proportion of n-tuples in G^{n} that generate G is close to 1 (theorem of Lynne Butler, 1994).
- Using this plus nearly free groups as on the previous slide: if X is a nontrivial summand of e_{G}, then an appropriate lim sup of $\operatorname{dim}(X(T)) /|G|^{\delta(T)}$ is nonzero and finite, where $\delta(T)$ is the minimal size of a generating set.
- We can define Serre subcategories and then quotient categories using rates of growth. We have not yet exploited this fully.
\rightarrow This approach show that monomorphisms between projective objects split, even for some \mathcal{U} where projectives are not injective.

Rates of growth

- If n is large, the proportion of n-tuples in G^{n} that generate G is close to 1 (theorem of Lynne Butler, 1994).
- Using this plus nearly free groups as on the previous slide: if X is a nontrivial summand of e_{G}, then an appropriate lim sup of $\operatorname{dim}(X(T)) /|G|^{\delta(T)}$ is nonzero and finite, where $\delta(T)$ is the minimal size of a generating set.
- We can define Serre subcategories and then quotient categories using rates of growth. We have not yet exploited this fully.
- This approach show that monomorphisms between projective objects split, even for some \mathcal{U} where projectives are not injective.

Rates of growth

- If n is large, the proportion of n-tuples in G^{n} that generate G is close to 1 (theorem of Lynne Butler, 1994).
- Using this plus nearly free groups as on the previous slide: if X is a nontrivial summand of e_{G}, then an appropriate lim sup of $\operatorname{dim}(X(T)) /|G|^{\delta(T)}$ is nonzero and finite, where $\delta(T)$ is the minimal size of a generating set.
- We can define Serre subcategories and then quotient categories using rates of growth. We have not yet exploited this fully.
- This approach show that monomorphisms between projective objects split, even for some \mathcal{U} where projectives are not injective.

The order filtration

- For a $\mathbb{Q}[$ Out $(G)]$-module V, put

$$
e_{G, V}(K)=V \otimes_{[O u t(G)]} e_{G}(K)
$$

This is projective. Every indecomposable projective has the form $e_{G, S}$ for some indecomposable $\mathbb{Q}[$ Out $(G)]$-module S. We define the order of $e_{G, S}$ to be the order of G.

- We say that X is pure of order k if it is isomorphic to a sum of indecomposable projectives of order k.
$>$ The subcategory of such objects is equivalent to the semisimple category $\mathcal{A} \mathcal{U}_{k}=\left[\mathcal{U}_{k}^{\text {op }}\right.$, Vect $]$.
\rightarrow If X is pure of order k, and Y is pure of order $m>k$, then $\mathcal{A} U(X, Y)=0$.
\Rightarrow Let $\left(L_{\leq m} X\right)(G)$ be the sum of all $\alpha^{*}(X(H)) \leq X(G)$ for $H \in \mathcal{U}_{\leq m}$ and $\alpha \in \mathcal{U}(G, H)$.
\Rightarrow Put $L_{m} X=L_{\leq m} X / L_{<m} X$.
\Rightarrow If P is projective, then $P \simeq \bigoplus_{k} P_{k} \simeq \prod_{k} P_{k}$, where P_{k} is pure of order k. It follows that $L_{\leq m} X=\bigoplus_{k \leq m} P_{k}$ and $L_{m} X \simeq P_{m}$ so the filtration splits.

The order filtration

- For a $\mathbb{Q}[\operatorname{Out}(G)]$-module V, put

$$
e_{G, V}(K)=V \otimes_{\mathbb{Q}[O u t(G)]} e_{G}(K)
$$

This is projective. Every indecomposable projective has the form $e_{G, S}$ for some indecomposable $\mathbb{Q}[\operatorname{Out}(G)]$-module S. We define the order of $e_{G, S}$ to be the order of G.

- We say that X is pure of order k if it is isomorphic to a sum of indecomposable projectives of order k.
- The subcategory of such objects is equival ent to the semisimple category $\mathcal{A U}_{k}=\left[\mathcal{U}_{k}^{\text {op }}\right.$, Vect $]$
- If X is pure of order k, and Y is pure of order $m>k$, then $\mathcal{A} \mathcal{U}(X, Y)=0$
- Let $\left(L_{\leq m} X\right)(G)$ be the sum of all $\alpha^{*}(X(H)) \leq X(G)$ for $H \in \mathcal{U}_{\leq m}$ and $\alpha \in \mathcal{U}(G, H)$.
- Put $L_{m} X=L_{\leq m} X / L_{<m} X$.
- If P is projective, then $P \simeq \bigoplus_{k} P_{k} \simeq \prod_{k} P_{k}$, where P_{k} is pure of order k. It follows that $L_{\leq m} X=\bigoplus_{k \leq m} P_{k}$ and $L_{m} X \simeq P_{m}$ so the filtration splits.

The order filtration

- For a $\mathbb{Q}[\operatorname{Out}(G)]$-module V, put

$$
e_{G, V}(K)=V \otimes_{\mathbb{Q}[O u t(G)]} e_{G}(K)
$$

This is projective. Every indecomposable projective has the form $e_{G, S}$ for some indecomposable $\mathbb{Q}[\operatorname{Out}(G)]$-module S. We define the order of $e_{G, S}$ to be the order of G.

- We say that X is pure of order k if it is isomorphic to a sum of indecomposable projectives of order k.
\rightarrow The subcategory of such objects is equivalent to the semisimple category $\mathcal{A} \mathcal{U}_{k}=\left[\mathcal{U}_{k}^{\text {op }}\right.$, Vect $]$
\rightarrow If X is nure of order k, and Y is pure of order $m>k$, then $\mathcal{A} U(X, Y)=0$
\rightarrow Let $\left(L_{\leq m} X\right)(G)$ be the sum of all $\alpha^{*}(X(H)) \leq X(G)$ for $H \in \mathcal{U}_{\leq m}$ and $\alpha \in \mathcal{U}(G, H)$.
\rightarrow Put $I_{m} X=I_{m} X / L_{<_{m}} X$
\Rightarrow If P is projective, then $P \simeq \bigoplus_{k} P_{k} \simeq \prod_{k} P_{k}$, where P_{k} is pure of order k. It follows that $L_{\leq m} X=\bigoplus_{k \leq m} P_{k}$ and $L_{m} X \simeq P_{m}$ so the filtration splits.

The order filtration

- For a $\mathbb{Q}[\operatorname{Out}(G)]$-module V, put

$$
e_{G, V}(K)=V \otimes_{\mathbb{Q}[O u t(G)]} e_{G}(K)
$$

This is projective. Every indecomposable projective has the form $e_{G, S}$ for some indecomposable $\mathbb{Q}[\operatorname{Out}(G)]$-module S. We define the order of $e_{G, S}$ to be the order of G.

- We say that X is pure of order k if it is isomorphic to a sum of indecomposable projectives of order k.
- The subcategory of such objects is equivalent to the semisimple category $\mathcal{A} \mathcal{U}_{k}=\left[\mathcal{U}_{k}^{\text {op }}\right.$, Vect $]$.
\Rightarrow If X is pure of order k, and Y is pure of order $m>k$, then $\mathcal{A} \mathcal{U}(X, Y)=0$.
- Let $\left(L_{\leq m} X\right)(G)$ be the sum of all $\alpha^{*}(X(H)) \leq X(G)$ for $H \in \mathcal{U}_{\leq m}$ and
\Rightarrow Put $L_{m} X=L_{\leq m} X / L_{<m} X$
- If P is projective, then $P \simeq \bigoplus_{k} P_{k} \simeq \prod_{k} P_{k}$, where P_{k} is pure of order k. It follows that $L_{\leq m} X=\bigoplus_{k \leq m} P_{k}$ and $L_{m} X \simeq P_{m}$ so the filtration splits.

The order filtration

- For a $\mathbb{Q}[O u t(G)]$-module V, put

$$
e_{G, V}(K)=V \otimes_{\mathbb{Q}[O u t(G)]} e_{G}(K)
$$

This is projective. Every indecomposable projective has the form $e_{G, S}$ for some indecomposable $\mathbb{Q}[\operatorname{Out}(G)]$-module S. We define the order of $e_{G, S}$ to be the order of G.

- We say that X is pure of order k if it is isomorphic to a sum of indecomposable projectives of order k.
- The subcategory of such objects is equivalent to the semisimple category $\mathcal{A} \mathcal{U}_{k}=\left[\mathcal{U}_{k}^{\text {op }}\right.$, Vect $]$.
- If X is pure of order k, and Y is pure of order $m>k$, then $\mathcal{A} \mathcal{U}(X, Y)=0$.
\rightarrow Put $L_{m} X=L_{\leq m} X / L_{<m} X$.
- If P is projective then $P \simeq \bigoplus_{k} P_{k} \simeq \prod_{k} P_{k}$, where P_{k} is pure of order k. It follows that $L_{\leq m} X=\bigoplus_{k \leq m} P_{k}$ and $L_{m} X \simeq P_{m}$ so the filtration splits.

