Consequences of the Chromatic Splitting Conjecture

Neil Strickland

July 31, 2023

The Chromatic Splitting Conjecture

The CSC (due to Hopkins) is about the structure of $\alpha_{n}(S)=L_{n-1} L_{K(n)} S$.
Technical note: throughout this talk, S denotes the p-complete sphere spectrum, and we work in the category of S-modules. Symbols like $M U$ refer to the p-completed versions.

We put $S_{n}^{d}=L_{n} S^{d}$ and $\widehat{S}_{n}^{d}=L_{K(n)} S^{d}$. Given a ring spectrum R and variables z_{i} of odd degree d_{i} and chromatic height n_{i}, we define

$$
E_{R}\left[z_{1}, \ldots, z_{m}\right]=R \wedge \bigwedge_{i}\left(S \vee S_{n_{i}}^{d_{i}}\right)=\bigvee_{I \subseteq\{1, \ldots, m\}} S_{\min / n_{i}}^{\sum_{l} d_{i}}
$$

To expand this out, remember that $S_{n}^{i} \wedge S_{m}^{j} \simeq S_{\min (n, m)}^{i+j}$
We introduce variables $x_{\text {in }}$ for $0 \leq i<n$ of height i and degree $1-2(n-i)$ The CSC says that there are maps $x_{i n}: S_{i}^{1-2(n-i)} \rightarrow \alpha_{n}(S)$ inducing

$$
E_{S_{n-1}}\left[x_{0 n}, \ldots, x_{n-1, n}\right] \simeq \alpha_{n}(S)
$$

For example:

$$
\begin{aligned}
\alpha_{3}(S)=L_{2} L_{K(3)} S & \simeq S_{2} \wedge\left(S \vee S_{0}^{-5}\right) \wedge\left(S \vee S_{1}^{-3}\right) \wedge\left(S \vee S_{2}^{-1}\right) \\
& \simeq S_{2} \vee S_{2}^{-1} \vee S_{1}^{-3} \vee S_{1}^{-4} \vee S_{0}^{-5} \vee S_{0}^{-6} \vee S_{0}^{-8} \vee S_{0}^{-9}
\end{aligned}
$$

The Chromatic Splitting Conjecture

The CSC (due to Hopkins) is about the structure of $\alpha_{n}(S)=L_{n-1} L_{K(n)} S$.
Technical note: throughout this talk, S denotes the p-complete sphere spectrum, and we work in the category of S-modules. Symbols like $M U$ refer to the p-completed versions.

We put $S_{n}^{d}=L_{n} S^{d}$ and $\hat{S}_{n}^{d}=L_{K(n)} S^{d}$. Given a ring spectrum R and variables z_{i} of odd degree d_{i} and chromatic height n_{i}, we define

To expand this out, remember that $S_{n}^{i} \wedge S_{m}^{j} \simeq S_{\min (n, m)}^{i+j}$
We introduce variables $x_{i n}$ for $0 \leq i<n$ of height i and degree $1-2(n-i)$ The CSC says that there are maps $x_{i n}: S_{i}^{1-2(n-i)} \rightarrow \alpha_{n}(S)$ inducing

$$
E_{S_{n-1}}\left[x_{0 n}, \ldots, x_{n-1, n}\right] \simeq \alpha_{n}(S) .
$$

For example:

$$
\begin{aligned}
\alpha_{3}(S)-L_{2} L_{K(3)} S & \simeq S_{2} \wedge\left(S \vee S_{0}^{-5}\right) \wedge\left(S \vee S_{1}^{-3}\right) \wedge\left(S \vee S_{2}^{-1}\right) \\
& \simeq S_{2} \vee S_{2}^{-1} \vee S_{1}^{-3} \vee S_{1}^{-4} \vee S_{0}^{-5} \vee S_{0}^{-6} \vee S_{0}^{-8} \vee S_{0}^{-9} .
\end{aligned}
$$

The Chromatic Splitting Conjecture

The CSC (due to Hopkins) is about the structure of $\alpha_{n}(S)=L_{n-1} L_{K(n)} S$.
Technical note: throughout this talk, S denotes the p-complete sphere spectrum, and we work in the category of S-modules. Symbols like $M U$ refer to the p-completed versions.

We put $S_{n}^{d}=L_{n} S^{d}$ and $\hat{S}_{n}^{d}=L_{K(n)} S^{d}$. Given a ring spectrum R and variables z_{i} of odd degree d_{i} and chromatic height n_{i}, we define

To expand this out, remember that $S_{n}^{i} \wedge S_{m}^{j} \simeq S_{\min (n, m)}^{i+j}$
We introduce variables $x_{i n}$ for $0 \leq i<n$ of height i and degree $1-2(n-i)$ The CSC says that there are maps $x_{i n}: S_{i}^{1-2(n-i)} \rightarrow \alpha_{n}(S)$ inducing

$$
E_{S_{n-1}}\left[x_{0 n}, \ldots, x_{n-1, n}\right] \sim \alpha_{n}(S) .
$$

For example:

$$
\alpha_{3}^{\prime}(S)=L_{2} L_{K(3)} S \simeq S_{2} \wedge\left(S \vee S_{0}^{-5}\right) \wedge\left(S \vee S_{1}^{-3}\right) \wedge\left(S \vee S_{2}^{-1}\right)
$$

The Chromatic Splitting Conjecture

The CSC (due to Hopkins) is about the structure of $\alpha_{n}(S)=L_{n-1} L_{K(n)} S$.
Technical note: throughout this talk, S denotes the p-complete sphere spectrum, and we work in the category of S-modules. Symbols like $M U$ refer to the p-completed versions.

We put $S_{n}^{d}=L_{n} S^{d}$ and $\hat{S}_{n}^{d}=L_{K(n)} S^{d}$. Given a ring spectrum R and variables z_{i} of odd degree d_{i} and chromatic height n_{i}, we define

$$
E_{R}\left[z_{1}, \ldots, z_{m}\right]=R \wedge \bigwedge_{i}\left(S \vee S_{n_{i}}^{d_{i}}\right)=\bigvee_{I \subseteq\{1, \ldots, m\}} S_{\min / n_{i}}^{\sum_{I} d_{i}}
$$

To expand this out, remember that $S_{n}^{i} \wedge S_{m}^{j} \simeq S_{\min (n, m)}^{i+j}$
We introduce variables $x_{i n}$ for $0 \leq i<n$ of height i and degree $1-2(n-i)$. The CSC says that there are maps $x_{i n}: S_{i}^{1-2(n-i)} \rightarrow \alpha_{n}(S)$ inducing

$$
E_{S_{n-1}}\left[x_{0 n}, \ldots, x_{n-1, n}\right] \simeq \alpha_{n}(S) .
$$

For example:

The Chromatic Splitting Conjecture

The CSC (due to Hopkins) is about the structure of $\alpha_{n}(S)=L_{n-1} L_{K(n)} S$.
Technical note: throughout this talk, S denotes the p-complete sphere spectrum, and we work in the category of S-modules. Symbols like $M U$ refer to the p-completed versions.

We put $S_{n}^{d}=L_{n} S^{d}$ and $\hat{S}_{n}^{d}=L_{K(n)} S^{d}$. Given a ring spectrum R and variables z_{i} of odd degree d_{i} and chromatic height n_{i}, we define

$$
E_{R}\left[z_{1}, \ldots, z_{m}\right]=R \wedge \bigwedge_{i}\left(S \vee S_{n_{i}}^{d_{i}}\right)=\bigvee_{I \subseteq\{1, \ldots, m\}} S_{\min / n_{i}}^{\sum_{I} d_{i}}
$$

To expand this out, remember that $S_{n}^{i} \wedge S_{m}^{j} \simeq S_{\min (n, m)}^{i+j}$.
We introduce variables $x_{i n}$ for $0 \leq i<n$ of height i and degree $1-2(n-i)$. The CSC says that there are maps $x_{i n}: S_{i}^{1-2(n-i)} \rightarrow \alpha_{n}(S)$ inducing

$$
E_{S_{n-1}\left[x_{n n}, \ldots, x_{n-1, n}\right] \simeq \alpha_{n}(S) .} .
$$

For example:

The Chromatic Splitting Conjecture

The CSC (due to Hopkins) is about the structure of $\alpha_{n}(S)=L_{n-1} L_{K(n)} S$.
Technical note: throughout this talk, S denotes the p-complete sphere spectrum, and we work in the category of S-modules. Symbols like $M U$ refer to the p-completed versions.

We put $S_{n}^{d}=L_{n} S^{d}$ and $\hat{S}_{n}^{d}=L_{K(n)} S^{d}$. Given a ring spectrum R and variables z_{i} of odd degree d_{i} and chromatic height n_{i}, we define

$$
E_{R}\left[z_{1}, \ldots, z_{m}\right]=R \wedge \bigwedge_{i}\left(S \vee S_{n_{i}}^{d_{i}}\right)=\bigvee_{I \subseteq\{1, \ldots, m\}} S_{\min / n_{i}}^{\sum_{I} d_{i}}
$$

To expand this out, remember that $S_{n}^{i} \wedge S_{m}^{j} \simeq S_{\min (n, m)}^{i+j}$.
We introduce variables $x_{i n}$ for $0 \leq i<n$ of height i and degree $1-2(n-i)$.
$E_{S_{n-1}}\left[x_{0 n}, \ldots, x_{n-1, n}\right] \simeq \alpha_{n}(S)$.
For example:

The Chromatic Splitting Conjecture

The CSC (due to Hopkins) is about the structure of $\alpha_{n}(S)=L_{n-1} L_{K(n)} S$.
Technical note: throughout this talk, S denotes the p-complete sphere spectrum, and we work in the category of S-modules. Symbols like $M U$ refer to the p-completed versions.

We put $S_{n}^{d}=L_{n} S^{d}$ and $\hat{S}_{n}^{d}=L_{K(n)} S^{d}$. Given a ring spectrum R and variables z_{i} of odd degree d_{i} and chromatic height n_{i}, we define

$$
E_{R}\left[z_{1}, \ldots, z_{m}\right]=R \wedge \bigwedge_{i}\left(S \vee S_{n_{i}}^{d_{i}}\right)=\bigvee_{I \subseteq\{1, \ldots, m\}} S_{\min / n_{i}}^{\sum_{1} d_{i}}
$$

To expand this out, remember that $S_{n}^{i} \wedge S_{m}^{j} \simeq S_{\min (n, m)}^{i+j}$.
We introduce variables $x_{i n}$ for $0 \leq i<n$ of height i and degree $1-2(n-i)$.
The CSC says that there are maps $x_{i n}: S_{i}^{1-2(n-i)} \rightarrow \alpha_{n}(S)$ inducing

$$
E_{S_{n-1}}\left[x_{0 n}, \ldots, x_{n-1, n}\right] \simeq \alpha_{n}(S)
$$

For example:

The Chromatic Splitting Conjecture

The CSC (due to Hopkins) is about the structure of $\alpha_{n}(S)=L_{n-1} L_{K(n)} S$.
Technical note: throughout this talk, S denotes the p-complete sphere spectrum, and we work in the category of S-modules. Symbols like $M U$ refer to the p-completed versions.

We put $S_{n}^{d}=L_{n} S^{d}$ and $\hat{S}_{n}^{d}=L_{K(n)} S^{d}$. Given a ring spectrum R and variables z_{i} of odd degree d_{i} and chromatic height n_{i}, we define

$$
E_{R}\left[z_{1}, \ldots, z_{m}\right]=R \wedge \bigwedge_{i}\left(S \vee S_{n_{i}}^{d_{i}}\right)=\bigvee_{I \subseteq\{1, \ldots, m\}} S_{\min / n_{i}}^{\sum_{I} d_{i}}
$$

To expand this out, remember that $S_{n}^{i} \wedge S_{m}^{j} \simeq S_{\min (n, m)}^{i+j}$.
We introduce variables $x_{i n}$ for $0 \leq i<n$ of height i and degree $1-2(n-i)$.
The CSC says that there are maps $x_{i n}: S_{i}^{1-2(n-i)} \rightarrow \alpha_{n}(S)$ inducing

$$
E_{S_{n-1}}\left[x_{0 n}, \ldots, x_{n-1, n}\right] \simeq \alpha_{n}(S)
$$

For example:

$$
\begin{aligned}
\alpha_{3}(S)=L_{2} L_{K(3)} S & \simeq S_{2} \wedge\left(S \vee S_{0}^{-5}\right) \wedge\left(S \vee S_{1}^{-3}\right) \wedge\left(S \vee S_{2}^{-1}\right) \\
& \simeq S_{2} \vee S_{2}^{-1} \vee S_{1}^{-3} \vee S_{1}^{-4} \vee S_{0}^{-5} \vee S_{0}^{-6} \vee S_{0}^{-8} \vee S_{0}^{-9} .
\end{aligned}
$$

The conjecture is false in general

- Beaudry has proved that the CSC is false for $n=p=2$.
- It may still be true when p is large relative to n.
- When p is large the question is in principle purely algebraic, by work starting with Franke, later versions e.g. by Patchkoria-Pstragowski.
- We could also take an ultraproduct over primes, following Barthel-Schlank-Stapleton.
- This talk will investigate a complex set of consequences that would follow from the CSC. These appear to be internally consistent, although there are many ways in which that could fail. This makes the CSC more interesting and more plausible.
- Conjecture: the resulting algebraic and combinatorial patterns are indirectly relevant, even if CSC fails.