The order filtration

- For a $\mathbb{Q}[\operatorname{Out}(G)]$-module V, put

$$
e_{G, V}(K)=V \otimes_{\mathbb{Q}[O u t(G)]} e_{G}(K)
$$

This is projective. Every indecomposable projective has the form $e_{G, S}$ for some indecomposable $\mathbb{Q}[\operatorname{Out}(G)]$-module S. We define the order of $e_{G, S}$ to be the order of G.

- We say that X is pure of order k if it is isomorphic to a sum of indecomposable projectives of order k.
- The subcategory of such objects is equivalent to the semisimple category $\mathcal{A} \mathcal{U}_{k}=\left[\mathcal{U}_{k}^{\text {op }}\right.$, Vect $]$.
- If X is pure of order k, and Y is pure of order $m>k$, then $\mathcal{A} \mathcal{U}(X, Y)=0$.
- Let $\left(L_{\leq m} X\right)(G)$ be the sum of all $\alpha^{*}(X(H)) \leq X(G)$ for $H \in \mathcal{U}_{\leq m}$ and $\alpha \in \mathcal{U}(G, H)$.

If P is projective, then $P \simeq \bigoplus_{k} P_{k} \simeq \prod_{k} P_{k}$, where P_{k} is pure of order k.
It follows that $L_{\leq m} X=\bigoplus_{k \leq m} P_{k}$ and $L_{m} X \simeq P_{m}$ so the filtration splits.

The order filtration

- For a $\mathbb{Q}[$ Out $(G)]$-module V, put

$$
e_{G, V}(K)=V \otimes_{\mathbb{Q}[O u t(G)]} e_{G}(K)
$$

This is projective. Every indecomposable projective has the form $e_{G, S}$ for some indecomposable $\mathbb{Q}[\operatorname{Out}(G)]$-module S. We define the order of $e_{G, S}$ to be the order of G.

- We say that X is pure of order k if it is isomorphic to a sum of indecomposable projectives of order k.
- The subcategory of such objects is equivalent to the semisimple category $\mathcal{A} \mathcal{U}_{k}=\left[\mathcal{U}_{k}^{\text {op }}\right.$, Vect $]$.
- If X is pure of order k, and Y is pure of order $m>k$, then $\mathcal{A} \mathcal{U}(X, Y)=0$.
- Let $\left(L_{\leq m} X\right)(G)$ be the sum of all $\alpha^{*}(X(H)) \leq X(G)$ for $H \in \mathcal{U}_{\leq m}$ and $\alpha \in \mathcal{U}(G, H)$.
- Put $L_{m} X=L_{\leq m} X / L_{<m} X$.
\Rightarrow If P is projective, then $P \simeq \bigoplus_{k} P_{k} \simeq \prod_{k} P_{k}$, where P_{k} is pure of order k.
It follows that $L_{\leq m} X=\bigoplus_{k \leq m} P_{k}$ and $L_{m} X \simeq P_{m}$ so the filtration splits.

The order filtration

- For a $\mathbb{Q}[$ Out $(G)]$-module V, put

$$
e_{G, V}(K)=V \otimes_{\mathbb{Q}[O u t(G)]} e_{G}(K)
$$

This is projective. Every indecomposable projective has the form $e_{G, S}$ for some indecomposable $\mathbb{Q}[\operatorname{Out}(G)]$-module S. We define the order of $e_{G, S}$ to be the order of G.

- We say that X is pure of order k if it is isomorphic to a sum of indecomposable projectives of order k.
- The subcategory of such objects is equivalent to the semisimple category $\mathcal{A} \mathcal{U}_{k}=\left[\mathcal{U}_{k}^{\text {op }}\right.$, Vect $]$.
- If X is pure of order k, and Y is pure of order $m>k$, then $\mathcal{A} \mathcal{U}(X, Y)=0$.
- Let $\left(L_{\leq m} X\right)(G)$ be the sum of all $\alpha^{*}(X(H)) \leq X(G)$ for $H \in \mathcal{U}_{\leq m}$ and $\alpha \in \mathcal{U}(G, H)$.
- Put $L_{m} X=L_{\leq m} X / L_{<m} X$.
- If P is projective, then $P \simeq \bigoplus_{k} P_{k} \simeq \prod_{k} P_{k}$, where P_{k} is pure of order k. It follows that $L_{\leq m} X=\bigoplus_{k \leq m} P_{k}$ and $L_{m} X \simeq P_{m}$ so the filtration splits.

Noetherian properties

- We prove that [$\mathcal{U}^{\text {op }}$, Vect] is locally noetherian when \mathcal{U} is the category of finite abelian p-groups.
(We also cover a few other cases that are easier and/or already known.)
- By work of Sam and Snowden (2016): [$\mathcal{U}^{\text {op }}$, Vect] is locally noetherian if there is a category \mathcal{C} such that
$\Rightarrow C$ is close enough to $\mathcal{U}^{\circ P}$ to allow for transfer of finiteness conditions.
- C has combinatorial/order-theoretic properties that support an analogue of the theory of Gröbner bases.
- One ingredient: a preordered set P is well-quasi-ordered (wqo) if in every sequence $u: \mathbb{N} \rightarrow P$, there exists $i<j$ with $u(i) \leq u(j)$.
- If so: there always exists a subsequence v with $v(i) \leq v(j)$ whenever $i<j$.
- Another ingredient: let $\phi: X \rightarrow Y$ be a surjective but not necessarily monotone map between finite, totally ordered sets. Define $\phi^{\dagger}(y)=\min \left(\phi^{-1}\{y\}\right)$ and say that ϕ is \dagger-monotone if ϕ^{\dagger} is monotone.
$>\mathcal{L}_{\dagger}$ is the category of finite, nonempty, totally ordered sets X equipped with $e_{X}: X \rightarrow \mathbb{N}$. Morphisms are \dagger-monotone surjections $\phi: X \rightarrow Y$ with $e_{Y} \circ \phi \leq e_{X}$.
- The category $\mathcal{L}_{\dagger}^{\circ p}$ and its slice categories are (nonobviously) wqo.
- There is a functor $\mathcal{L}_{\dagger} \rightarrow \mathcal{U}$ sending X to $\bigoplus_{x} \mathbb{Z} / p^{{ }^{e x}(x)}$. Using this we prove that $\mathcal{A U}$ is locally noetherian.

Noetherian properties

- We prove that $\left[\mathcal{U}^{\circ p}, ~ V e c t\right]$ is locally noetherian when \mathcal{U} is the category of finite abelian p-groups.
(We also cover a few other cases that are easier and/or already known.)
- By work of Sam and Snowden (2016): [$U^{\text {OP }, ~ V e c t] ~ i s ~ l o c a l l y ~ n o e t h e r i a n ~ i f ~}$ there is a category \mathcal{C} such that
- \mathcal{C} is close enough to $\mathcal{U}^{\text {op }}$ to allow for transfer of finiteness conditions.
- \mathcal{C} has combinatorial/order-theoretic properties that support an analogue of the theory of Gröbner bases.
\rightarrow One ingredient: a preordered set P is well-quasi-ordered (wqo) if in every sequence $u: \mathbb{N} \rightarrow P$, there exists $i<j$ with $u(i) \leq u(j)$.
\Rightarrow If so: there always exists a subsequence v with $v(i) \leq v(j)$ whenever $i<j$
- Another ingredient: let $\phi: X \rightarrow Y$ be a surjective but not necessarily monotone map between finite, totally ordered sets. Define
$\phi^{\prime}(y)=\min \left(\phi^{-1}\{y\}\right)$ and say that ϕ is \dagger-monotone if ϕ^{\prime} is monotone.
$>\mathcal{L}_{\dagger}$ is the category of finite, nonempty, totally ordered sets X equipped with $e_{X}: X \rightarrow \mathbb{N}$. Morphisms are \dagger-monotone surjections $\phi: X \rightarrow Y$ with $e_{Y} \circ \phi \leq e_{X}$.
\Rightarrow The category $\mathcal{L}_{\dagger}^{o p}$ and its slice categories are (nonobviously) wqo.
\Rightarrow There is a functor $\mathcal{L}_{\dagger} \rightarrow \mathcal{U}$ sending X to $\bigoplus_{x} \mathbb{Z} / p^{{ }^{x x}(x)}$. Using this we prove that $\mathcal{A U}$ is locally noetherian.