The conjecture is false in general

- Beaudry has proved that the CSC is false for $n=p=2$.
\rightarrow It may still be true when p is large relative to n.
- When p is large the question is in principle purely algebraic, by work starting with Franke, later versions e.g. by Patchkoria-Pstragowski.
\rightarrow We could also take an ultraproduct over primes, following Barthel-Schlank-Stapleton.
- This talk will investigate a complex set of consequences that would follow from the CSC. These appear to be internally consistent, although there are many ways in which that could fail. This makes the CSC more interesting and more plausible.
$>$ Conjecture: the resulting algebraic and combinatorial patterns are indirectly relevant, even if CSC fails.

The conjecture is false in general

- Beaudry has proved that the CSC is false for $n=p=2$.
- It may still be true when p is large relative to n.
\rightarrow When p is large the question is in principle purely algebraic, by work starting with Franke, later versions e.g. by Patchkoria-Pstragowski.
- We could also take an ultraproduct over primes following Barthel-Schlank-Stapleton.
$>$ This talk will investigate a complex set of consequences that would follow from the CSC. These appear to be internally consistent, although there are many ways in which that could fail. This makes the CSC more interesting and more plausible.
- Conjecture: the resulting algebraic and combinatorial patterns are indirectly relevant, even if CSC fails.

The conjecture is false in general

- Beaudry has proved that the CSC is false for $n=p=2$.
- It may still be true when p is large relative to n.
- When p is large the question is in principle purely algebraic, by work starting with Franke, later versions e.g. by Patchkoria-Pstragowski.

We could also take an ultraproduct over primes, following Barthel-Schlank-Stapleton.

\rightarrow This talk will investigate a complex set of consequences that would follow from the CSC. These appear to be internally consistent, although there are many ways in which that could fail. This makes the CSC more interesting and more plausible.
$>$ Conjecture: the resulting algebraic and combinatorial patterns are indirectly relevant, even if CSC fails.

The conjecture is false in general

- Beaudry has proved that the CSC is false for $n=p=2$.
- It may still be true when p is large relative to n.
- When p is large the question is in principle purely algebraic, by work starting with Franke, later versions e.g. by Patchkoria-Pstragowski.
- We could also take an ultraproduct over primes, following Barthel-Schlank-Stapleton.
$>$ This talk will investigate a complex set of consequences that would follow from the CSC. These appear to be internally consistent, although there are many ways in which that could fail. This makes the CSC more interesting and more plausible
$>$ Conjecture: the resulting algebraic and combinatorial patterns are indirectly relevant, even if CSC fails.

The conjecture is false in general

- Beaudry has proved that the CSC is false for $n=p=2$.
- It may still be true when p is large relative to n.
- When p is large the question is in principle purely algebraic, by work starting with Franke, later versions e.g. by Patchkoria-Pstragowski.
- We could also take an ultraproduct over primes, following Barthel-Schlank-Stapleton.
- This talk will investigate a complex set of consequences that would follow from the CSC. These appear to be internally consistent, although there are many ways in which that could fail. This makes the CSC more interesting and more plausible.
\rightarrow Conjecture: the resulting algebraic and combinatorial patterns are indirectly relevant, even if CSC fails.

The conjecture is false in general

- Beaudry has proved that the CSC is false for $n=p=2$.
- It may still be true when p is large relative to n.
- When p is large the question is in principle purely algebraic, by work starting with Franke, later versions e.g. by Patchkoria-Pstragowski.
- We could also take an ultraproduct over primes, following Barthel-Schlank-Stapleton.
- This talk will investigate a complex set of consequences that would follow from the CSC. These appear to be internally consistent, although there are many ways in which that could fail. This makes the CSC more interesting and more plausible.
- Conjecture: the resulting algebraic and combinatorial patterns are indirectly relevant, even if CSC fails.

Generators; Localisation relations

The extended Morava stabiliser group Γ_{n} of height n acts on $W \mathbb{F}_{p^{n}}$ with

$$
H^{*}\left(\Gamma_{n} ; \mathbb{Q} \otimes W \mathbb{F}_{p^{n}}\right)=E_{\mathbb{Q}_{p}}\left[x_{i n} \mid 0 \leq i<n\right] \quad x_{i n} \in H^{2(n-i)-1}
$$

These elements $x_{i n}$ should be related via the $K(n)$-based Adams spectral sequence to the elements $x_{i n}$ in the CSC.
Also, $x_{n-1, n}: S_{n-1}^{-1} \rightarrow L_{n-1} L_{K(n)} S$ should come from the known element $\zeta_{n}: S^{-1} \rightarrow L_{K(n)} S\left(\right.$ defined using $\operatorname{ker}\left(\right.$ det: $\left.\Gamma_{n} \rightarrow \mathbb{Z}_{p}^{\times}\right)$).

Generators; Localisation relations

The extended Morava stabiliser group Γ_{n} of height n acts on $W \mathbb{F}_{p^{n}}$ with

$$
H^{*}\left(\Gamma_{n} ; \mathbb{Q} \otimes W \mathbb{F}_{p^{n}}\right)=E_{\mathbb{Q}_{p}}\left[x_{i n} \mid 0 \leq i<n\right] \quad x_{i n} \in H^{2(n-i)-1}
$$

These elements $x_{i n}$ should be related via the $K(n)$-based Adams spectral sequence to the elements $x_{i n}$ in the CSC.

Generators; Localisation relations

The extended Morava stabiliser group Γ_{n} of height n acts on $W \mathbb{F}_{p^{n}}$ with

$$
H^{*}\left(\Gamma_{n} ; \mathbb{Q} \otimes W \mathbb{F}_{p^{n}}\right)=E_{\mathbb{Q}_{p}}\left[x_{i n} \mid 0 \leq i<n\right] \quad x_{i n} \in H^{2(n-i)-1}
$$

These elements $x_{i n}$ should be related via the $K(n)$-based Adams spectral sequence to the elements $x_{i n}$ in the CSC.
Also, $x_{n-1, n}: S_{n-1}^{-1} \rightarrow L_{n-1} L_{K(n)} S$ should come from the known element $\zeta_{n}: S^{-1} \rightarrow L_{K(n)} S$ (defined using $\operatorname{ker}\left(\operatorname{det}: \Gamma_{n} \rightarrow \mathbb{Z}_{p}^{\times}\right)$).

Generators; Localisation relations

The extended Morava stabiliser group Γ_{n} of height n acts on $W \mathbb{F}_{p^{n}}$ with

$$
H^{*}\left(\Gamma_{n} ; \mathbb{Q} \otimes W \mathbb{F}_{p^{n}}\right)=E_{\mathbb{Q}_{p}}\left[x_{i n} \mid 0 \leq i<n\right] \quad x_{i n} \in H^{2(n-i)-1}
$$

These elements $x_{i n}$ should be related via the $K(n)$-based Adams spectral sequence to the elements $x_{i n}$ in the CSC.
Also, $x_{n-1, n}: S_{n-1}^{-1} \rightarrow L_{n-1} L_{K(n)} S$ should come from the known element $\zeta_{n}: S^{-1} \rightarrow L_{K(n)} S$ (defined using $\operatorname{ker}\left(\operatorname{det}: \Gamma_{n} \rightarrow \mathbb{Z}_{p}^{\times}\right)$).

$$
L_{n} L_{m}=L_{\min (n, m)}
$$

Generators; Localisation relations

The extended Morava stabiliser group Γ_{n} of height n acts on $W \mathbb{F}_{p^{n}}$ with

$$
H^{*}\left(\Gamma_{n} ; \mathbb{Q} \otimes W \mathbb{F}_{p^{n}}\right)=E_{\mathbb{Q}_{p}}\left[x_{i n} \mid 0 \leq i<n\right] \quad x_{i n} \in H^{2(n-i)-1} .
$$

These elements $x_{i n}$ should be related via the $K(n)$-based Adams spectral sequence to the elements $x_{i n}$ in the CSC.
Also, $x_{n-1, n}: S_{n-1}^{-1} \rightarrow L_{n-1} L_{K(n)} S$ should come from the known element $\zeta_{n}: S^{-1} \rightarrow L_{K(n)} S$ (defined using ker(det: $\left.\Gamma_{n} \rightarrow \mathbb{Z}_{p}^{\times}\right)$).

$$
\begin{aligned}
L_{n} L_{m} & =L_{\min (n, m)} \\
L_{K(n)} L_{m} & = \begin{cases}L_{K(n)} & \text { if } n \leq m \\
0 & \text { if } n>m\end{cases} \\
L_{n} L_{K(m)} & = \begin{cases}? & \text { if } n<m \\
L_{K(m)} & \text { if } n \geq m\end{cases} \\
L_{K(n)} L_{K(m)} & = \begin{cases}? & \text { if } n<m \\
L_{K(n)} & \text { if } n=m \\
0 & \text { if } n>m .\end{cases}
\end{aligned}
$$

Generators; Localisation relations

The extended Morava stabiliser group Γ_{n} of height n acts on $W \mathbb{F}_{p^{n}}$ with

$$
H^{*}\left(\Gamma_{n} ; \mathbb{Q} \otimes W \mathbb{F}_{p^{n}}\right)=E_{\mathbb{Q}_{p}}\left[x_{i n} \mid 0 \leq i<n\right] \quad x_{i n} \in H^{2(n-i)-1}
$$

These elements $x_{i n}$ should be related via the $K(n)$-based Adams spectral sequence to the elements $x_{i n}$ in the CSC.
Also, $x_{n-1, n}: S_{n-1}^{-1} \rightarrow L_{n-1} L_{K(n)} S$ should come from the known element $\zeta_{n}: S^{-1} \rightarrow L_{K(n)} S$ (defined using $\operatorname{ker}\left(\operatorname{det}: \Gamma_{n} \rightarrow \mathbb{Z}_{p}^{\times}\right)$).

$$
\begin{aligned}
L_{n} L_{m} & =L_{\min (n, m)} \\
L_{K(n)} L_{m} & = \begin{cases}L_{K(n)} & \text { if } n \leq m \\
0 & \text { if } n>m\end{cases} \\
L_{n} L_{K(m)} & = \begin{cases}? & \text { if } n<m \\
L_{K(m)} & \text { if } n \geq m\end{cases}
\end{aligned}
$$

Generators; Localisation relations

The extended Morava stabiliser group Γ_{n} of height n acts on $W \mathbb{F}_{p^{n}}$ with

$$
H^{*}\left(\Gamma_{n} ; \mathbb{Q} \otimes W \mathbb{F}_{p^{n}}\right)=E_{\mathbb{Q}_{p}}\left[x_{i n} \mid 0 \leq i<n\right] \quad x_{i n} \in H^{2(n-i)-1}
$$

These elements $x_{i n}$ should be related via the $K(n)$-based Adams spectral sequence to the elements $x_{i n}$ in the CSC.
Also, $x_{n-1, n}: S_{n-1}^{-1} \rightarrow L_{n-1} L_{K(n)} S$ should come from the known element $\zeta_{n}: S^{-1} \rightarrow L_{K(n)} S$ (defined using $\operatorname{ker}\left(\operatorname{det}: \Gamma_{n} \rightarrow \mathbb{Z}_{p}^{\times}\right)$).

$$
\begin{aligned}
L_{n} L_{m} & =L_{\min (n, m)} \\
L_{K(n)} L_{m} & = \begin{cases}L_{K(n)} & \text { if } n \leq m \\
0 & \text { if } n>m\end{cases} \\
L_{n} L_{K(m)} & = \begin{cases}? & \text { if } n<m \\
L_{K(m)} & \text { if } n \geq m\end{cases} \\
L_{K(n)} L_{K(m)} & = \begin{cases}? & \text { if } n<m \\
L_{K(n)} & \text { if } n=m \\
0 & \text { if } n>m .\end{cases}
\end{aligned}
$$

The spherical category

- Fix p and $N \geq 0$, and assume CSC holds for $n \leq N$.
- Let \mathcal{C} be the closure of $\mathcal{C}_{1}=\left\{S_{0}, S_{1}, \ldots, S_{N}, \hat{S}_{1}, \ldots, \hat{S}_{N}\right\}$ under (de)suspension and finite coproducts (remembering $\hat{S}_{0}=S_{0}$).
- Claim: \mathcal{C} is closed under smash products and $F(-,-)$ and $L_{E(n)}$ and $L_{K(n)}$, so is a closed symmetric monoidal category.
$>S_{n} \wedge S_{m}=L_{E(n)} S_{m}=L_{E(m)} S_{n}=S_{\min (n, m)} ;$ also $S_{n} \wedge \widehat{S}_{m}=\hat{S}_{m}$ for $n \geq m$.
$>$ For $n<m$ we have $S_{n} \wedge \hat{S}_{m}=S_{n} \wedge L_{m-1} \hat{S}_{m}=V_{I \subseteq\{0, \ldots, m-1\}} S_{\min (1, n)}^{\bullet}$.
- For $n<m$ we have $\hat{S}_{n} \wedge \hat{S}_{m}=\hat{S}_{n} \wedge S_{n} \wedge \hat{S}_{m}=V_{1 \in\{0 \ldots, m-1\}} \hat{S}_{n} \wedge S_{\text {min (1, } n)}^{\bullet}$; simplified further as above to give some \widehat{S}_{n} and some S_{i} with $i<n$.
- \hat{S}_{n} is a ring so $\hat{S}_{n} \wedge \hat{S}_{n}=\hat{S}_{n} \vee \mathrm{fib}\left(\mu: \hat{S}_{n} \wedge \hat{S}_{n} \rightarrow \hat{S}_{n}\right)$.
\rightarrow Apply $\hat{S}_{n} \wedge(-)$ to the chromatic fracture square

We find that fib (μ) is the same for \widehat{S}_{n} and $L_{n-1} \hat{S}_{n}$, and is a wedge of copies of S_{i}^{\bullet} with $i<n$.

The spherical category

- Fix p and $N \geq 0$, and assume CSC holds for $n \leq N$.

Let \mathcal{C} be the closure of $\mathcal{C}_{1}=\left\{S_{0}, S_{1}, \ldots, S_{N}, \hat{S}_{1}, \ldots, \hat{S}_{N}\right\}$ under (de)suspension and finite coproducts (remembering $\widehat{S}_{0}=S_{0}$)

- Claim: C is closed under smash products and $F(-,-)$ and $I_{E(n)}$ and $L_{K}(n)$, so is a closed symmetric monoidal category.
$>S_{n} \wedge S_{m}=L_{E(n)} S_{m}=L_{E(m)} S_{n}=S_{\min (n, m)} ;$ also $S_{n} \wedge \widehat{S}_{m}=\widehat{S}_{m}$ for $n \geq m$.
\rightarrow For $n<m$ we have $S_{n} \wedge \widehat{S}_{m}=S_{n} \wedge L_{m-1} \widehat{S}_{m}=V_{I \subseteq\{0, \ldots, m-1\}} S_{\min (t, n)}^{0}$
\rightarrow For $n<m$ we have $\widehat{S}_{n} \wedge \widehat{S}_{m}=\widehat{S}_{n} \wedge S_{n} \wedge \widehat{S}_{m}=V_{I \subseteq\{0, \ldots, m-1\}} \widehat{S}_{n} \wedge S_{\min (I, n)}^{\bullet}$; simplified further as above to give some \widehat{S}_{n} and some S_{i} with $i<n$. \widehat{S}_{n} is a ring so $\widehat{S}_{n} \wedge \widehat{S}_{n}=\widehat{S}_{n} \vee \operatorname{fib}\left(11: \widehat{S}_{n} \wedge \widehat{S}_{n} \rightarrow \widehat{S}_{n}\right)$
\rightarrow Apply $\widehat{S}_{n} \wedge(-)$ to the chromatic fracture square

We find that $\operatorname{fib}(\mu)$ is the same for \widehat{S}_{n} and $L_{n-1} \widehat{S}_{n}$, and is a wedge of copies of S_{i}^{\bullet} with $i<n$.

The spherical category

- Fix p and $N \geq 0$, and assume CSC holds for $n \leq N$.
- Let \mathcal{C} be the closure of $\mathcal{C}_{1}=\left\{S_{0}, S_{1}, \ldots, S_{N}, \hat{S}_{1}, \ldots, \hat{S}_{N}\right\}$ under (de)suspension and finite coproducts (remembering $\hat{S}_{0}=S_{0}$).
\rightarrow Claim: \mathcal{C} is closed under smash products and $F(-,-)$ and $L_{E(n)}$ and $L_{K(n)}$ so is a closed symmetric monoidal category.

 simplified further as above to give some \widehat{S}_{n} and some S_{i} with $i<n$. \widehat{S}_{n} is a ring so $\widehat{S}_{n} \wedge \widehat{S}_{n}=\widehat{S}_{n} \vee$ fib $\left(\ldots: \hat{S}_{n} \wedge \widehat{S}_{n} \rightarrow \widehat{S}_{n}\right)$
Apply $\widehat{S}_{n} \wedge(-)$ to the chromatic fracture square

We find that $\mathrm{fib}(\mu)$ is the same for \widehat{S}_{n} and $L_{n-1} \widehat{S}_{n}$, and is a wedge of copies of S_{i}^{\bullet} with $i<n$

The spherical category

- Fix p and $N \geq 0$, and assume CSC holds for $n \leq N$.
- Let \mathcal{C} be the closure of $\mathcal{C}_{1}=\left\{S_{0}, S_{1}, \ldots, S_{N}, \hat{S}_{1}, \ldots, \hat{S}_{N}\right\}$ under (de)suspension and finite coproducts (remembering $\hat{S}_{0}=S_{0}$).
- Claim: \mathcal{C} is closed under smash products and $F(-,-)$ and $L_{E(n)}$ and $L_{K(n)}$, so is a closed symmetric monoidal category.
$>$ For $n<m$ we have $S_{n} \wedge \widehat{S}_{m}=S_{n} \wedge L_{m-1} \widehat{S}_{m}=V_{I \subseteq\{0, \ldots, m-1\}} S_{\min (I, n)}^{\bullet}$.
\rightarrow For $n<m$ wh have $\widehat{S}_{n} \wedge \widehat{S}_{m}=\widehat{S}_{n} \wedge S_{n} \wedge \widehat{S}_{m}=V_{i \subseteq\{0 \ldots \ldots-1\}} \widehat{S}_{n} \wedge S_{\min (l, n)}^{\bullet}$ simplified further as above to give some \widehat{S}_{n} and some S_{i} with $i<n$. \hat{S}_{n} is a ring so $\hat{S}_{n} \wedge \hat{S}_{n}=\hat{S}_{n} \vee \mathrm{fib}\left(\mu: \hat{S}_{n} \wedge \hat{S}_{n} \rightarrow \hat{S}_{n}\right)$ Apply $\widehat{S}_{n} \wedge(-)$ to the chromatic fracture square

We find that fib (μ) is the same for \widehat{S}_{n} and $L_{n-1} \widehat{S}_{n}$, and is a wedge of copies of S_{i}° with $i<n$.

The spherical category

- Fix p and $N \geq 0$, and assume CSC holds for $n \leq N$.
- Let \mathcal{C} be the closure of $\mathcal{C}_{1}=\left\{S_{0}, S_{1}, \ldots, S_{N}, \hat{S}_{1}, \ldots, \hat{S}_{N}\right\}$ under (de)suspension and finite coproducts (remembering $\hat{S}_{0}=S_{0}$).
- Claim: \mathcal{C} is closed under smash products and $F(-,-)$ and $L_{E(n)}$ and $L_{K(n)}$, so is a closed symmetric monoidal category.
- $S_{n} \wedge S_{m}=L_{E(n)} S_{m}=L_{E(m)} S_{n}=S_{\min (n, m)}$

$$
\text { also } S_{n} \wedge \hat{S}_{m}=\hat{S}_{m} \text { for } n \geq m \text {. }
$$

simplified further as above to give some \hat{S}_{n} and some S_{i} with $i<n$. \hat{S}_{n} is a ring so $\hat{S}_{n} \wedge \hat{S}_{n}=\hat{S}_{n} \vee \mathrm{fib}\left(\mu: \hat{S}_{n} \wedge \hat{S}_{n} \rightarrow \hat{S}_{n}\right)$ Apply $\hat{S}_{n} \wedge(-)$ to the chromatic fracture square

We find that fib (μ) is the same for \widehat{S}_{n} and $L_{n-1} \widehat{S}_{n}$, and is a wedge of copies of S_{i}^{*} with $i<n$.

The spherical category

- Fix p and $N \geq 0$, and assume CSC holds for $n \leq N$.
- Let \mathcal{C} be the closure of $\mathcal{C}_{1}=\left\{S_{0}, S_{1}, \ldots, S_{N}, \hat{S}_{1}, \ldots, \hat{S}_{N}\right\}$ under (de)suspension and finite coproducts (remembering $\hat{S}_{0}=S_{0}$).
- Claim: \mathcal{C} is closed under smash products and $F(-,-)$ and $L_{E(n)}$ and $L_{K(n)}$, so is a closed symmetric monoidal category.
$\downarrow S_{n} \wedge S_{m}=L_{E(n)} S_{m}=L_{E(m)} S_{n}=S_{\min (n, m)} ;$ also $S_{n} \wedge \hat{S}_{m}=\hat{S}_{m}$ for $n \geq m$. simplified further as above to give some \hat{S}_{n} and some S_{i} with $i<n$. \hat{S}_{n} is a ring so $\hat{S}_{n} \wedge \hat{S}_{n}=\hat{S}_{n} \vee \mathrm{fib}\left(\mu: \hat{S}_{n} \wedge \hat{S}_{n} \rightarrow \hat{S}_{n}\right)$ Apply $\hat{S}_{n} \wedge(-)$ to the chromatic fracture square

We find that fib (μ) is the same for \widehat{S}_{n} and $L_{n-1} \widehat{S}_{n}$, and is a wedge of copies of S_{i}^{*} with $i<n$.

The spherical category

- Fix p and $N \geq 0$, and assume CSC holds for $n \leq N$.
- Let \mathcal{C} be the closure of $\mathcal{C}_{1}=\left\{S_{0}, S_{1}, \ldots, S_{N}, \hat{S}_{1}, \ldots, \hat{S}_{N}\right\}$ under (de)suspension and finite coproducts (remembering $\hat{S}_{0}=S_{0}$).
- Claim: \mathcal{C} is closed under smash products and $F(-,-)$ and $L_{E(n)}$ and $L_{K(n)}$, so is a closed symmetric monoidal category.
$\downarrow S_{n} \wedge S_{m}=L_{E(n)} S_{m}=L_{E(m)} S_{n}=S_{\min (n, m)} ;$ also $S_{n} \wedge \hat{S}_{m}=\hat{S}_{m}$ for $n \geq m$.
\rightarrow For $n<m$ we have $S_{n} \wedge \hat{S}_{m}=S_{n} \wedge L_{m-1} \hat{S}_{m}=\bigvee_{I \subseteq\{0, \ldots, m-1\}} S_{\min (I, n)}^{\bullet}$. simplified further as above to give some \hat{S}_{n} and some S_{i} with $i<n$. \hat{S}_{n} is a ring so $\hat{S}_{n} \wedge \hat{S}_{n}=\hat{S}_{n} \vee \mathrm{fib}\left(\mu: \hat{S}_{n} \wedge \hat{S}_{n} \rightarrow \hat{S}_{n}\right)$ Apply $\hat{S}_{n} \wedge(-)$ to the chromatic fracture square

We find that fib (μ) is the same for \widehat{S}_{n} and $L_{n-1} \widehat{S}_{n}$, and is a wedge of copies of S_{i}^{*} with $i<n$.

The spherical category

- Fix p and $N \geq 0$, and assume CSC holds for $n \leq N$.
- Let \mathcal{C} be the closure of $\mathcal{C}_{1}=\left\{S_{0}, S_{1}, \ldots, S_{N}, \hat{S}_{1}, \ldots, \hat{S}_{N}\right\}$ under (de)suspension and finite coproducts (remembering $\hat{S}_{0}=S_{0}$).
- Claim: \mathcal{C} is closed under smash products and $F(-,-)$ and $L_{E(n)}$ and $L_{K(n)}$, so is a closed symmetric monoidal category.
$\downarrow S_{n} \wedge S_{m}=L_{E(n)} S_{m}=L_{E(m)} S_{n}=S_{\min (n, m)} ;$ also $S_{n} \wedge \hat{S}_{m}=\hat{S}_{m}$ for $n \geq m$.
- For $n<m$ we have $S_{n} \wedge \hat{S}_{m}=S_{n} \wedge L_{m-1} \hat{S}_{m}=\bigvee_{I \subseteq\{0, \ldots, m-1\}} S_{\min (I, n)}^{\bullet}$.
\rightarrow For $n<m$ we have $\hat{S}_{n} \wedge \hat{S}_{m}=\hat{S}_{n} \wedge S_{n} \wedge \hat{S}_{m}=\bigvee_{I \subseteq\{0, \ldots, m-1\}} \hat{S}_{n} \wedge S_{\min (I, n)}^{\bullet}$ simplified further as above to give some \widehat{S}_{n} and some S_{i} with $i<n$. \widehat{S}_{n} is a ring so $\hat{S}_{n} \wedge \hat{S}_{n}=\widehat{S}_{n} \vee \operatorname{fib}\left(\mu: \hat{S}_{n} \wedge \widehat{S}_{n} \rightarrow \widehat{S}_{n}\right)$ Apply $\hat{S}_{n} \wedge(-)$ to the chromatic fracture square

We find that fib (μ) is the same for \widehat{S}_{n} and $L_{n-1} \widehat{S}_{n}$, and is a wedge of copies of S_{i}^{\bullet} with $i<n$.