Noetherian properties

- We prove that [$\mathcal{U}^{\text {op }}, \mathrm{Vect}$] is locally noetherian when \mathcal{U} is the category of finite abelian p-groups. (We also cover a few other cases that are easier and/or already known.)
\Rightarrow By work of Sam and Snowden (2016): [U'P, Vect] is locally noetherian if there is a category \mathcal{C} such that
- \mathcal{C} is close enough to $\mathcal{U}^{\text {op }}$ to allow for transfer of finiteness conditions.
* C has combinatorial/order-theoretic properties that support an analogue of the theory of Gröbner bases.
\rightarrow One ingredient: a preordered set P is well-quasi-ordered (wqo) if in every sequence $u: \mathbb{N} \rightarrow P$, there exists $i<j$ with $u(i) \leq u(j)$.
\Rightarrow If so: there always exists a subsequence v with $v(i) \leq v(j)$ whenever $i<j$
- Another ingredient: let $\phi: X \rightarrow Y$ be a surjective but not necessarily monotone map between finite, totally ordered sets. Define $\phi^{\prime}(y)=\min \left(\phi^{-1}\{y\}\right)$ and say that ϕ is \dagger-monotone if ϕ^{\dagger} is monotone.
\mathcal{L}_{\dagger} is the category of finite, nonempty, totally ordered sets X equipped with $e_{X}: X \rightarrow \mathbb{N}$. Morphisms are \dagger-monotone surjections $\phi: X \rightarrow Y$ with
- The category $\mathcal{L}_{\dagger}^{o p}$ and its slice categories are (nonobviously) wqo.
\Rightarrow There is a functor $\mathcal{L}_{+} \rightarrow \mathcal{U}$ sending X to $\bigoplus_{x} \mathbb{Z} / p^{e^{x}(x)}$. Using this we prove that $\mathcal{A U}$ is locally noetherian.

Noetherian properties

- We prove that [$\mathcal{U}^{\text {op }}, \mathrm{Vect}$] is locally noetherian when \mathcal{U} is the category of finite abelian p-groups. (We also cover a few other cases that are easier and/or already known.)
- By work of Sam and Snowden (2016): [$\mathcal{U}^{\text {op }}$, Vect] is locally noetherian if there is a category \mathcal{C} such that
- \mathcal{C} is close enough to $\mathcal{U}^{\circ \mathrm{P}}$ to allow for transfer of finiteness conditions.
- \mathcal{C} has combinatorial/order-theoretic properties that support an analogue of the theory of Gröbner bases.
\rightarrow One ingredient: a preordered set P is well-quasi-ordered (wqo) if in every sequence $u: \mathbb{N} \rightarrow P$, there exists $i<j$ with $u(i) \leq u(j)$.
\rightarrow If so: there alwavs exists a subsequence v with $v(i) \leq v(i)$ whenever $i<j$
\rightarrow Another ingredient: let $\phi: X \rightarrow Y$ be a surjective but not necessarily monotone map between finite, totally ordered sets. Define $\phi^{\dagger}(y)=\min \left(\phi^{-1}\{y\}\right)$ and say that ϕ is \dagger-monotone if ϕ^{\dagger} is monotone.
$>\mathcal{L}_{+}$is the category of finite, nonempty, totally ordered sets X equipped with $e_{X}: X \rightarrow \mathbb{N}$. Morphisms are \dagger-monotone surjections $\phi: X \rightarrow Y$ with
\rightarrow The category $\mathcal{L}_{\dagger}^{o p}$ and its slice categories are (nonobviously) wqo.
\rightarrow There is a functor $\mathcal{L}_{\dagger} \rightarrow \mathcal{U}$ sending X to $\bigoplus_{x} \mathbb{Z} / p^{e x(x)}$. Using this we prove that $\mathcal{A U}$ is locally noetherian.

Noetherian properties

- We prove that [$\mathcal{U}^{\text {op }}, \mathrm{Vect}$] is locally noetherian when \mathcal{U} is the category of finite abelian p-groups. (We also cover a few other cases that are easier and/or already known.)
- By work of Sam and Snowden (2016): [$\mathcal{U}^{\text {op }}$, Vect] is locally noetherian if there is a category \mathcal{C} such that
- \mathcal{C} is close enough to $\mathcal{U}^{\circ \mathrm{P}}$ to allow for transfer of finiteness conditions.
- \mathcal{C} has combinatorial/order-theoretic properties that support an analogue of the theory of Gröbner bases.
- One ingredient: a preordered set P is well-quasi-ordered (wqo) if in every sequence $u: \mathbb{N} \rightarrow P$, there exists $i<j$ with $u(i) \leq u(j)$.
\rightarrow If so: there always exists a subsequence v with $v(i) \leq v(j)$ whenever $i<j$
- Another ingredient: let $\phi: X \rightarrow Y$ be a surjective but not necessarily monotone map between finite, totally ordered sets. Define $\phi^{\dagger}(y)=\min \left(\phi^{-1}\{y\}\right)$ and say that ϕ is \dagger-monotone if ϕ^{\dagger} is monotone.
$>\mathcal{L}_{\dagger}$ is the category of finite, nonempty, totally ordered sets X equipped with $e_{X}: X \rightarrow \mathbb{N}$. Morphisms are \dagger-monotone surjections $\phi: X \rightarrow Y$ with
\rightarrow The category $\mathcal{L}_{\dagger}^{o p}$ and its slice categories are (nonobviously) wqo.
\rightarrow There is a functor $\mathcal{C}_{1} \rightarrow U$ sending X to $\theta \mathbb{Z}_{1} / p^{e x(x)}$ Using this m prove that $\mathcal{A U}$ is locally noetherian.

Noetherian properties

- We prove that [$\mathcal{U}^{\text {op }}, \mathrm{Vect}$] is locally noetherian when \mathcal{U} is the category of finite abelian p-groups. (We also cover a few other cases that are easier and/or already known.)
- By work of Sam and Snowden (2016): [$\mathcal{U}^{\text {op }}$, Vect] is locally noetherian if there is a category \mathcal{C} such that
- \mathcal{C} is close enough to $\mathcal{U}^{\mathrm{op}}$ to allow for transfer of finiteness conditions.
- \mathcal{C} has combinatorial/order-theoretic properties that support an analogue of the theory of Gröbner bases.
- One ingredient: a preordered set P is well-quasi-ordered (wqo) if in every sequence $u: \mathbb{N} \rightarrow P$, there exists $i<j$ with $u(i) \leq u(j)$.
- If so: there always exists a subsequence v with $v(i) \leq v(j)$ whenever $i<j$.
\rightarrow Another ingredient: let $\phi: X \rightarrow Y$ be a surjective but not necessarily monotone map between finite, totally ordered sets. Define $\phi^{\dagger}(y)=\min \left(\phi^{-1}\{y\}\right)$ and say that ϕ is \dagger-monotone if ϕ^{\dagger} is monotone.
$\Rightarrow \mathcal{L}_{+}$is the category of finite, nonempty, totally ordered sets X equipped with $e_{X}: X \rightarrow \mathbb{N}$. Morphisms are \dagger-monotone surjections $\phi: X \rightarrow Y$ with
$>$ The category $\mathcal{L}_{+}^{o p}$ and its slice categories are (nonobviously) wqo.
\rightarrow There is a functor $\mathcal{L}_{\dagger} \rightarrow \mathcal{U}$ sending X to $\bigoplus_{x} \mathbb{Z} / p^{e x(x)}$. Using this we prove that $\mathcal{A U}$ is locally noetherian.

Noetherian properties

- We prove that [$\mathcal{U}^{\text {op }}, \mathrm{Vect}$] is locally noetherian when \mathcal{U} is the category of finite abelian p-groups.
(We also cover a few other cases that are easier and/or already known.)
- By work of Sam and Snowden (2016): [$\mathcal{U}^{\text {op }}$, Vect] is locally noetherian if there is a category \mathcal{C} such that
- \mathcal{C} is close enough to $\mathcal{U}^{\circ \mathrm{P}}$ to allow for transfer of finiteness conditions.
- \mathcal{C} has combinatorial/order-theoretic properties that support an analogue of the theory of Gröbner bases.
- One ingredient: a preordered set P is well-quasi-ordered (wqo) if in every sequence $u: \mathbb{N} \rightarrow P$, there exists $i<j$ with $u(i) \leq u(j)$.
- If so: there always exists a subsequence v with $v(i) \leq v(j)$ whenever $i<j$.
- Another ingredient: let $\phi: X \rightarrow Y$ be a surjective but not necessarily monotone map between finite, totally ordered sets. Define $\phi^{\dagger}(y)=\min \left(\phi^{-1}\{y\}\right)$ and say that ϕ is \dagger-monotone if ϕ^{\dagger} is monotone.
$\rightarrow \mathcal{L}_{+}$is the category of finite, nonempty, totally ordered sets X equipped with $e_{X}: X \rightarrow \mathbb{N}$. Morphisms are \dagger-monotone surjections $\phi: X \rightarrow Y$ with
\rightarrow The category $\mathcal{L}_{+}^{o p}$ and its slice categories are (nonobviously) wqo.
\rightarrow There is a functor $\mathcal{L}_{\dagger} \rightarrow \mathcal{U}$ sending X to $\bigoplus_{x} \mathbb{Z} / p^{e x(x)}$. Using this we prove that $\mathcal{A U}$ is locally noetherian.