The spherical category

- Fix p and $N \geq 0$, and assume CSC holds for $n \leq N$.
- Let \mathcal{C} be the closure of $\mathcal{C}_{1}=\left\{S_{0}, S_{1}, \ldots, S_{N}, \hat{S}_{1}, \ldots, \hat{S}_{N}\right\}$ under (de)suspension and finite coproducts (remembering $\hat{S}_{0}=S_{0}$).
- Claim: \mathcal{C} is closed under smash products and $F(-,-)$ and $L_{E(n)}$ and $L_{K(n)}$, so is a closed symmetric monoidal category.
$\downarrow S_{n} \wedge S_{m}=L_{E(n)} S_{m}=L_{E(m)} S_{n}=S_{\min (n, m)} ;$ also $S_{n} \wedge \hat{S}_{m}=\hat{S}_{m}$ for $n \geq m$.
- For $n<m$ we have $S_{n} \wedge \hat{S}_{m}=S_{n} \wedge L_{m-1} \hat{S}_{m}=\bigvee_{I \subseteq\{0, \ldots, m-1\}} S_{\min (1, n)}^{\bullet}$.
- For $n<m$ we have $\hat{S}_{n} \wedge \hat{S}_{m}=\hat{S}_{n} \wedge S_{n} \wedge \hat{S}_{m}=\bigvee_{I \subseteq\{0, \ldots, m-1\}} \hat{S}_{n} \wedge S_{\min (I, n)}^{\bullet}$; simplified further as above to give some \hat{S}_{n} and some S_{i} with $i<n$.
\rightarrow Apply $\hat{S}_{n} \wedge(-)$ to the chromatic fracture square

We find that $\operatorname{fib}(\mu)$ is the same for \widehat{S}_{n} and $L_{n-1} \widehat{S}_{n}$, and is a wedge of copies of S_{i}° with $i<n$.

The spherical category

- Fix p and $N \geq 0$, and assume CSC holds for $n \leq N$.
- Let \mathcal{C} be the closure of $\mathcal{C}_{1}=\left\{S_{0}, S_{1}, \ldots, S_{N}, \hat{S}_{1}, \ldots, \hat{S}_{N}\right\}$ under (de)suspension and finite coproducts (remembering $\hat{S}_{0}=S_{0}$).
- Claim: \mathcal{C} is closed under smash products and $F(-,-)$ and $L_{E(n)}$ and $L_{K(n)}$, so is a closed symmetric monoidal category.
$\downarrow S_{n} \wedge S_{m}=L_{E(n)} S_{m}=L_{E(m)} S_{n}=S_{\min (n, m)} ;$ also $S_{n} \wedge \hat{S}_{m}=\hat{S}_{m}$ for $n \geq m$.
- For $n<m$ we have $S_{n} \wedge \hat{S}_{m}=S_{n} \wedge L_{m-1} \hat{S}_{m}=\bigvee_{I \subseteq\{0, \ldots, m-1\}} S_{\min (1, n)}^{\bullet}$.
\rightarrow For $n<m$ we have $\hat{S}_{n} \wedge \hat{S}_{m}=\hat{S}_{n} \wedge S_{n} \wedge \hat{S}_{m}=\bigvee_{I \subseteq\{0, \ldots, m-1\}} \hat{S}_{n} \wedge S_{\min (I, n)}^{\bullet}$; simplified further as above to give some \hat{S}_{n} and some S_{i} with $i<n$.
$>\hat{S}_{n}$ is a ring so $\hat{S}_{n} \wedge \hat{S}_{n}=\hat{S}_{n} \vee \mathrm{fib}\left(\mu: \hat{S}_{n} \wedge \hat{S}_{n} \rightarrow \hat{S}_{n}\right)$.
Apply $\hat{S}_{n} \wedge(-)$ to the chromatic fracture square

We find that $\operatorname{fib}(\mu)$ is the same for \widehat{S}_{n} and $L_{n-1} \widehat{S}_{n}$, and is a wedge of copies of S_{i}^{\bullet} with $i<n$.

The spherical category

- Fix p and $N \geq 0$, and assume CSC holds for $n \leq N$.
- Let \mathcal{C} be the closure of $\mathcal{C}_{1}=\left\{S_{0}, S_{1}, \ldots, S_{N}, \hat{S}_{1}, \ldots, \hat{S}_{N}\right\}$ under (de)suspension and finite coproducts (remembering $\hat{S}_{0}=S_{0}$).
- Claim: \mathcal{C} is closed under smash products and $F(-,-)$ and $L_{E(n)}$ and $L_{K(n)}$, so is a closed symmetric monoidal category.
$\rightarrow S_{n} \wedge S_{m}=L_{E(n)} S_{m}=L_{E(m)} S_{n}=S_{\min (n, m)} ;$ also $S_{n} \wedge \hat{S}_{m}=\hat{S}_{m}$ for $n \geq m$.
\rightarrow For $n<m$ we have $S_{n} \wedge \hat{S}_{m}=S_{n} \wedge L_{m-1} \hat{S}_{m}=\bigvee_{I \subseteq\{0, \ldots, m-1\}} S_{\min (1, n)}^{\bullet}$.
\rightarrow For $n<m$ we have $\hat{S}_{n} \wedge \hat{S}_{m}=\hat{S}_{n} \wedge S_{n} \wedge \hat{S}_{m}=\bigvee_{I \subseteq\{0, \ldots, m-1\}} \hat{S}_{n} \wedge S_{\min (I, n)}^{\bullet}$; simplified further as above to give some \hat{S}_{n} and some S_{i} with $i<n$.
$>\hat{S}_{n}$ is a ring so $\hat{S}_{n} \wedge \hat{S}_{n}=\hat{S}_{n} \vee \mathrm{fib}\left(\mu: \hat{S}_{n} \wedge \hat{S}_{n} \rightarrow \hat{S}_{n}\right)$.
\rightarrow Apply $\hat{S}_{n} \wedge(-)$ to the chromatic fracture square

We find that $\mathrm{fib}(\mu)$ is the same for \widehat{S}_{n} and $L_{n-1} \widehat{S}_{n}$ and is a wedge of copies of S_{i}^{\bullet} with $i<n$.

The spherical category

- Fix p and $N \geq 0$, and assume CSC holds for $n \leq N$.
- Let \mathcal{C} be the closure of $\mathcal{C}_{1}=\left\{S_{0}, S_{1}, \ldots, S_{N}, \hat{S}_{1}, \ldots, \hat{S}_{N}\right\}$ under (de)suspension and finite coproducts (remembering $\hat{S}_{0}=S_{0}$).
- Claim: \mathcal{C} is closed under smash products and $F(-,-)$ and $L_{E(n)}$ and $L_{K(n)}$, so is a closed symmetric monoidal category.
$\downarrow S_{n} \wedge S_{m}=L_{E(n)} S_{m}=L_{E(m)} S_{n}=S_{\min (n, m)} ;$ also $S_{n} \wedge \hat{S}_{m}=\hat{S}_{m}$ for $n \geq m$.
\rightarrow For $n<m$ we have $S_{n} \wedge \hat{S}_{m}=S_{n} \wedge L_{m-1} \hat{S}_{m}=\bigvee_{I \subseteq\{0, \ldots, m-1\}} S_{\min (1, n)}^{\bullet}$.
\rightarrow For $n<m$ we have $\hat{S}_{n} \wedge \hat{S}_{m}=\hat{S}_{n} \wedge S_{n} \wedge \hat{S}_{m}=\bigvee_{I \subseteq\{0, \ldots, m-1\}} \hat{S}_{n} \wedge S_{\min (1, n)}^{\bullet}$; simplified further as above to give some \hat{S}_{n} and some S_{i} with $i<n$.
$>\hat{S}_{n}$ is a ring so $\hat{S}_{n} \wedge \hat{S}_{n}=\hat{S}_{n} \vee \mathrm{fib}\left(\mu: \hat{S}_{n} \wedge \hat{S}_{n} \rightarrow \hat{S}_{n}\right)$.
\rightarrow Apply $\hat{S}_{n} \wedge(-)$ to the chromatic fracture square

We find that $\mathrm{fib}(\mu)$ is the same for \hat{S}_{n} and $L_{n-1} \hat{S}_{n}$, and is a wedge of copies of S_{i}^{\bullet} with $i<n$.

The spherical category

- For $n \geq m$ we have $F\left(S_{n}, S_{m}\right)=S_{m}$ and $F\left(S_{n}, \hat{S}_{m}\right)=\hat{S}_{m}$.
- For $n<m$ both S_{n} and \widehat{S}_{n} are $K(m)$-acyclic, so
$F\left(S_{n}, \hat{S}_{m}\right)=F\left(\hat{S}_{n}, \hat{S}_{m}\right)=0$.
\Rightarrow For $n<m$, apply $F\left(S_{n},-\right)$ to the chromatic fracture square for S_{m}, giving $F\left(S_{n}, S_{m}\right)=\bigvee_{1 \neq \varnothing} F\left(S_{n}, S_{\min (I, m-1)}^{\bullet-1}\right)$; then repeat recursively.
\Rightarrow Similar methods give $F\left(\hat{S}_{n}, S_{m}\right)$ and $F\left(\hat{S}_{n}, \hat{S}_{m}\right)$.
Recall X is strongly dualisable iff $F\left(X, S_{N}\right) \wedge X \rightarrow F(X, X)$ is iso.
This only holds if X is a wedge of copies of S_{N}^{*}.
\Rightarrow Put $R=\pi_{0}(C)=\mathbb{N}\left[s^{ \pm 1}\right]\left\{S_{0}, \ldots, S_{N}, \hat{S}_{1}, \ldots, \hat{S}_{N}\right\}$.
By spelling out the combinatorics, we get a product on R and a map $F: R \times R \rightarrow R$.
$>$ Fact: the product is commutative and associative and satisfies $F(x, F(y, z))=F(x y, z)$, as predicted by CSC.
This is all about isomorphism classes; what about morphisms?

The spherical category

- For $n \geq m$ we have $F\left(S_{n}, S_{m}\right)=S_{m}$ and $F\left(S_{n}, \hat{S}_{m}\right)=\hat{S}_{m}$.

For $n<m$ both S_{n} and S_{n} are $K(m)$-acyclic, so
$F\left(S_{n}, \hat{S}_{m}\right)=F\left(\hat{S}_{n}, \hat{S}_{m}\right)=0$.
\rightarrow For $n<m$, apply $F\left(S_{n},-\right)$ to the chromatic fracture square for S_{m}, giving $F\left(S_{n}, S_{m}\right)=V_{1 \neq \varnothing} F\left(S_{n}, S_{\min (1, m-1)}^{0-1}\right)$; then repeat recursively.
\rightarrow Similar methods give $F\left(\hat{S}_{n}, S_{m}\right)$ and $F\left(\widehat{S}_{n}, \hat{S}_{m}\right)$.
\rightarrow Recall X is strongly dualisable iff $F\left(X, S_{N}\right) \wedge X \rightarrow F(X, X)$ is iso.
This only holds if X is a wedge of copies of S_{N}°.
\rightarrow Put $R=\pi_{0}(\mathcal{C})=\mathbb{N}\left[s^{ \pm 1}\right]\left\{S_{0}, \ldots, S_{N}, \widehat{S}_{1}, \ldots, \widehat{S}_{N}\right\}$.

- By snelling out the combinatorics, we get a product on R and a map $F: R \times R \rightarrow R$.
\rightarrow Fact: the product is commutative and associative and satisfies $F(x, F(y, z))=F(x y, z)$, as predicted by CSC.
\rightarrow This is all about isomorphism classes; what about morphisms?

The spherical category

- For $n \geq m$ we have $F\left(S_{n}, S_{m}\right)=S_{m}$ and $F\left(S_{n}, \hat{S}_{m}\right)=\hat{S}_{m}$.
- For $n<m$ both S_{n} and \hat{S}_{n} are $K(m)$-acyclic, so $F\left(S_{n}, \hat{S}_{m}\right)=F\left(\widehat{S}_{n}, \hat{S}_{m}\right)=0$.

For $n<m$, apply $F\left(S_{n},-\right)$ to the chromatic fracture square for S_{m}, giving $F\left(S_{n}, S_{m}\right)=\bigvee_{1 \neq \varnothing} F\left(S_{n}, S_{\min (1, m-1)}^{\bullet-1}\right)$; then repeat recursively.

- Similar methods give $F\left(\hat{S}_{m}, S_{m}\right)$ and $F\left(\hat{S}_{n}, \hat{S}_{m}\right)$
\rightarrow Recall X is strongly dualisable iff $F\left(X, S_{N}\right) \wedge X \rightarrow F(X, X)$ is iso. This only holds if X is a wedge of copies of S_{N}^{*}
Put $R=\pi_{0}(\mathcal{C})=\mathbb{N}\left[s^{ \pm 1}\right]\left\{S_{0}\right.$,
$\left.S_{N}, \hat{S}_{1}, \ldots, \hat{S}_{N}\right\}$
- By spelling out the combinatorics, we get a product on R and a map $F: R \times R \rightarrow R$.
- Fact: the product is commutative and associative and satisfies $F(x, F(y, z))=F(x y, z)$, as predicted by CSC.
- This is all about isomorphism classes; what about morphisms?

The spherical category

- For $n \geq m$ we have $F\left(S_{n}, S_{m}\right)=S_{m}$ and $F\left(S_{n}, \hat{S}_{m}\right)=\hat{S}_{m}$.
- For $n<m$ both S_{n} and \hat{S}_{n} are $K(m)$-acyclic, so $F\left(S_{n}, \hat{S}_{m}\right)=F\left(\widehat{S}_{n}, \hat{S}_{m}\right)=0$.
- For $n<m$, apply $F\left(S_{n},-\right)$ to the chromatic fracture square for S_{m}, giving $F\left(S_{n}, S_{m}\right)=\bigvee_{1 \neq \varnothing} F\left(S_{n}, S_{\min (I, m-1)}^{\bullet-1}\right)$
Similar methods give $F\left(\hat{S}_{n}, S_{m}\right)$ and $F\left(\hat{S}_{n}, \hat{S}_{m}\right)$.
Recall X is strongly dualisable iff $F\left(X, S_{N}\right) \wedge X \rightarrow F(X, X)$ is iso. This only holds if X is a wedge of copies of S_{N}^{*}
\square
Put $R=\pi_{0}(C)=\mathbb{N}\left[s^{ \pm 1}\right]\left\{S_{0}, \ldots, S_{N}, S_{1}, \ldots, \hat{S}_{N}\right\}$
- By spelling out the combinatorics, we get a product on R and a map $F: R \times R \rightarrow R$.
- Fact: the product is commutative and associative and satisfies $F(x, F(y, z))=F(x y, z)$, as predicted by CSC.
This is all about isomorphism classes; what about morphisms?

The spherical category

- For $n \geq m$ we have $F\left(S_{n}, S_{m}\right)=S_{m}$ and $F\left(S_{n}, \hat{S}_{m}\right)=\hat{S}_{m}$.
- For $n<m$ both S_{n} and \hat{S}_{n} are $K(m)$-acyclic, so $F\left(S_{n}, \hat{S}_{m}\right)=F\left(\widehat{S}_{n}, \hat{S}_{m}\right)=0$.
- For $n<m$, apply $F\left(S_{n},-\right)$ to the chromatic fracture square for S_{m}, giving $F\left(S_{n}, S_{m}\right)=\bigvee_{1 \neq \varnothing} F\left(S_{n}, S_{\min (1, m-1)}^{\bullet-1}\right)$; then repeat recursively.

```
Similar methods give F(\mp@subsup{S}{n}{},\mp@subsup{S}{m}{})\mathrm{ and }F(\mp@subsup{\hat{S}}{n}{},\mp@subsup{\hat{S}}{m}{})\mathrm{ .}
Recall }X\mathrm{ is strongly dualisable iff }F(X,\mp@subsup{S}{N}{})\wedgeX->F(X,X) is iso
This only holds if X is a wedge of copies of S}\mp@subsup{S}{N}{*
Put R = }\mp@subsup{\pi}{0}{}(C)=\mathbb{N}[\mp@subsup{s}{}{\pm1}]{\mp@subsup{S}{0}{},\ldots,\mp@subsup{S}{N}{},\mp@subsup{\hat{S}}{1}{},\ldots,\mp@subsup{\hat{S}}{N}{}
By spelling out the combinatorics, we get a product on R and a map
F:R\timesR->R.
\(>\) Fact: the product is commutative and associative and satisfies \(F(x, F(y, z))=F(x y, z)\), as predicted by CSC.
```


The spherical category

- For $n \geq m$ we have $F\left(S_{n}, S_{m}\right)=S_{m}$ and $F\left(S_{n}, \hat{S}_{m}\right)=\hat{S}_{m}$.
- For $n<m$ both S_{n} and \hat{S}_{n} are $K(m)$-acyclic, so $F\left(S_{n}, \hat{S}_{m}\right)=F\left(\hat{S}_{n}, \hat{S}_{m}\right)=0$.
- For $n<m$, apply $F\left(S_{n},-\right)$ to the chromatic fracture square for S_{m}, giving $F\left(S_{n}, S_{m}\right)=\bigvee_{1 \neq \varnothing} F\left(S_{n}, S_{\min (1, m-1)}^{\bullet-1}\right)$; then repeat recursively.
- Similar methods give $F\left(\hat{S}_{n}, S_{m}\right)$ and $F\left(\hat{S}_{n}, \hat{S}_{m}\right)$.

This only holds if X is a wedge of copies of S_{N}^{*}
\square
By spelling out the combinatorics, we get a product on R and a map $F: R \times R \rightarrow R$.

- Fact: the product is commutative and associative and satisfies $F(x, F(y, z))=F(x y, z)$, as predicted by CSC.
- This is all about isomorphism classes; what about morphisms?

The spherical category

- For $n \geq m$ we have $F\left(S_{n}, S_{m}\right)=S_{m}$ and $F\left(S_{n}, \hat{S}_{m}\right)=\hat{S}_{m}$.
- For $n<m$ both S_{n} and \hat{S}_{n} are $K(m)$-acyclic, so $F\left(S_{n}, \hat{S}_{m}\right)=F\left(\hat{S}_{n}, \hat{S}_{m}\right)=0$.
- For $n<m$, apply $F\left(S_{n},-\right)$ to the chromatic fracture square for S_{m}, giving $F\left(S_{n}, S_{m}\right)=\bigvee_{1 \neq \varnothing} F\left(S_{n}, S_{\min (1, m-1)}^{\bullet-1}\right)$; then repeat recursively.
- Similar methods give $F\left(\hat{S}_{n}, S_{m}\right)$ and $F\left(\hat{S}_{n}, \hat{S}_{m}\right)$.
- Recall X is strongly dualisable iff $F\left(X, S_{N}\right) \wedge X \rightarrow F(X, X)$ is iso.

This only holds if X is a wedge of copies of S_{N}^{*}.
\square

- By spelling out the combinatorics, we get a product on R and a map $F: R \times R \rightarrow R$.
- Fact: the product is commutative and associative and satisfies $F(x, F(y, z))=F(x y, z)$, as predicted by CSC.
- This is all about isomorphism classes; what about morphisms?

The spherical category

- For $n \geq m$ we have $F\left(S_{n}, S_{m}\right)=S_{m}$ and $F\left(S_{n}, \hat{S}_{m}\right)=\hat{S}_{m}$.
- For $n<m$ both S_{n} and \hat{S}_{n} are $K(m)$-acyclic, so $F\left(S_{n}, \hat{S}_{m}\right)=F\left(\hat{S}_{n}, \hat{S}_{m}\right)=0$.
- For $n<m$, apply $F\left(S_{n},-\right)$ to the chromatic fracture square for S_{m}, giving $F\left(S_{n}, S_{m}\right)=\bigvee_{1 \neq \varnothing} F\left(S_{n}, S_{\min (1, m-1)}^{\bullet-1}\right)$; then repeat recursively.
- Similar methods give $F\left(\hat{S}_{n}, S_{m}\right)$ and $F\left(\hat{S}_{n}, \hat{S}_{m}\right)$.
- Recall X is strongly dualisable iff $F\left(X, S_{N}\right) \wedge X \rightarrow F(X, X)$ is iso. This only holds if X is a wedge of copies of S_{N}^{*}.
- By spelling out the combinatorics, we get a product on R and a map $F: R \times R \rightarrow R$.
- Fact: the product is commutative and associative and satisfies $F(x, F(y, z))=F(x y, z)$, as predicted by CSC.
- This is all about isomorphism classes; what about morphisms?

The spherical category

- For $n \geq m$ we have $F\left(S_{n}, S_{m}\right)=S_{m}$ and $F\left(S_{n}, \hat{S}_{m}\right)=\hat{S}_{m}$.
- For $n<m$ both S_{n} and \hat{S}_{n} are $K(m)$-acyclic, so $F\left(S_{n}, \hat{S}_{m}\right)=F\left(\hat{S}_{n}, \hat{S}_{m}\right)=0$.
- For $n<m$, apply $F\left(S_{n},-\right)$ to the chromatic fracture square for S_{m}, giving $F\left(S_{n}, S_{m}\right)=\bigvee_{1 \neq \varnothing} F\left(S_{n}, S_{\min (1, m-1)}^{\bullet-1}\right)$; then repeat recursively.
- Similar methods give $F\left(\hat{S}_{n}, S_{m}\right)$ and $F\left(\hat{S}_{n}, \hat{S}_{m}\right)$.
- Recall X is strongly dualisable iff $F\left(X, S_{N}\right) \wedge X \rightarrow F(X, X)$ is iso. This only holds if X is a wedge of copies of S_{N}^{*}.
- Put $R=\pi_{0}(\mathcal{C})=\mathbb{N}\left[s^{ \pm 1}\right]\left\{S_{0}, \ldots, S_{N}, \widehat{S}_{1}, \ldots, \widehat{S}_{N}\right\}$.

By spelling out the combinatorics, we get a product on R and a map $F: R \times R \rightarrow R$.

- Fact: the product is commutative and associative and satisfies $F(x, F(y, z))=F(x y, z)$, as predicted by CSC.
- This is all about isomorphism classes; what about morphisms?

The spherical category

- For $n \geq m$ we have $F\left(S_{n}, S_{m}\right)=S_{m}$ and $F\left(S_{n}, \hat{S}_{m}\right)=\hat{S}_{m}$.
- For $n<m$ both S_{n} and \hat{S}_{n} are $K(m)$-acyclic, so $F\left(S_{n}, \hat{S}_{m}\right)=F\left(\hat{S}_{n}, \hat{S}_{m}\right)=0$.
\rightarrow For $n<m$, apply $F\left(S_{n},-\right)$ to the chromatic fracture square for S_{m}, giving $F\left(S_{n}, S_{m}\right)=\bigvee_{1 \neq \varnothing} F\left(S_{n}, S_{\min (1, m-1)}^{\bullet-1}\right)$; then repeat recursively.
Similar methods give $F\left(\hat{S}_{n}, S_{m}\right)$ and $F\left(\hat{S}_{n}, \hat{S}_{m}\right)$.
- Recall X is strongly dualisable iff $F\left(X, S_{N}\right) \wedge X \rightarrow F(X, X)$ is iso. This only holds if X is a wedge of copies of S_{N}^{\bullet}.
P Put $R=\pi_{0}(\mathcal{C})=\mathbb{N}\left[s^{ \pm 1}\right]\left\{S_{0}, \ldots, S_{N}, \hat{S}_{1}, \ldots, \hat{S}_{N}\right\}$.
- By spelling out the combinatorics, we get a product on R and a map $F: R \times R \rightarrow R$.
\rightarrow Fact: the product is commutative and associative and satisfies $F(x, F(y, z))=F(x y, z)$, as predicted by CSC.

The spherical category

- For $n \geq m$ we have $F\left(S_{n}, S_{m}\right)=S_{m}$ and $F\left(S_{n}, \hat{S}_{m}\right)=\hat{S}_{m}$.
- For $n<m$ both S_{n} and \hat{S}_{n} are $K(m)$-acyclic, so $F\left(S_{n}, \hat{S}_{m}\right)=F\left(\widehat{S}_{n}, \hat{S}_{m}\right)=0$.
\rightarrow For $n<m$, apply $F\left(S_{n},-\right)$ to the chromatic fracture square for S_{m}, giving $F\left(S_{n}, S_{m}\right)=\bigvee_{1 \neq \varnothing} F\left(S_{n}, S_{\min (1, m-1)}^{\bullet-1}\right)$; then repeat recursively.
- Similar methods give $F\left(\hat{S}_{n}, S_{m}\right)$ and $F\left(\hat{S}_{n}, \hat{S}_{m}\right)$.
- Recall X is strongly dualisable iff $F\left(X, S_{N}\right) \wedge X \rightarrow F(X, X)$ is iso. This only holds if X is a wedge of copies of S_{N}^{\bullet}.
- Put $R=\pi_{0}(\mathcal{C})=\mathbb{N}\left[s^{ \pm 1}\right]\left\{S_{0}, \ldots, S_{N}, \hat{S}_{1}, \ldots, \hat{S}_{N}\right\}$.
\rightarrow By spelling out the combinatorics, we get a product on R and a map $F: R \times R \rightarrow R$.
- Fact: the product is commutative and associative and satisfies $F(x, F(y, z))=F(x y, z)$, as predicted by CSC.

The spherical category

- For $n \geq m$ we have $F\left(S_{n}, S_{m}\right)=S_{m}$ and $F\left(S_{n}, \hat{S}_{m}\right)=\hat{S}_{m}$.
- For $n<m$ both S_{n} and \hat{S}_{n} are $K(m)$-acyclic, so $F\left(S_{n}, \hat{S}_{m}\right)=F\left(\hat{S}_{n}, \hat{S}_{m}\right)=0$.
\rightarrow For $n<m$, apply $F\left(S_{n},-\right)$ to the chromatic fracture square for S_{m}, giving $F\left(S_{n}, S_{m}\right)=\bigvee_{1 \neq \varnothing} F\left(S_{n}, S_{\min (1, m-1)}^{\bullet-1}\right)$; then repeat recursively.
- Similar methods give $F\left(\hat{S}_{n}, S_{m}\right)$ and $F\left(\hat{S}_{n}, \hat{S}_{m}\right)$.
- Recall X is strongly dualisable iff $F\left(X, S_{N}\right) \wedge X \rightarrow F(X, X)$ is iso. This only holds if X is a wedge of copies of S_{N}^{\bullet}.
- Put $R=\pi_{0}(\mathcal{C})=\mathbb{N}\left[s^{ \pm 1}\right]\left\{S_{0}, \ldots, S_{N}, \hat{S}_{1}, \ldots, \hat{S}_{N}\right\}$.
\rightarrow By spelling out the combinatorics, we get a product on R and a map $F: R \times R \rightarrow R$.
- Fact: the product is commutative and associative and satisfies $F(x, F(y, z))=F(x y, z)$, as predicted by CSC.
This is all about isomorphism classes; what about morphisms?