Noetherian properties

- We prove that [$\mathcal{U}^{\text {op }}, \mathrm{Vect}$] is locally noetherian when \mathcal{U} is the category of finite abelian p-groups. (We also cover a few other cases that are easier and/or already known.)
- By work of Sam and Snowden (2016): [$\mathcal{U}^{\text {op }}$, Vect] is locally noetherian if there is a category \mathcal{C} such that
- \mathcal{C} is close enough to $\mathcal{U}^{\circ \mathrm{P}}$ to allow for transfer of finiteness conditions.
- \mathcal{C} has combinatorial/order-theoretic properties that support an analogue of the theory of Gröbner bases.
- One ingredient: a preordered set P is well-quasi-ordered (wqo) if in every sequence $u: \mathbb{N} \rightarrow P$, there exists $i<j$ with $u(i) \leq u(j)$.
- If so: there always exists a subsequence v with $v(i) \leq v(j)$ whenever $i<j$.
- Another ingredient: let $\phi: X \rightarrow Y$ be a surjective but not necessarily monotone map between finite, totally ordered sets. Define $\phi^{\dagger}(y)=\min \left(\phi^{-1}\{y\}\right)$ and say that ϕ is \dagger-monotone if ϕ^{\dagger} is monotone.
- \mathcal{L}_{\dagger} is the category of finite, nonempty, totally ordered sets X equipped with $e_{X}: X \rightarrow \mathbb{N}$. Morphisms are \dagger-monotone surjections $\phi: X \rightarrow Y$ with $e_{Y} \circ \phi \leq e_{X}$.
\rightarrow The category $\mathcal{L}_{+}^{o p}$ and its slice categories are (nonobviously) wqo.
\rightarrow There is a functor $\mathcal{L}_{\dagger} \rightarrow \mathcal{U}$ sending X to $\bigoplus_{x} \mathbb{Z} / p^{e x(x)}$. Using this we prove that $\mathcal{A U}$ is locally noetherian.

Noetherian properties

- We prove that [$\mathcal{U}^{\text {op }}, \mathrm{Vect}$] is locally noetherian when \mathcal{U} is the category of finite abelian p-groups.
(We also cover a few other cases that are easier and/or already known.)
- By work of Sam and Snowden (2016): [$\mathcal{U}^{\text {op }}$, Vect] is locally noetherian if there is a category \mathcal{C} such that
- \mathcal{C} is close enough to $\mathcal{U}^{\circ \mathrm{P}}$ to allow for transfer of finiteness conditions.
- \mathcal{C} has combinatorial/order-theoretic properties that support an analogue of the theory of Gröbner bases.
- One ingredient: a preordered set P is well-quasi-ordered (wqo) if in every sequence $u: \mathbb{N} \rightarrow P$, there exists $i<j$ with $u(i) \leq u(j)$.
- If so: there always exists a subsequence v with $v(i) \leq v(j)$ whenever $i<j$.
- Another ingredient: let $\phi: X \rightarrow Y$ be a surjective but not necessarily monotone map between finite, totally ordered sets. Define $\phi^{\dagger}(y)=\min \left(\phi^{-1}\{y\}\right)$ and say that ϕ is \dagger-monotone if ϕ^{\dagger} is monotone.
- \mathcal{L}_{\dagger} is the category of finite, nonempty, totally ordered sets X equipped with $e_{X}: X \rightarrow \mathbb{N}$. Morphisms are \dagger-monotone surjections $\phi: X \rightarrow Y$ with $e_{Y} \circ \phi \leq e_{X}$.
- The category $\mathcal{L}_{\dagger}^{\text {op }}$ and its slice categories are (nonobviously) wqo.

Noetherian properties

- We prove that [$\mathcal{U}^{\text {op }}, \mathrm{Vect}$] is locally noetherian when \mathcal{U} is the category of finite abelian p-groups. (We also cover a few other cases that are easier and/or already known.)
- By work of Sam and Snowden (2016): [$\mathcal{U}^{\text {op }}$, Vect $]$ is locally noetherian if there is a category \mathcal{C} such that
- \mathcal{C} is close enough to $\mathcal{U}^{\circ \mathrm{P}}$ to allow for transfer of finiteness conditions.
- \mathcal{C} has combinatorial/order-theoretic properties that support an analogue of the theory of Gröbner bases.
- One ingredient: a preordered set P is well-quasi-ordered (wqo) if in every sequence $u: \mathbb{N} \rightarrow P$, there exists $i<j$ with $u(i) \leq u(j)$.
- If so: there always exists a subsequence v with $v(i) \leq v(j)$ whenever $i<j$.
- Another ingredient: let $\phi: X \rightarrow Y$ be a surjective but not necessarily monotone map between finite, totally ordered sets. Define $\phi^{\dagger}(y)=\min \left(\phi^{-1}\{y\}\right)$ and say that ϕ is \dagger-monotone if ϕ^{\dagger} is monotone.
$-\mathcal{L}_{\dagger}$ is the category of finite, nonempty, totally ordered sets X equipped with $e_{X}: X \rightarrow \mathbb{N}$. Morphisms are \dagger-monotone surjections $\phi: X \rightarrow Y$ with $e_{Y} \circ \phi \leq e_{X}$.
- The category $\mathcal{L}_{\dagger}^{\mathrm{op}}$ and its slice categories are (nonobviously) wqo.
- There is a functor $\mathcal{L}_{\dagger} \rightarrow \mathcal{U}$ sending X to $\bigoplus_{x} \mathbb{Z} / p^{e_{X}(x)}$. Using this we prove that $\mathcal{A U}$ is locally noetherian.

The derived category

- Let $\mathcal{P U}$ be the subcategory of projectives in $\mathcal{A U}$.
- There is an additive functor $P_{0}=\Lambda_{1} I^{*}: \mathcal{A U} \rightarrow \mathcal{P U}$ with a surjective natural transformation $P_{0}(X) \rightarrow X$, where I is the inclusion $\mathcal{U}^{\times} \rightarrow \mathcal{U}$.
- This extends to give an additive functor $P: \operatorname{Ch}(\mathcal{A U}) \rightarrow \mathrm{Ch}(\mathcal{P U})$ with a natural surjective quasiisomorphism $P(X) \rightarrow X$.
- From this and other results:

$$
\operatorname{Ch}(\mathcal{A U})\left[\mathrm{we}^{-1}\right]=\mathrm{hCh}(\mathcal{P U}):=\operatorname{Ch}(\mathcal{P U}) /(\text { chain homotopy }) .
$$

(For general abelian categories, the story is more subtle.)

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.
- If $X, Y \in \operatorname{Ch}(\mathcal{P U})$ then $\operatorname{Hom}(X, Y) \in \mathcal{P U}$.
\Rightarrow Say $X \in \operatorname{Ch}(\mathcal{P U})$ is thin if for every $m>0$, the differential on $L_{m} X$ is 0 , i.e. the differential on X involves only maps $e_{G, S} \rightarrow e_{H, T}$ with $|H|<|G|$.
\rightarrow Every homotopy type has an essentially unique thin representative. (But thin \otimes thin and Hom(thin, thin) need not be thin.)
- A thin complex X is compact iff $\bigoplus_{n} X_{n}$ is finitely generated.

The derived category

- Let $\mathcal{P U}$ be the subcategory of projectives in $\mathcal{A U}$.
\Rightarrow There is an additive functor $P_{0}=\| \|^{*}: \mathcal{A U} \rightarrow \mathcal{P U}$ with a surjective natural transformation $P_{0}(X) \rightarrow X$, where I is the inclusion $\mathcal{U}^{\times} \rightarrow \mathcal{U}$.
- This extends to give an additive functor $\mathrm{P}: \mathrm{Ch}(\mathcal{A U}) \rightarrow \mathrm{Ch}(\mathcal{P U})$ with a natural surjective quasiisomorphism $P(X) \rightarrow X$.
- From this and other results:

$$
\mathrm{Ch}(\mathcal{A U})\left[\mathrm{we}^{-1}\right]=\mathrm{hCh}(\mathcal{P U}):=\mathrm{Ch}(\mathcal{P U}) /(\text { chain homotopy }) .
$$

(For general abelian categories, the story is more subtle.)