The spherical category

- The chromatic fracture square plus CSC gives a cofibration

$$
V_{\min (1, n-1)}^{\circ-1} \stackrel{u}{\rightarrow} S_{n} \xrightarrow{\left[\begin{array}{c}
i \\
-j
\end{array}\right]} S_{n-1} \vee \widehat{S}_{n} \xrightarrow{[\eta \vee]} V_{\min (1, n-1)}^{0}
$$

The maps u and v have components $u_{l}: S_{0}^{\bullet} \rightarrow S_{n}$ and $v_{l}: \hat{S}_{n} \rightarrow S_{0}^{\bullet}$

- Additional conjecture: any composite $S_{m} \xrightarrow{i} S_{0}^{0} \xrightarrow{u_{l}} S_{n}$ with $m \geq n$ is zero. This is true but not obvious when $N=1$.
\rightarrow Assuming this: we hope to determine the composition maps $F(Y, Z) \wedge F(X, Y) \rightarrow F(X, Z)$.
This is done when X, Y, Z involve only S_{0}^{\bullet} and not $\widehat{S}_{0}^{\bullet}$.
- Assuming this: we have a fully algebraic model for the wide subcategory with morphisms generated by $i: S_{n} \rightarrow S_{n-1}$ and $j: S_{n} \rightarrow \widehat{S}_{n}$ and u_{l} and v_{1} (which is again closed symmetric monoidal).
Many smash products and composites are zero.

The spherical category

- The chromatic fracture square plus CSC gives a cofibration

$$
\bigvee_{1} S_{\min (1, n-1)}^{\bullet-1} \xrightarrow{u} S_{n} \xrightarrow{\left[\begin{array}{c}
i \\
-j
\end{array}\right]} S_{n-1} \vee \widehat{S}_{n} \xrightarrow{[\eta \vee]} \bigvee_{l} S_{\min (1, n-1)}^{\bullet}
$$

The maps u and v have components $u_{l}: S_{0}^{0} \rightarrow S_{n}$ and $v_{i}: \widehat{S}_{n} \rightarrow S_{0}^{0}$
\rightarrow Additional conjecture: any composite $S_{m} \rightarrow S_{\bullet}^{\bullet} \xrightarrow{u} S_{n}$ with $m \geq n$ is zero. This is true but not obvious when $N=1$.

- Assuming this: we hope to determine the composition maps $F(Y, Z) \wedge F(X, Y) \rightarrow F(X, Z)$.
This is done when X, Y, Z involve only S_{0}° and not \hat{S}_{0}°.
\rightarrow Assuming this: we have a fully algebraic model for the wide subcategory with morphisms generated by $i: S_{n} \rightarrow S_{n-1}$ and $j: S_{n} \rightarrow \widehat{S}_{n}$ and u_{l} and v_{l} (which is again closed symmetric monoidal).
Many smash products and composites are zero.

The spherical category

- The chromatic fracture square plus CSC gives a cofibration

$$
\bigvee_{I} S_{\min (1, n-1)}^{\bullet-1} \xrightarrow{u} S_{n} \xrightarrow{\left[\begin{array}{l}
i \\
-j
\end{array}\right]} S_{n-1} \vee \widehat{S}_{n} \xrightarrow{[\eta v]} \bigvee_{l} S_{\min (1, n-1)}^{\bullet}
$$

The maps u and v have components $u_{l}: S_{0}^{0} \rightarrow S_{n}$ and $v_{l}: \hat{S}_{n} \rightarrow S_{0}^{0}$
Additional conjecture: any composite $S_{m} \rightarrow S_{0}^{0} \rightarrow S_{n}$ with $m \geq n$ is zero. This is true but not obvious when $N=1$.

Assuming this: we hope to determine the composition maps $F(Y, Z) \wedge F(X, Y) \rightarrow F(X, Z)$
This is done when X, Y, Z involve only S_{0}° and not \hat{S}_{0}°.

- Assuming this: we have a fully algebraic model for the wide subcategory with morphisms generated by $i: S_{n} \rightarrow S_{n-1}$ and $j: S_{n} \rightarrow \hat{S}_{n}$ and u_{l} and v_{l} (which is again closed symmetric monoidal)
Many smash products and composites are zero.

The spherical category

- The chromatic fracture square plus CSC gives a cofibration

$$
\bigvee_{1} S_{\min (1, n-1)}^{\bullet-1} \xrightarrow{u} S_{n} \xrightarrow{\left[\begin{array}{c}
i \\
j
\end{array}\right]} S_{n-1} \vee \widehat{S}_{n} \xrightarrow{[\eta \vee]} \bigvee_{l} S_{\min (1, n-1)}^{\bullet}
$$

The maps u and v have components $u_{l}: S_{0}^{0} \rightarrow S_{n}$ and $v_{l}: \hat{S}_{n} \rightarrow S_{0}^{0}$

- Additional conjecture: any composite $S_{m} \xrightarrow{i} S_{\mathbf{0}} \xrightarrow{\boldsymbol{u}^{\prime}} S_{n}$ with $m \geq n$ is zero.

This is true but not obvious when $N=1$
Assuming this: we hope to determine the composition maps
$F(Y, Z) \wedge F(X, Y) \rightarrow F(X, Z)$
This is done when X, Y, Z involve only S_{0}° and not \hat{S}_{0}°.

- Assuming this: we have a fully algebraic model for the wide subcategory with morphisms generated by $i: S_{n} \rightarrow S_{n-1}$ and $j: S_{n} \rightarrow \widehat{S}_{n}$ and u_{l} and v_{1} (which is again closed symmetric monoidal)
Many smash products and composites are zero.

The spherical category

- The chromatic fracture square plus CSC gives a cofibration

$$
\bigvee_{1} S_{\min (1, n-1)}^{\bullet-1} \xrightarrow{u} S_{n} \xrightarrow{\left[\begin{array}{c}
i \\
j
\end{array}\right]} S_{n-1} \vee \widehat{S}_{n} \xrightarrow{[\eta \vee]} \bigvee_{l} S_{\min (1, n-1)}^{\bullet}
$$

The maps u and v have components $u_{1}: S_{0}^{0} \rightarrow S_{n}$ and $v_{l}: \hat{S}_{n} \rightarrow S_{0}^{0}$

- Additional conjecture: any composite $S_{m} \xrightarrow{i} S_{\mathbf{0}} \xrightarrow{\boldsymbol{u}} S_{n}$ with $m \geq n$ is zero. This is true but not obvious when $N=1$.
Assuming this: we hope to determine the composition maps $F(Y, Z) \wedge F(X, Y) \rightarrow F(X, Z)$ This is done when X, Y, Z involve only S_{0}° and not \hat{S}_{0}°.
- Assuming this: we have a fully algebraic model for the wide subcategory with morphisms generated by $i: S_{n} \rightarrow S_{n-1}$ and $j: S_{n} \rightarrow \widehat{S}_{n}$ and u_{l} and v_{l} (which is again closed symmetric monoidal) Many smash products and composites are zero

The spherical category

- The chromatic fracture square plus CSC gives a cofibration

$$
\bigvee_{I} S_{m i n}^{*-1}(1, n-1) \xrightarrow{u} S_{n} \xrightarrow{\left[{ }_{-j}^{i}\right]} S_{n-1} \vee \widehat{S}_{n} \xrightarrow{[\eta v]} \bigvee_{l} S_{\min (l, n-1)}^{\bullet}
$$

The maps u and v have components $u_{l}: S_{0}^{0} \rightarrow S_{n}$ and $v_{l}: \hat{S}_{n} \rightarrow S_{0}^{0}$

- Additional conjecture: any composite $S_{m} \xrightarrow{i} S_{\mathbf{0}} \xrightarrow{\boldsymbol{u}} S_{n}$ with $m \geq n$ is zero. This is true but not obvious when $N=1$.
- Assuming this: we hope to determine the composition maps $F(Y, Z) \wedge F(X, Y) \rightarrow F(X, Z)$.
This is done when X, Y, Z involve only S_{\circ}° and not \hat{S}_{\circ}°.
- Assuming this: we have a fully algebraic model for the wide subcategory with morphisms generated by $i: S_{n} \rightarrow S_{n-1}$ and $j: S_{n} \rightarrow \widehat{S}_{n}$ and u_{l} and v_{l} (which is again closed symmetric monoidal). Many smash products and composites are zero.

The spherical category

- The chromatic fracture square plus CSC gives a cofibration

$$
\bigvee_{1} S_{\min (1, n-1)}^{\bullet-1} \xrightarrow{u} S_{n} \xrightarrow{\left[\begin{array}{c}
i \\
j
\end{array}\right]} S_{n-1} \vee \hat{S}_{n} \xrightarrow{[\eta \vee]} \bigvee_{I} S_{\min (1, n-1)}^{*}
$$

The maps u and v have components $u_{l}: S_{0}^{0} \rightarrow S_{n}$ and $v_{l}: \hat{S}_{n} \rightarrow S_{0}^{0}$

- Additional conjecture: any composite $S_{m} \xrightarrow{i} S_{\mathbf{0}} \xrightarrow{\boldsymbol{u}^{\prime}} S_{n}$ with $m \geq n$ is zero. This is true but not obvious when $N=1$.
- Assuming this: we hope to determine the composition maps $F(Y, Z) \wedge F(X, Y) \rightarrow F(X, Z)$.
This is done when X, Y, Z involve only S_{0}^{\bullet} and not $\hat{S}_{\mathbf{0}}^{*}$.
Assuming this: we have a fully algebraic model for the wide subcategory with morphisms generated by $i: S_{n} \rightarrow S_{n-1}$ and $j: S_{n} \rightarrow \widehat{S}_{n}$ and u_{l} and v_{l} (which is again closed symmetric monoidal). Many smash products and composites are zero.

The spherical category

- The chromatic fracture square plus CSC gives a cofibration

$$
\bigvee_{I} S_{\min (1, n-1)}^{0-1} \xrightarrow{u} S_{n} \xrightarrow{\left[\begin{array}{c}
i \\
-j
\end{array}\right]} S_{n-1} \vee \widehat{S}_{n} \xrightarrow{[\eta \nu]} \bigvee_{l} S_{\min (1, n-1)}^{\bullet}
$$

The maps u and v have components $u_{l}: S_{0}^{0} \rightarrow S_{n}$ and $v_{l}: \hat{S}_{n} \rightarrow S_{\mathbf{0}}^{0}$

- Additional conjecture: any composite $S_{m} \xrightarrow{i} S_{\mathbf{0}} \xrightarrow{\boldsymbol{u}^{\prime}} S_{n}$ with $m \geq n$ is zero. This is true but not obvious when $N=1$.
- Assuming this: we hope to determine the composition maps $F(Y, Z) \wedge F(X, Y) \rightarrow F(X, Z)$.
This is done when X, Y, Z involve only S_{0}^{*} and not \hat{S}_{\square}^{*}.
- Assuming this: we have a fully algebraic model for the wide subcategory with morphisms generated by $i: S_{n} \rightarrow S_{n-1}$ and $j: S_{n} \rightarrow \hat{S}_{n}$ and u_{l} and v_{l} (which is again closed symmetric monoidal).

The spherical category

- The chromatic fracture square plus CSC gives a cofibration

$$
\bigvee_{I} S_{\min (1, n-1)}^{\bullet-1} \xrightarrow{u} S_{n} \xrightarrow{\left[\begin{array}{c}
i \\
-j
\end{array}\right]} S_{n-1} \vee \widehat{S}_{n} \xrightarrow{[\eta v]} \bigvee_{l} S_{\min (I, n-1)}^{\bullet}
$$

The maps u and v have components $u_{l}: S_{\bullet}^{\bullet} \rightarrow S_{n}$ and $v_{l}: \hat{S}_{n} \rightarrow S_{\bullet}^{\bullet}$
\rightarrow Additional conjecture: any composite $S_{m} \xrightarrow{i} S_{0}^{\bullet} \xrightarrow{u_{l}} S_{n}$ with $m \geq n$ is zero. This is true but not obvious when $N=1$.

- Assuming this: we hope to determine the composition maps $F(Y, Z) \wedge F(X, Y) \rightarrow F(X, Z)$.
This is done when X, Y, Z involve only S_{\bullet}^{\bullet} and not $\hat{S}_{\bullet}^{\bullet}$.
- Assuming this: we have a fully algebraic model for the wide subcategory with morphisms generated by $i: S_{n} \rightarrow S_{n-1}$ and $j: S_{n} \rightarrow \hat{S}_{n}$ and u_{l} and v_{l} (which is again closed symmetric monoidal).
Many smash products and composites are zero.

Charts

Charts

Charts

Charts

Charts

$$
\begin{aligned}
& \text { Put } \begin{array}{l}
\alpha_{469} \\
=\alpha_{4} \circ \alpha_{6} \circ \alpha_{9} \\
\\
=L_{3} L_{K(4)} L_{K(6)} L_{K(9)}
\end{array} \\
& \alpha_{469}(S) \text { is exterior over } S_{3} \text { on } \\
& 9 \text { generators indicated in black. }
\end{aligned}
$$

Circles are shadowed generators: present but equal to zero.