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.
- If $X, Y \in \operatorname{Ch}(\mathcal{P U})$ then $\operatorname{Hom}(X, Y) \in \mathcal{P U}$.
\Rightarrow Say $X \in \operatorname{Ch}(\mathcal{P U})$ is thin if for every $m>0$, the differential on $L_{m} X$ is 0 , i.e. the differential on X involves only maps $e_{G, S} \rightarrow e_{H, T}$ with $|H|<|G|$
- Every homotopy type has an essentially unique thin representative. (But thin \otimes thin and Hom(thin, thin) need not be thin.)
- A thin complex X is compact iff $\bigoplus_{n} X_{n}$ is finitely generated.

The derived category

- Let $\mathcal{P U}$ be the subcategory of projectives in $\mathcal{A U}$.
- There is an additive functor $P_{0}=l_{!} I^{*}: \mathcal{A U} \rightarrow \mathcal{P U}$ with a surjective natural transformation $P_{0}(X) \rightarrow X$, where I is the inclusion $\mathcal{U}^{\times} \rightarrow \mathcal{U}$.
\Rightarrow This extends to give an additive functor $\mathrm{P}: \mathrm{Ch}(\mathcal{A U}) \rightarrow \mathrm{Ch}(\mathcal{P U})$ with a natural surjective quasiisomorphism $P(X) \rightarrow X$.
- From this and other results:

$$
\mathrm{Ch}(\mathcal{A U})\left[\mathrm{we}^{-1}\right]=\mathrm{hCh}(\mathcal{P U}):=\mathrm{Ch}(\mathcal{P U}) /(\text { chain homotopy }) .
$$

(For general abelian categories, the story is more subtle.)

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.
- If $X, Y \in \operatorname{Ch}(\mathcal{P U})$ then $\operatorname{Hom}(X, Y) \in \mathcal{P U}$
\Rightarrow Say $X \in \operatorname{Ch}(\mathcal{P U})$ is thin if for every $m>0$, the differential on $L_{m} X$ is 0 , i.e. the differential on X involves only maps $e_{G, S} \rightarrow e_{H, T}$ with $|H|<|G|$
- Every homotopy type has an essentially unique thin representative. (But thin \otimes thin and Hom(thin, thin) need not be thin.)
- A thin complex X is compact iff $\bigoplus_{n} X_{n}$ is finitely generated

The derived category

- Let $\mathcal{P U}$ be the subcategory of projectives in $\mathcal{A U}$.
- There is an additive functor $P_{0}=l_{!} I^{*}: \mathcal{A U} \rightarrow \mathcal{P U}$ with a surjective natural transformation $P_{0}(X) \rightarrow X$, where I is the inclusion $\mathcal{U}^{\times} \rightarrow \mathcal{U}$.
- This extends to give an additive functor $P: \operatorname{Ch}(\mathcal{A U}) \rightarrow \mathrm{Ch}(\mathcal{P U})$ with a natural surjective quasiisomorphism $P(X) \rightarrow X$.
- From this and other results:
$\operatorname{Ch}(\mathcal{A U})\left[\mathrm{we}^{-1}\right]=\mathrm{hCh}(\mathcal{P U}):=\operatorname{Ch}(\mathcal{P U}) /($ chain homotopy $)$.
(For general abelian categories, the story is more subtle.)
- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.
\Rightarrow If $X, Y \in \operatorname{Ch}(\mathcal{P U})$ then $H o m(X, Y) \in \mathcal{P U}$.
- Say $X \in \operatorname{Ch}(\mathcal{P U})$ is thin if for every $m>0$, the differential on $L_{m} X$ is 0 , i.e. the differential on X involves only maps $e_{G, S} \rightarrow e_{H, T}$ with $|H|<|G|$
\Rightarrow Every homotopy type has an essentially unique thin representative. (But thin \otimes thin and Hom(thin, thin) need not be thin.)
- A thin complex X is compact iff $\oplus_{n} X_{n}$ is finitely generated

The derived category

- Let $\mathcal{P U}$ be the subcategory of projectives in $\mathcal{A U}$.
- There is an additive functor $P_{0}=l_{!} I^{*}: \mathcal{A U} \rightarrow \mathcal{P U}$ with a surjective natural transformation $P_{0}(X) \rightarrow X$, where I is the inclusion $\mathcal{U}^{\times} \rightarrow \mathcal{U}$.
- This extends to give an additive functor $P: \operatorname{Ch}(\mathcal{A U}) \rightarrow \mathrm{Ch}(\mathcal{P U})$ with a natural surjective quasiisomorphism $P(X) \rightarrow X$.
- From this and other results:

$$
\mathrm{Ch}(\mathcal{A U})\left[\mathrm{we}^{-1}\right]=\mathrm{hCh}(\mathcal{P U}):=\operatorname{Ch}(\mathcal{P} \mathcal{U}) /(\text { chain homotopy })
$$

(For general abelian categories, the story is more subtle.)

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument
\Rightarrow If $X, Y \in \operatorname{Ch}(\mathcal{P U})$ then $\operatorname{Hom}(X, Y) \in \mathcal{P U}$
\rightarrow Say $X \in \operatorname{Ch}(\mathcal{P U})$ is thin if for every $m>0$, the differential on $L_{m} X$ is 0 , i.e. the differential on X involves only maps $e_{G, S} \rightarrow e_{H, T}$ with $|H|<|G|$
- Every homotopy type has an essentially unique thin representative. (But thin \otimes thin and Hom(thin, thin) need not be thin.)

The derived category

- Let $\mathcal{P U}$ be the subcategory of projectives in $\mathcal{A U}$.
- There is an additive functor $P_{0}=l_{!} I^{*}: \mathcal{A U} \rightarrow \mathcal{P U}$ with a surjective natural transformation $P_{0}(X) \rightarrow X$, where I is the inclusion $\mathcal{U}^{\times} \rightarrow \mathcal{U}$.
- This extends to give an additive functor $P: \operatorname{Ch}(\mathcal{A U}) \rightarrow \mathrm{Ch}(\mathcal{P U})$ with a natural surjective quasiisomorphism $P(X) \rightarrow X$.
- From this and other results:

$$
\mathrm{Ch}(\mathcal{A U})\left[\mathrm{we}^{-1}\right]=\mathrm{hCh}(\mathcal{P U}):=\operatorname{Ch}(\mathcal{P U}) /(\text { chain homotopy }) .
$$

(For general abelian categories, the story is more subtle.)

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.

Say $X \in \operatorname{Ch}(\mathcal{P U})$ is thin if for every $m>0$, the differential on $L_{m} X$ is 0 ,
i.e. the differential on X involves only maps $e_{G, S} \rightarrow e_{H, T}$ with $|H|<|G|$.
\rightarrow Every homotony type has an essentially unique thin representative (But thin \otimes thin and Hom(thin, thin) need not be thin.)

The derived category

- Let $\mathcal{P U}$ be the subcategory of projectives in $\mathcal{A U}$.
- There is an additive functor $P_{0}=l_{!} I^{*}: \mathcal{A U} \rightarrow \mathcal{P U}$ with a surjective natural transformation $P_{0}(X) \rightarrow X$, where I is the inclusion $\mathcal{U}^{\times} \rightarrow \mathcal{U}$.
- This extends to give an additive functor $P: \operatorname{Ch}(\mathcal{A U}) \rightarrow \mathrm{Ch}(\mathcal{P U})$ with a natural surjective quasiisomorphism $P(X) \rightarrow X$.
- From this and other results:

$$
\mathrm{Ch}(\mathcal{A U})\left[\mathrm{we}^{-1}\right]=\mathrm{hCh}(\mathcal{P U}):=\operatorname{Ch}(\mathcal{P U}) /(\text { chain homotopy }) .
$$

(For general abelian categories, the story is more subtle.)

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.
- If $X, Y \in \operatorname{Ch}(\mathcal{P U})$ then $\underline{\operatorname{Hom}(X, Y) \in \mathcal{P U} \text {. }}$
\rightarrow Every homotopy type has an essentially unique thin representative. (But thin \otimes thin and Hom(thin, thin) need not be thin.)

The derived category

- Let $\mathcal{P U}$ be the subcategory of projectives in $\mathcal{A U}$.
- There is an additive functor $P_{0}=l_{!} I^{*}: \mathcal{A U} \rightarrow \mathcal{P U}$ with a surjective natural transformation $P_{0}(X) \rightarrow X$, where I is the inclusion $\mathcal{U}^{\times} \rightarrow \mathcal{U}$.
- This extends to give an additive functor $P: \operatorname{Ch}(\mathcal{A U}) \rightarrow \mathrm{Ch}(\mathcal{P U})$ with a natural surjective quasiisomorphism $P(X) \rightarrow X$.
- From this and other results:

$$
\operatorname{Ch}(\mathcal{A U})\left[\mathrm{we}^{-1}\right]=\mathrm{hCh}(\mathcal{P U}):=\operatorname{Ch}(\mathcal{P U}) /(\text { chain homotopy })
$$

(For general abelian categories, the story is more subtle.)