Charts

Charts

$$
\begin{aligned}
\text { Put } \phi_{469} & =L_{K(4)} \circ \alpha_{6} \circ \alpha_{9} \\
& =L_{K(4)} L_{K(6)} L_{K(9)} \\
\alpha_{69}(S) & \rightarrow \phi_{469}(S) \leftarrow \widehat{S}_{4}
\end{aligned}
$$

$\phi_{469}(S)$ is exterior over \hat{S}_{4} on 5 generators marked in black. Circles are shadowed generators: present but equal to zero.

All summands in this exterior algebra are just \hat{S}_{4}^{d}.

Charts

$\hat{S}_{4} \wedge \hat{S}_{6} \wedge \hat{S}_{9}$ is a wedge of terms indexed by admissible monomials in the indicated generators

If only • present: term is \hat{S}_{4}

If any more present: at least one must be \diamond, and the term is S_{i} for some $i<4$.

Chromatic fracture

The following cube of functors is homotopy cartesian (where $\phi_{02}=L_{K(0)} L_{K(2)}$ etc.):

Homotopy cartesian means:
I_{2} maps by an equivalence to the holim of the rest of the diagram; or
\rightarrow The total fibre of the cube is zero.
Rules for total fibres:
\rightarrow tfib(cube) $=$ fib $($ tfib $($ face $) \rightarrow$ tfib (opposite face) $)$
$\Rightarrow \operatorname{tfib}($ square $)=\mathrm{fib}(\mathrm{fib}($ edge $) \rightarrow \mathrm{fib}($ opposite edge $))$

Chromatic fracture

The following cube of functors is homotopy cartesian (where $\phi_{02}=L_{K(0)} L_{K(2)}$ etc.):

Homotopy cartesian means:

```
    | L L2 maps by an equivalence to the holim of the rest of the diagram; or
    | The total fibre of the cube is zero.
Rules for total fibres:
    | tfib(cube) = fib(tfib(face) }->\mathrm{ tfib(opposite face))
    tfib(square) = fib(fib(edge) }->\mathrm{ fib(opposite edge))
```


Chromatic fracture

The following cube of functors is homotopy cartesian (where $\phi_{02}=L_{K(0)} L_{K(2)}$ etc.):

Homotopy cartesian means:

- L_{2} maps by an equivalence to the holim of the rest of the diagram; or
$>$ The total fibre of the cube is zero.
Rules for total fibres:
$>$ tfib(cube) $=$ fib(tfib(face) \rightarrow tfib(opposite face))
$\rightarrow \operatorname{tfib}($ square $)=\mathrm{fib}(\mathrm{fib}($ edge $) \rightarrow \mathrm{fib}($ opposite edge) $)$

Chromatic fracture

The following cube of functors is homotopy cartesian (where $\phi_{02}=L_{K(0)} L_{K(2)}$ etc.):

Homotopy cartesian means:

- L_{2} maps by an equivalence to the holim of the rest of the diagram; or
- The total fibre of the cube is zero.

Rules for total fibres:
\rightarrow tfib(cube) $=$ fib(tfib(face) \rightarrow tfib(opposite face))
$\rightarrow \operatorname{tfib}($ square $)=\mathrm{fib}(\mathrm{fib}($ edge $) \rightarrow \mathrm{fib}$ (opposite edge))

Chromatic fracture

The following cube of functors is homotopy cartesian (where $\phi_{02}=L_{K(0)} L_{K(2)}$ etc.):

Homotopy cartesian means:

- L_{2} maps by an equivalence to the holim of the rest of the diagram; or
- The total fibre of the cube is zero.

Rules for total fibres:
\rightarrow tfib(cube) $=$ fib(tfib(face) \rightarrow tfib(opposite face))
\rightarrow tfib(square) $=\mathrm{fib}(\mathrm{fib}($ edge $) \rightarrow \mathrm{fib}$ (opposite edge) $)$

Chromatic fracture

The following cube of functors is homotopy cartesian (where $\phi_{02}=L_{K(0)} L_{K(2)}$ etc.):

Homotopy cartesian means:

- L_{2} maps by an equivalence to the holim of the rest of the diagram; or
- The total fibre of the cube is zero.

Rules for total fibres:
\rightarrow tfib(cube) $=\mathrm{fib}($ tfib $($ face $) \rightarrow$ tfib(opposite face) $)$

[^0]
Chromatic fracture

The following cube of functors is homotopy cartesian (where $\phi_{02}=L_{K(0)} L_{K(2)}$ etc.):

Homotopy cartesian means:

- L_{2} maps by an equivalence to the holim of the rest of the diagram; or
- The total fibre of the cube is zero.

Rules for total fibres:
$-\mathrm{tfib}($ cube $)=\mathrm{fib}(\mathrm{tfib}($ face $) \rightarrow$ tfib(opposite face))
\rightarrow tfib(square) $=\mathrm{fib}(\mathrm{fib}($ edge $) \rightarrow \mathrm{fib}$ (opposite edge) $)$

Aside on spectral sequences

The chromatic fracture cube gives a spectral sequence

$$
E_{p q}^{1}=\prod_{|A|=p} \pi_{q}\left(\phi_{A}(X)\right) \Longrightarrow 0
$$

where A runs over subsets of $\{0,1,2\}$ and $\phi_{\varnothing}=L_{2}$.
For a formally similar situation, take a space $X=U_{0} \cup U_{1} \cup U_{2}$, and put $U_{02}=U_{0} \cap U_{2}$ etc. There is a Mayer-Vietoris spectral sequence

$$
E_{0}^{p q}=\prod_{|A|=p} C^{q}\left(U_{A}\right), \quad E_{1}^{p q}=\prod_{|A|=p} H^{q}\left(U_{A}\right) \Longrightarrow 0 .
$$

Consider the exterior algebra $E=E\left[e_{0}, e_{1}, e_{2}\right]$ with basis $\left\{e_{A} \mid A \subseteq\{0,1,2\}\right\}$. We can identify $E_{0}^{* *}$ with $\bigoplus_{A} C^{*}\left(U_{A}\right) \cdot e_{A}$, which is a quotient of $C^{*}(X) \otimes E$. This is a bicomplex, using the ordinary cosimplicial differential and multiplication by the element $u=e_{0}+e_{1}+e_{2}$.
The combined differential does not satisfy the Leibniz rule, but behaves like an operator $f \mapsto f^{\prime}+u f$.
Spectral sequence of this type deserve further study.

Aside on spectral sequences

The chromatic fracture cube gives a spectral sequence

$$
E_{p q}^{1}=\prod_{|A|=p} \pi_{q}\left(\phi_{A}(X)\right) \Longrightarrow 0
$$

where A runs over subsets of $\{0,1,2\}$ and $\phi_{\varnothing}=L_{2}$.

For a formally similar situation, take a space $X=U_{0} \cup U_{1} \cup U_{2}$, and put $U_{02}=U_{0} \cap U_{2}$ etc. There is a Mayer-Vietoris spectral sequence

Aside on spectral sequences

The chromatic fracture cube gives a spectral sequence

$$
E_{p q}^{1}=\prod_{|A|=p} \pi_{q}\left(\phi_{A}(X)\right) \Longrightarrow 0
$$

where A runs over subsets of $\{0,1,2\}$ and $\phi_{\varnothing}=L_{2}$.
For a formally similar situation, take a space $X=U_{0} \cup U_{1} \cup U_{2}$, and put $U_{02}=U_{0} \cap U_{2}$ etc. There is a Mayer-Vietoris spectral sequence

Consider the exterior algebra $E=E\left[e_{0}, e_{1}, e_{2}\right]$ with basis $\left\{e_{A} \mid A \subseteq\{0,1,2\}\right\}$. We can identify $E_{0}^{* *}$ with $\bigoplus_{A} C^{*}\left(U_{A}\right) \cdot e_{A}$, which is a quotient of $C^{*}(X) \otimes E$. This is a bicomplex, using the ordinary cosimplicial differential and multiplication by the element $u=e_{0}+e_{1}+e_{2}$.
The combined differential does not satisfy the Leibniz rule, but behaves like an operator $f \mapsto f^{\prime}+u f$.
Spectral sequence of this type deserve further study.

Aside on spectral sequences

The chromatic fracture cube gives a spectral sequence

$$
E_{p q}^{1}=\prod_{|A|=p} \pi_{q}\left(\phi_{A}(X)\right) \Longrightarrow 0
$$

where A runs over subsets of $\{0,1,2\}$ and $\phi_{\varnothing}=L_{2}$.
For a formally similar situation, take a space $X=U_{0} \cup U_{1} \cup U_{2}$, and put $U_{02}=U_{0} \cap U_{2}$ etc. There is a Mayer-Vietoris spectral sequence

$$
E_{0}^{p q}=\prod_{|A|=p} C^{q}\left(U_{A}\right), \quad E_{1}^{p q}=\prod_{|A|=p} H^{q}\left(U_{A}\right) \Longrightarrow 0
$$

Consider the exterior algebra $E=E\left[e_{0}, e_{1}, e_{2}\right]$ with basis $\left\{e_{A} \mid A \subseteq\{0,1,2\}\right\}$. We can identify $E_{0}^{* *}$
This is a bicomplex, using the ordinary cosimplicial differential and
multiplication by the element $u=e_{0}+e_{1}+e_{2}$.
The combined differential does not satisfy the Leibniz rule, but behaves like an operator $f \mapsto f^{\prime}+u f$.
Spectral sequence of this type deserve further study.

Aside on spectral sequences

The chromatic fracture cube gives a spectral sequence

$$
E_{p q}^{1}=\prod_{|A|=p} \pi_{q}\left(\phi_{A}(X)\right) \Longrightarrow 0
$$

where A runs over subsets of $\{0,1,2\}$ and $\phi_{\varnothing}=L_{2}$.
For a formally similar situation, take a space $X=U_{0} \cup U_{1} \cup U_{2}$, and put $U_{02}=U_{0} \cap U_{2}$ etc. There is a Mayer-Vietoris spectral sequence

$$
E_{0}^{p q}=\prod_{|A|=p} C^{q}\left(U_{A}\right), \quad E_{1}^{p q}=\prod_{|A|=p} H^{q}\left(U_{A}\right) \Longrightarrow 0
$$

Consider the exterior algebra $E=E\left[e_{0}, e_{1}, e_{2}\right]$ with basis $\left\{e_{A} \mid A \subseteq\{0,1,2\}\right\}$.
This is a bicomplex, using the ordinary cosimplicial differential and
multiplication by the element $u=e_{0}+e_{1}+e_{2}$.
The combined differential does not satisfy the Leibniz rule, but behaves like an operator $f \mapsto f^{\prime}+u f$.
Spectral sequence of this type deserve further study.

Aside on spectral sequences

The chromatic fracture cube gives a spectral sequence

$$
E_{p q}^{1}=\prod_{|A|=p} \pi_{q}\left(\phi_{A}(X)\right) \Longrightarrow 0
$$

where A runs over subsets of $\{0,1,2\}$ and $\phi_{\varnothing}=L_{2}$.
For a formally similar situation, take a space $X=U_{0} \cup U_{1} \cup U_{2}$, and put $U_{02}=U_{0} \cap U_{2}$ etc. There is a Mayer-Vietoris spectral sequence

$$
E_{0}^{p q}=\prod_{|A|=p} C^{q}\left(U_{A}\right), \quad E_{1}^{p q}=\prod_{|A|=p} H^{q}\left(U_{A}\right) \Longrightarrow 0
$$

Consider the exterior algebra $E=E\left[e_{0}, e_{1}, e_{2}\right]$ with basis $\left\{e_{A} \mid A \subseteq\{0,1,2\}\right\}$. We can identify $E_{0}^{* *}$ with $\bigoplus_{A} C^{*}\left(U_{A}\right) \cdot e_{A}$, which is a quotient of $C^{*}(X) \otimes E$.

Aside on spectral sequences

The chromatic fracture cube gives a spectral sequence

$$
E_{p q}^{1}=\prod_{|A|=p} \pi_{q}\left(\phi_{A}(X)\right) \Longrightarrow 0
$$

where A runs over subsets of $\{0,1,2\}$ and $\phi_{\varnothing}=L_{2}$.
For a formally similar situation, take a space $X=U_{0} \cup U_{1} \cup U_{2}$, and put $U_{02}=U_{0} \cap U_{2}$ etc. There is a Mayer-Vietoris spectral sequence

$$
E_{0}^{p q}=\prod_{|A|=p} C^{q}\left(U_{A}\right), \quad E_{1}^{p q}=\prod_{|A|=p} H^{q}\left(U_{A}\right) \Longrightarrow 0
$$

Consider the exterior algebra $E=E\left[e_{0}, e_{1}, e_{2}\right]$ with basis $\left\{e_{A} \mid A \subseteq\{0,1,2\}\right\}$. We can identify $E_{0}^{* *}$ with $\bigoplus_{A} C^{*}\left(U_{A}\right) \cdot e_{A}$, which is a quotient of $C^{*}(X) \otimes E$. This is a bicomplex, using the ordinary cosimplicial differential and multiplication by the element $u=e_{0}+e_{1}+e_{2}$.
The combined differential does not satisfy the Leibniz rule, but behaves like an operator $f \mapsto f^{\prime}+u f$.
Spectral sequence of this type deserve further study.