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.
- If $X, Y \in \operatorname{Ch}(\mathcal{P U})$ then $\underline{\operatorname{Hom}(X, Y) \in \mathcal{P U} \text {. }}$
- Say $X \in \operatorname{Ch}(\mathcal{P U})$ is thin if for every $m>0$, the differential on $L_{m} X$ is 0 , i.e. the differential on X involves only maps $e_{G, S} \rightarrow e_{H, T}$ with $|H|<|G|$.
\rightarrow Every homotopy type has an essentially unique thin representative. (But thin \otimes thin and Hom(thin, thin) need not be thin.)

The derived category

- Let $\mathcal{P U}$ be the subcategory of projectives in $\mathcal{A U}$.
- There is an additive functor $P_{0}=l_{!} I^{*}: \mathcal{A U} \rightarrow \mathcal{P U}$ with a surjective natural transformation $P_{0}(X) \rightarrow X$, where I is the inclusion $\mathcal{U}^{\times} \rightarrow \mathcal{U}$.
- This extends to give an additive functor $P: \operatorname{Ch}(\mathcal{A U}) \rightarrow \mathrm{Ch}(\mathcal{P U})$ with a natural surjective quasiisomorphism $P(X) \rightarrow X$.
- From this and other results:

$$
\operatorname{Ch}(\mathcal{A U})\left[\mathrm{we}^{-1}\right]=\mathrm{hCh}(\mathcal{P U}):=\operatorname{Ch}(\mathcal{P U}) /(\text { chain homotopy })
$$

(For general abelian categories, the story is more subtle.)

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.
- If $X, Y \in \operatorname{Ch}(\mathcal{P U})$ then $\underline{\operatorname{Hom}(X, Y) \in \mathcal{P U} \text {. }}$
- Say $X \in \operatorname{Ch}(\mathcal{P U})$ is thin if for every $m>0$, the differential on $L_{m} X$ is 0 , i.e. the differential on X involves only maps $e_{G, S} \rightarrow e_{H, T}$ with $|H|<|G|$.
- Every homotopy type has an essentially unique thin representative.

The derived category

- Let $\mathcal{P U}$ be the subcategory of projectives in $\mathcal{A U}$.
- There is an additive functor $P_{0}=l_{!} I^{*}: \mathcal{A U} \rightarrow \mathcal{P U}$ with a surjective natural transformation $P_{0}(X) \rightarrow X$, where I is the inclusion $\mathcal{U}^{\times} \rightarrow \mathcal{U}$.
- This extends to give an additive functor $P: \operatorname{Ch}(\mathcal{A U}) \rightarrow \mathrm{Ch}(\mathcal{P U})$ with a natural surjective quasiisomorphism $P(X) \rightarrow X$.
- From this and other results:

$$
\operatorname{Ch}(\mathcal{A U})\left[\mathrm{we}^{-1}\right]=\mathrm{hCh}(\mathcal{P U}):=\operatorname{Ch}(\mathcal{P U}) /(\text { chain homotopy })
$$

(For general abelian categories, the story is more subtle.)

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.
- If $X, Y \in \operatorname{Ch}(\mathcal{P U})$ then $\underline{\operatorname{Hom}(X, Y) \in \mathcal{P U} \text {. }}$
- Say $X \in \operatorname{Ch}(\mathcal{P U})$ is thin if for every $m>0$, the differential on $L_{m} X$ is 0 , i.e. the differential on X involves only maps $e_{G, S} \rightarrow e_{H, T}$ with $|H|<|G|$.
- Every homotopy type has an essentially unique thin representative. (But thin \otimes thin and Hom(thin, thin) need not be thin.)

The derived category

- Let $\mathcal{P U}$ be the subcategory of projectives in $\mathcal{A U}$.
- There is an additive functor $P_{0}=l_{!} I^{*}: \mathcal{A U} \rightarrow \mathcal{P U}$ with a surjective natural transformation $P_{0}(X) \rightarrow X$, where I is the inclusion $\mathcal{U}^{\times} \rightarrow \mathcal{U}$.
- This extends to give an additive functor $P: \operatorname{Ch}(\mathcal{A U}) \rightarrow \mathrm{Ch}(\mathcal{P U})$ with a natural surjective quasiisomorphism $P(X) \rightarrow X$.
- From this and other results:

$$
\operatorname{Ch}(\mathcal{A U})\left[\mathrm{we}^{-1}\right]=\mathrm{hCh}(\mathcal{P U}):=\operatorname{Ch}(\mathcal{P U}) /(\text { chain homotopy })
$$

(For general abelian categories, the story is more subtle.)

- There is a cofibrantly generated proper stable monoidal model structure, in which everything can be defined explicitly using P and one does not need the small object argument.
- If $X, Y \in \operatorname{Ch}(\mathcal{P U})$ then $\underline{\operatorname{Hom}(X, Y) \in \mathcal{P U} \text {. }}$
- Say $X \in \operatorname{Ch}(\mathcal{P U})$ is thin if for every $m>0$, the differential on $L_{m} X$ is 0 , i.e. the differential on X involves only maps $e_{G, S} \rightarrow e_{H, T}$ with $|H|<|G|$.
- Every homotopy type has an essentially unique thin representative. (But thin \otimes thin and Hom(thin, thin) need not be thin.)
- A thin complex X is compact iff $\bigoplus_{n} X_{n}$ is finitely generated.

Supports and thick ideals

- For compact X (represented as a thin complex), several notions of support:
$-\operatorname{hsupp}(X)=\left\{G \mid H_{*}(X)(G) \neq 0\right\}$
$\Rightarrow \operatorname{esupp}(X)=\{G \mid X(G) \neq 0\}$
- eqsupp $(X)=\left\{G \mid\right.$ some $e_{G, S}$ is a retract of some $\left.X_{d}\right\}$.
- It is easy to see that $\operatorname{esupp}(X)$ is the upwards closure of eqsupp (X).
\Rightarrow True but less obvious: esupp (X) is the upwards closure of hsupp (X).
- Conjecture: thickid $\langle X\rangle \subseteq$ thickid $\langle Y\rangle$ iff hsupp $(X) \subseteq \operatorname{hsupp}(Y)$.
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_{G}=\left\{X \mid H_{*}(X)(G)=0\right\}$.
\Rightarrow If X is thin and n is largest with $L_{n} X \neq 0$, then $X=H_{*}(X)=L_{n} X \bmod$ terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_{G} \in$ thickid $\langle Y\rangle$.
- Given X, Y with hsupp $(X) \subseteq \operatorname{hsupp}(Y)$, and a large integer $N>0$, we can show that thickid $\langle X\rangle \subseteq \operatorname{thickid}\left\langle\{Y\} \cup\left\{e_{G}| | G \mid>N\right\}\right\rangle$.
\Rightarrow This work is ongoing.

Supports and thick ideals

- For compact X (represented as a thin complex), several notions of support:
- hsupp $(X)=\left\{G \mid H_{*}(X)(G) \neq 0\right\}$
- $\operatorname{esupp}(X)=\{G \mid X(G) \neq 0\}$
- eqsupp $(X)=\left\{G \mid\right.$ some $e_{G, S}$ is a retract of some $\left.X_{d}\right\}$
- It is easy to see that esupp (X) is the upwards closure of eqsupp (X).
- True but less obvious: esupp (X) is the upwards closure of hsupp (X)
- Conjecture: $\operatorname{thickid}\langle X\rangle \subseteq \operatorname{thickid}\langle Y\rangle$ iff hsupp $(X) \subseteq$ hsupp (Y).
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_{G}=\left\{X \mid H_{*}(X)(G)=0\right\}$
- If X is thin and n is largest with $L_{n} X \neq 0$, then $X=H_{*}(X)=L_{n} X \bmod$ terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_{G} \in$ thickid $\langle Y\rangle$.
- Given X, Y with hsupp $(X) \subseteq$ hsupp (Y), and a large integer $N>0$, we can show that thickid $\langle X\rangle \subseteq$ thickid $\left\langle\{Y\} \cup\left\{e_{G}| | G \mid>N\right\}\right\rangle$.
- This work is ongoing.

Supports and thick ideals

- For compact X (represented as a thin complex), several notions of support:
- hsupp $(X)=\left\{G \mid H_{*}(X)(G) \neq 0\right\}$
- $\operatorname{esupp}(X)=\{G \mid X(G) \neq 0\}$
$\rightarrow \operatorname{eqsupp}(X)=\left\{G \mid\right.$ some $e_{G, S}$ is a retract of some $\left.X_{d}\right\}$
\rightarrow It is easy to see that $\operatorname{esupn}(X)$ is the unwards closure of eqsupp (X)
- True but less obvious: $\operatorname{esupp}(X)$ is the upwards closure of hsupp (X)
\rightarrow Conjecture: thickid $\langle X\rangle \subseteq$ thickid $\langle Y\rangle$ iff hsupp $(X) \subseteq \operatorname{hsupp}(Y)$
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_{G}=\left\{X \mid H_{*}(X)(G)=0\right\}$
\rightarrow If X is thin and n is largest with $L_{n} X \neq 0$, then $X=H_{*}(X)=L_{n} X \bmod$ terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples; especially conditions under which $e_{G} \in$ thickid $\langle Y\rangle$.
\rightarrow Given X, Y with $\operatorname{hsupp}(X) \subseteq \operatorname{hsupp}(Y)$, and a large integer $N>0$, we can show that thickid $\langle X\rangle \subseteq$ thickid $\left\langle\{Y\} \cup\left\{e_{G}| | G \mid>N\right\}\right\rangle$.
- This work is ongoing.

Supports and thick ideals

- For compact X (represented as a thin complex), several notions of support:
- hsupp $(X)=\left\{G \mid H_{*}(X)(G) \neq 0\right\}$
- $\operatorname{esupp}(X)=\{G \mid X(G) \neq 0\}$
- eqsupp $(X)=\left\{G \mid\right.$ some $e_{G, S}$ is a retract of some $\left.X_{d}\right\}$
- It is easy to see that esupp (X) is the upwards closure of eqsupp (X)
- True but less obvious: esupp (X) is the upwards closure of hsupp (X)
- Conjecture: thickid $\langle X\rangle \subseteq$ thickid $\langle Y\rangle$ iff hsupp $(X) \subseteq$ hsupp (Y)
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_{G}=\left\{X \mid H_{*}(X)(G)=0\right\}$
- If X is thin and n is largest with $L_{n} X \neq 0$, then $X=H_{*}(X)=L_{n} X \bmod$ terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_{G} \in$ thickid $\langle Y\rangle$.
- Given X, Y with hsupp $(X) \subseteq$ hsupp (Y), and a large integer $N>0$, we can show that thickid $\langle X\rangle \subseteq$ thickid $\left\langle\{Y\} \cup\left\{e_{G}| | G \mid>N\right\}\right\rangle$
- This work is ongoing.

Supports and thick ideals

- For compact X (represented as a thin complex), several notions of support:
- hsupp $(X)=\left\{G \mid H_{*}(X)(G) \neq 0\right\}$
- $\operatorname{esupp}(X)=\{G \mid X(G) \neq 0\}$
- eqsupp $(X)=\left\{G \mid\right.$ some $e_{G, S}$ is a retract of some $\left.X_{d}\right\}$.
- It is easy to see that esupp (X) is the upwards closure of eqsupp (X)
- True but less obvious: esupp (X) is the upwards closure of hsupp (X)
\rightarrow Conjecture: thickid $\langle X\rangle \subseteq$ thickid $\langle Y\rangle$ iff hsupp $(X) \subseteq \operatorname{hsupp}(Y)$
\rightarrow There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable But that is not applicable here.
- The obvious prime ideals are $P_{G}=\left\{X \mid H_{*}(X)(G)=0\right\}$
- If X is thin and n is largest with $L_{n} X \neq 0$, then $X=H_{*}(X)=L_{n} X \bmod$ terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_{G} \in$ thickid $\langle Y\rangle$.
\rightarrow Given X, Y with $\operatorname{hsupp}(X) \subseteq \operatorname{hsupp}(Y)$, and a large integer $N>0$, we can show that thickid $\langle X\rangle \subseteq$ thickid $\left\langle\{Y\} \cup\left\{e_{G}| | G \mid>N\right\}\right\rangle$
- This work is ongoing.

Supports and thick ideals

- For compact X (represented as a thin complex), several notions of support:
- hsupp $(X)=\left\{G \mid H_{*}(X)(G) \neq 0\right\}$
- $\operatorname{esupp}(X)=\{G \mid X(G) \neq 0\}$
- eqsupp $(X)=\left\{G \mid\right.$ some $e_{G, S}$ is a retract of some $\left.X_{d}\right\}$.
- It is easy to see that $\operatorname{esupp}(X)$ is the upwards closure of eqsupp (X).
\Rightarrow True but less obvious: $\operatorname{esupp}(X)$ is the upwards closure of hsupp (X)
- Conjecture: thickid $\langle X\rangle \subseteq$ thickid $\langle Y\rangle$ iff hsupp $(X) \subseteq$ hsupp (Y)
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable But that is not applicable here.
- The obvious prime ideals are $P_{G}=\left\{X \mid H_{*}(X)(G)=0\right\}$
\Rightarrow If X is thin and n is largest with $L_{n} X \neq 0$, then $X=H_{*}(X)=L_{n} X \bmod$ terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_{G} \in$ thickid $\langle Y\rangle$
- Given X, Y with hsupp $(X) \subseteq \operatorname{hsupp}(Y)$, and a large integer $N>0$, we can show that thickid $\langle X\rangle \subseteq$ thickid $\left\langle\{Y\} \cup\left\{e_{G}| | G \mid>N\right\}\right\rangle$.

Supports and thick ideals

- For compact X (represented as a thin complex), several notions of support:
- hsupp $(X)=\left\{G \mid H_{*}(X)(G) \neq 0\right\}$
- $\operatorname{esupp}(X)=\{G \mid X(G) \neq 0\}$
- eqsupp $(X)=\left\{G \mid\right.$ some $e_{G, S}$ is a retract of some $\left.X_{d}\right\}$.
- It is easy to see that $\operatorname{esupp}(X)$ is the upwards closure of eqsupp (X).
- True but less obvious: $\operatorname{esupp}(X)$ is the upwards closure of hsupp (X).
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable But that is not applicable here
- The obvious prime ideals are $P_{G}=\left\{X \mid H_{*}(X)(G)=0\right\}$
- If X is thin and n is largest with $L_{n} X \neq 0$, then $X=H_{*}(X)=L_{n} X \bmod$ terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_{G} \in$ thickid $\langle Y\rangle$
\Rightarrow Given X, Y with hsupp $(X) \subseteq \operatorname{hsupp}(Y)$, and a large integer $N>0$, we can show that thickid $\langle X\rangle \subseteq$ thickid $\left\langle\{Y\} \cup\left\{e_{G}| | G \mid>N\right\}\right\rangle$.

Supports and thick ideals

- For compact X (represented as a thin complex), several notions of support:
- hsupp $(X)=\left\{G \mid H_{*}(X)(G) \neq 0\right\}$
- $\operatorname{esupp}(X)=\{G \mid X(G) \neq 0\}$
- eqsupp $(X)=\left\{G \mid\right.$ some $e_{G, S}$ is a retract of some $\left.X_{d}\right\}$.
- It is easy to see that $\operatorname{esupp}(X)$ is the upwards closure of eqsupp (X).
- True but less obvious: $\operatorname{esupp}(X)$ is the upwards closure of hsupp (X).
- Conjecture: thickid $\langle X\rangle \subseteq \operatorname{thickid}\langle Y\rangle$ iff hsupp $(X) \subseteq \operatorname{hsupp}(Y)$.
\rightarrow There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable But that is not applicable here
\rightarrow The obvious prime ideals are $P_{G}=\left\{X \mid H_{*}(X)(G)=0\right\}$
\rightarrow If X is thin and n is largest with $L_{n} X \neq 0$, then $X=H_{*}(X)=L_{n} X \bmod$ terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_{G} \in$ thickid $\langle Y\rangle$
\rightarrow Given X, Y with $\operatorname{hsunp}(X) \subseteq \operatorname{hsupp}(Y)$, and a large integer $N>0$, we can show that thickid $\langle X\rangle \subseteq$ thickid $\left\langle\{Y\} \cup\left\{e_{G}| | G \mid>N\right\}\right\rangle$

Supports and thick ideals

- For compact X (represented as a thin complex), several notions of support:
- hsupp $(X)=\left\{G \mid H_{*}(X)(G) \neq 0\right\}$
- $\operatorname{esupp}(X)=\{G \mid X(G) \neq 0\}$
- eqsupp $(X)=\left\{G \mid\right.$ some $e_{G, S}$ is a retract of some $\left.X_{d}\right\}$.
- It is easy to see that $\operatorname{esupp}(X)$ is the upwards closure of eqsupp (X).
- True but less obvious: $\operatorname{esupp}(X)$ is the upwards closure of hsupp (X).
- Conjecture: thickid $\langle X\rangle \subseteq \operatorname{thickid}\langle Y\rangle$ iff hsupp $(X) \subseteq \operatorname{hsupp}(Y)$.
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
\Rightarrow The obvious prime ideals are $P_{G}=\left\{X \mid H_{*}(X)(G)=0\right\}$
- If X is thin and n is largest with $L_{n} X \neq 0$, then $X=H_{*}(X)=L_{n} X \bmod$ terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_{G} \in$ thickid $\langle Y\rangle$
\rightarrow Given X, Y with $\operatorname{hsupp}(X) \subseteq \operatorname{hsupp}(Y)$, and a large integer $N>0$, we can show that thickid $\langle X\rangle \subseteq$ thickid $\left\langle\{Y\} \cup\left\{e_{G}| | G \mid>N\right\}\right\rangle$.

Supports and thick ideals

- For compact X (represented as a thin complex), several notions of support:
- $\operatorname{hsupp}(X)=\left\{G \mid H_{*}(X)(G) \neq 0\right\}$
- $\operatorname{esupp}(X)=\{G \mid X(G) \neq 0\}$
- eqsupp $(X)=\left\{G \mid\right.$ some $e_{G, S}$ is a retract of some $\left.X_{d}\right\}$.
- It is easy to see that $\operatorname{esupp}(X)$ is the upwards closure of eqsupp (X).
- True but less obvious: $\operatorname{esupp}(X)$ is the upwards closure of hsupp (X).
- Conjecture: thickid $\langle X\rangle \subseteq \operatorname{thickid}\langle Y\rangle$ iff hsupp $(X) \subseteq \operatorname{hsupp}(Y)$.
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_{G}=\left\{X \mid H_{*}(X)(G)=0\right\}$. terms of slower growth. Using this: 0 is also a prime ideal
- We have various partial results and examples, especially conditions under which $e_{G} \in$ thickid $\langle Y\rangle$
\rightarrow Given X, Y with $\operatorname{hsupp}(X) \subseteq \operatorname{hsupp}(Y)$, and a large integer $N>0$, we can show that thickid $\langle X\rangle \subseteq$ thickid $\left\langle\{Y\} \cup\left\{e_{G}| | G \mid>N\right\}\right\rangle$.

Supports and thick ideals

- For compact X (represented as a thin complex), several notions of support:
- $\operatorname{hsupp}(X)=\left\{G \mid H_{*}(X)(G) \neq 0\right\}$
- $\operatorname{esupp}(X)=\{G \mid X(G) \neq 0\}$
- eqsupp $(X)=\left\{G \mid\right.$ some $e_{G, S}$ is a retract of some $\left.X_{d}\right\}$.
- It is easy to see that $\operatorname{esupp}(X)$ is the upwards closure of eqsupp (X).
- True but less obvious: $\operatorname{esupp}(X)$ is the upwards closure of hsupp (X).
- Conjecture: thickid $\langle X\rangle \subseteq \operatorname{thickid}\langle Y\rangle$ iff hsupp $(X) \subseteq \operatorname{hsupp}(Y)$.
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_{G}=\left\{X \mid H_{*}(X)(G)=0\right\}$.
- If X is thin and n is largest with $L_{n} X \neq 0$, then $X=H_{*}(X)=L_{n} X \bmod$ terms of slower growth. Using this: 0 is also a prime ideal.
\rightarrow We have various partial results and examples, especially conditions under which $e_{G} \in$ thickid $\langle Y\rangle$
\rightarrow Given X, Y with $\operatorname{hsunp}(X) \subseteq h \operatorname{supp}(Y)$, and a large integer $N>0$, we can show that thickid $\langle X\rangle \subseteq \operatorname{thickid}\left\langle\{Y\} \cup\left\{e_{G}| | G \mid>N\right\}\right\rangle$.

Supports and thick ideals

- For compact X (represented as a thin complex), several notions of support:
- $\operatorname{hsupp}(X)=\left\{G \mid H_{*}(X)(G) \neq 0\right\}$
- $\operatorname{esupp}(X)=\{G \mid X(G) \neq 0\}$
- eqsupp $(X)=\left\{G \mid\right.$ some $e_{G, S}$ is a retract of some $\left.X_{d}\right\}$.
- It is easy to see that $\operatorname{esupp}(X)$ is the upwards closure of eqsupp (X).
- True but less obvious: $\operatorname{esupp}(X)$ is the upwards closure of hsupp (X).
- Conjecture: thickid $\langle X\rangle \subseteq \operatorname{thickid}\langle Y\rangle$ iff hsupp $(X) \subseteq \operatorname{hsupp}(Y)$.
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_{G}=\left\{X \mid H_{*}(X)(G)=0\right\}$.
- If X is thin and n is largest with $L_{n} X \neq 0$, then $X=H_{*}(X)=L_{n} X \bmod$ terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_{G} \in \operatorname{thickid}\langle Y\rangle$.
\Rightarrow Given X, Y with hsupp $(X) \subseteq \operatorname{hsupp}(Y)$, and a large integer $N>0$, we can show that thickid $\langle X\rangle \subseteq$ thickid $\left\langle\{Y\} \cup\left\{e_{G}| | G \mid>N\right\}\right\rangle$.

Supports and thick ideals

- For compact X (represented as a thin complex), several notions of support:
- hsupp $(X)=\left\{G \mid H_{*}(X)(G) \neq 0\right\}$
- $\operatorname{esupp}(X)=\{G \mid X(G) \neq 0\}$
- eqsupp $(X)=\left\{G \mid\right.$ some $e_{G, S}$ is a retract of some $\left.X_{d}\right\}$.
- It is easy to see that $\operatorname{esupp}(X)$ is the upwards closure of eqsupp (X).
- True but less obvious: $\operatorname{esupp}(X)$ is the upwards closure of hsupp (X).
- Conjecture: thickid $\langle X\rangle \subseteq \operatorname{thickid}\langle Y\rangle$ iff hsupp $(X) \subseteq \operatorname{hsupp}(Y)$.
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_{G}=\left\{X \mid H_{*}(X)(G)=0\right\}$.
- If X is thin and n is largest with $L_{n} X \neq 0$, then $X=H_{*}(X)=L_{n} X \bmod$ terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_{G} \in \operatorname{thickid}\langle Y\rangle$.
- Given X, Y with hsupp $(X) \subseteq \operatorname{hsupp}(Y)$, and a large integer $N>0$, we can show that thickid $\langle X\rangle \subseteq \operatorname{thickid}\left\langle\{Y\} \cup\left\{e_{G}| | G \mid>N\right\}\right\rangle$.

Supports and thick ideals

- For compact X (represented as a thin complex), several notions of support:
- hsupp $(X)=\left\{G \mid H_{*}(X)(G) \neq 0\right\}$
- $\operatorname{esupp}(X)=\{G \mid X(G) \neq 0\}$
- eqsupp $(X)=\left\{G \mid\right.$ some $e_{G, S}$ is a retract of some $\left.X_{d}\right\}$.
- It is easy to see that $\operatorname{esupp}(X)$ is the upwards closure of eqsupp (X).
- True but less obvious: $\operatorname{esupp}(X)$ is the upwards closure of hsupp (X).
- Conjecture: thickid $\langle X\rangle \subseteq \operatorname{thickid}\langle Y\rangle$ iff hsupp $(X) \subseteq \operatorname{hsupp}(Y)$.
- There is a very general method that does most of the work of classifying thick ideals, in cases where all compact objects are strongly dualisable. But that is not applicable here.
- The obvious prime ideals are $P_{G}=\left\{X \mid H_{*}(X)(G)=0\right\}$.
- If X is thin and n is largest with $L_{n} X \neq 0$, then $X=H_{*}(X)=L_{n} X \bmod$ terms of slower growth. Using this: 0 is also a prime ideal.
- We have various partial results and examples, especially conditions under which $e_{G} \in \operatorname{thickid}\langle Y\rangle$.
- Given X, Y with hsupp $(X) \subseteq \operatorname{hsupp}(Y)$, and a large integer $N>0$, we can show that thickid $\langle X\rangle \subseteq \operatorname{thickid}\left\langle\{Y\} \cup\left\{e_{G}| | G \mid>N\right\}\right\rangle$.
- This work is ongoing.

[^0]: \rightarrow Problem: projective generators are not strongly dualisable in $\mathcal{A U}$; compact objects are not strongly dualisable in $D(\mathcal{A} \mathcal{U})$ This blocks most known approaches to the Balmer spectrum.
 \rightarrow Although duality phenomena are unfamiliar, they are still concrete and tractable.
 \rightarrow Another unusual feature: all projectives are injective, but not conversely.

 - For abelian p-groups, or elementary abelian p-groups, or cyclic groups: the category $\mathcal{A} \mathcal{U}$ is locally noetherian, i.e. subobjects of finitely generated

[^1]: - Another unusual feature: all projectives are injective, but not conversely.