Aside on spectral sequences

The chromatic fracture cube gives a spectral sequence

$$
E_{p q}^{1}=\prod_{|A|=p} \pi_{q}\left(\phi_{A}(X)\right) \Longrightarrow 0
$$

where A runs over subsets of $\{0,1,2\}$ and $\phi_{\varnothing}=L_{2}$.
For a formally similar situation, take a space $X=U_{0} \cup U_{1} \cup U_{2}$, and put $U_{02}=U_{0} \cap U_{2}$ etc. There is a Mayer-Vietoris spectral sequence

$$
E_{0}^{p q}=\prod_{|A|=p} C^{q}\left(U_{A}\right), \quad E_{1}^{p q}=\prod_{|A|=p} H^{q}\left(U_{A}\right) \Longrightarrow 0
$$

Consider the exterior algebra $E=E\left[e_{0}, e_{1}, e_{2}\right]$ with basis $\left\{e_{A} \mid A \subseteq\{0,1,2\}\right\}$. We can identify $E_{0}^{* *}$ with $\bigoplus_{A} C^{*}\left(U_{A}\right) \cdot e_{A}$, which is a quotient of $C^{*}(X) \otimes E$. This is a bicomplex, using the ordinary cosimplicial differential and multiplication by the element $u=e_{0}+e_{1}+e_{2}$.
The combined differential does not satisfy the Leibniz rule, but behaves like an operator $f \mapsto f^{\prime}+u f$.
Spectral sequence of this type deserve further study.

Aside on spectral sequences

The chromatic fracture cube gives a spectral sequence

$$
E_{p q}^{1}=\prod_{|A|=p} \pi_{q}\left(\phi_{A}(X)\right) \Longrightarrow 0
$$

where A runs over subsets of $\{0,1,2\}$ and $\phi_{\varnothing}=L_{2}$.
For a formally similar situation, take a space $X=U_{0} \cup U_{1} \cup U_{2}$, and put $U_{02}=U_{0} \cap U_{2}$ etc. There is a Mayer-Vietoris spectral sequence

$$
E_{0}^{p q}=\prod_{|A|=p} C^{q}\left(U_{A}\right), \quad E_{1}^{p q}=\prod_{|A|=p} H^{q}\left(U_{A}\right) \Longrightarrow 0
$$

Consider the exterior algebra $E=E\left[e_{0}, e_{1}, e_{2}\right]$ with basis $\left\{e_{A} \mid A \subseteq\{0,1,2\}\right\}$. We can identify $E_{0}^{* *}$ with $\bigoplus_{A} C^{*}\left(U_{A}\right) \cdot e_{A}$, which is a quotient of $C^{*}(X) \otimes E$. This is a bicomplex, using the ordinary cosimplicial differential and multiplication by the element $u=e_{0}+e_{1}+e_{2}$.
The combined differential does not satisfy the Leibniz rule, but behaves like an operator $f \mapsto f^{\prime}+u f$.
Spectral sequence of this type deserve further study.

Chromatic splitting and chromatic fracture

Apply the fracture cube to \hat{S}_{3} to get a homotopy cartesian cube as above. Is this consistent with the Chromatic Splitting Conjecture?

Chromatic splitting and chromatic fracture

Notation: e.g. $01.13=x_{01} x_{13}$; also $\varnothing=1$.
This diagram should be homotopy cartesian.

Chromatic splitting and chromatic fracture

This subdiagram consists of two copies of the fracture cube for S_{2} and so is homotopy cartesian.

Chromatic splitting and chromatic fracture

We can remove that subdiagram without changing the total fibre.

Chromatic splitting and chromatic fracture

This subdiagram consists of two copies of the fracture square for S_{1} and so is homotopy cartesian.

Chromatic splitting and chromatic fracture

We can remove that subdiagram without changing the total fibre.

Chromatic splitting and chromatic fracture

This subdiagram consists of four copies of the fracture interval for S_{0} and so is homotopy cartesian.

Chromatic splitting and chromatic fracture

After removing that subdiagram we see that the original diagram was homotopy cartesian, as required.

Chromatic splitting and chromatic fracture

Similarly, CSC implies that the chromatic fracture hypercube for $\alpha_{A}(S)=L_{n-1}\left(\phi_{A}(S)\right)$ is a sum of the hypercubes for various S_{m}^{d}.

Chromatic splitting and chromatic fracture

- According to CSC we should have a homotopy cartesian cube as above.
$>$ Dotted arrows are defined using CSC. Solid arrows exist unconditionally.
- Everything but S_{2} has a decreasing filtration by powers of the ideal generated by all $x_{i n}$.
$\operatorname{gr}_{0}\left(S_{2}\right)=\widehat{S}_{2} ;$
- In general, the CSC implies that S_{n} has a finite decreasing filtration where the associated graded is a wedge of $K(m)$-local spheres which can be described combinatorially.

Chromatic splitting and chromatic fracture

- According to CSC we should have a homotopy cartesian cube as above.
- Dotted arrows are defined using CSC. Solid arrows exist unconditionally.
\Rightarrow Everything but S_{2} has a decreasing filtration by powers of the ideal generated by all $x_{i n}$.
$\operatorname{gr}_{0}\left(S_{2}\right)=\hat{S}_{2}$;
$>$ In general, the CSC implies that S_{n} has a finite decreasing filtration where the associated graded is a wedge of $K(m)$-local spheres which can be described combinatorially.

Chromatic splitting and chromatic fracture

- According to CSC we should have a homotopy cartesian cube as above.
- Dotted arrows are defined using CSC. Solid arrows exist unconditionally.
- Everything but S_{2} has a decreasing filtration by powers of the ideal generated by all $x_{i n}$.
\rightarrow In general, the CSC implies that S_{n} has a finite decreasing filtration where the associated graded is a wedge of $K(m)$-local spheres which can be described combinatorially.

Chromatic splitting and chromatic fracture

- According to CSC we should have a homotopy cartesian cube as above.
- Dotted arrows are defined using CSC. Solid arrows exist unconditionally.
- Everything but S_{2} has a decreasing filtration by powers of the ideal generated by all $x_{i n}$. There is a compatible filtration of S_{2}.
\rightarrow In general, the CSC implies that S_{n} has a finite decreasing filtration where the associated graded is a wedge of $K(m)$-local spheres which can be described combinatorially.

Chromatic splitting and chromatic fracture

- According to CSC we should have a homotopy cartesian cube as above.
- Dotted arrows are defined using CSC. Solid arrows exist unconditionally.
- Everything but S_{2} has a decreasing filtration by powers of the ideal generated by all $x_{i n}$. There is a compatible filtration of S_{2}.
$-\operatorname{gr}_{0}\left(S_{2}\right)=\hat{S}_{2}$;
\Rightarrow In general, the CSC implies that S_{n} has a finite decreasing filtration where the associated graded is a wedge of $K(m)$-local spheres which can be described combinatorially.

Chromatic splitting and chromatic fracture

- According to CSC we should have a homotopy cartesian cube as above.
- Dotted arrows are defined using CSC. Solid arrows exist unconditionally.
- Everything but S_{2} has a decreasing filtration by powers of the ideal generated by all $x_{i n}$. There is a compatible filtration of S_{2}.
$-\operatorname{gr}_{0}\left(S_{2}\right)=\hat{S}_{2} ; \mathrm{gr}_{1}\left(S_{2}\right)=\hat{S}_{0}^{-4} \vee \hat{S}_{1}^{-2}$;

Chromatic splitting and chromatic fracture

- According to CSC we should have a homotopy cartesian cube as above.
- Dotted arrows are defined using CSC. Solid arrows exist unconditionally.
- Everything but S_{2} has a decreasing filtration by powers of the ideal generated by all $x_{i n}$. There is a compatible filtration of S_{2}.
$-\operatorname{gr}_{0}\left(S_{2}\right)=\hat{S}_{2} ; \operatorname{gr}_{1}\left(S_{2}\right)=\hat{S}_{0}^{-4} \vee \hat{S}_{1}^{-2} ; \operatorname{gr}_{2}\left(S_{2}\right)=\hat{S}_{0}^{-5} \vee \hat{S}_{0}^{-4}$

Chromatic splitting and chromatic fracture

- According to CSC we should have a homotopy cartesian cube as above.
\rightarrow Dotted arrows are defined using CSC. Solid arrows exist unconditionally.
- Everything but S_{2} has a decreasing filtration by powers of the ideal generated by all $x_{i n}$. There is a compatible filtration of S_{2}.
$\vee \operatorname{gr}_{0}\left(S_{2}\right)=\hat{S}_{2} ; \operatorname{gr}_{1}\left(S_{2}\right)=\hat{S}_{0}^{-4} \vee \hat{S}_{1}^{-2} ; \mathrm{gr}_{2}\left(S_{2}\right)=\hat{S}_{0}^{-5} \vee \hat{S}_{0}^{-4}$
- In general, the CSC implies that S_{n} has a finite decreasing filtration where the associated graded is a wedge of $K(m)$-local spheres which can be described combinatorially.

Chromatic splitting and chromatic fracture

- According to CSC we should have a homotopy cartesian cube as above.
\rightarrow Dotted arrows are defined using CSC. Solid arrows exist unconditionally.
- Everything but S_{2} has a decreasing filtration by powers of the ideal generated by all $x_{i n}$. There is a compatible filtration of S_{2}.
$\vee \operatorname{gr}_{0}\left(S_{2}\right)=\hat{S}_{2} ; \operatorname{gr}_{1}\left(S_{2}\right)=\hat{S}_{0}^{-4} \vee \hat{S}_{1}^{-2} ; \mathrm{gr}_{2}\left(S_{2}\right)=\hat{S}_{0}^{-5} \vee \hat{S}_{0}^{-4}$
- In general, the CSC implies that S_{n} has a finite decreasing filtration where the associated graded is a wedge of $K(m)$-local spheres which can be described combinatorially. Multiplicative properties are unclear.

Associated graded of the filtration of S_{n}

The associated graded object $\operatorname{gr}_{*}\left(S_{n}\right)$ is conjecturally as follows:
\Rightarrow For any sequence $u=\left(u_{0}<u_{1}<\cdots<u_{r}=n\right)$ we have $z_{u}:{\hat{S_{0}}}_{2\left(u_{0}-n\right)}^{\left(g_{r}\right.} \mathrm{gr}_{r}\left(S_{n}\right)$.
\Rightarrow There is a fibration $S_{n} \rightarrow S_{n-1} \vee \widehat{S}_{n} \rightarrow \alpha_{n}(S) \xrightarrow{o_{n}} S_{n}^{1}$. Put

$$
z_{i j}^{\prime}=\Sigma^{2 j-1}\left(S_{i}^{1-2(j-i)} \xrightarrow{x_{i j}} \alpha_{j}(S) \xrightarrow{\delta_{j}} S_{j}^{1}\right): S_{i}^{2 i} \rightarrow S_{j}^{2 j} .
$$

Then z_{u} is related to the composite

$$
S_{u_{0}}^{2 w_{0}} \xrightarrow{z^{\prime}} S_{u_{1}}^{2 w_{1}} \xrightarrow{\dot{z}^{\prime}} \cdots \xrightarrow{\frac{2}{a}} S_{u_{r}}^{2 u_{r}}=S_{n}^{2 n} .
$$

- The element z_{u} can be multiplied by variables $x_{i, \nu_{j}}$ of filtration 1 and degree $1-2\left(u_{j}-i\right)$ for $u_{j-1}<i<u_{j}$.
$>$ The resulting products form a "basis" for $\mathrm{gr}_{*}\left(S_{n}\right)$
\rightarrow From this we can obtain spectral sequences converging to invariants of S_{n}, or adjusted spectral sequences converging to 0 .
\rightarrow There is shared combinatorics with the calculation of $F(-,-)$; not yet understood.

Associated graded of the filtration of S_{n}

The associated graded object $\mathrm{gr}_{*}\left(S_{n}\right)$ is conjecturally as follows:
\rightarrow For any sequence $u=\left(u_{0}<u_{1}<\cdots<u_{r}=n\right)$ we have $z_{u}: \hat{S}_{u_{0}}^{2\left(u_{0}-n\right)} \rightarrow \operatorname{gr}_{r}\left(S_{n}\right)$.

There is a fibration $S_{n} \rightarrow S_{n-1} \vee \hat{S}_{n} \rightarrow \alpha_{n}(S) \xrightarrow{\delta_{n}} S_{n}^{1}$
Put

$$
z_{i j}^{\prime}=\Sigma^{2 j-1}\left(S_{i}^{1-2(j-i)} \xrightarrow{x_{i j}} \alpha_{j}(S) \xrightarrow{\delta_{j}} S_{j}^{1}\right): S_{i}^{2 i} \rightarrow S_{j}^{2 j} .
$$

Then z_{u} is related to the composite

$$
S_{u_{0}}^{2 u_{0}} \xrightarrow{\prime} S_{u_{1}}^{2 u_{1}} \xrightarrow{\prime} \cdots \xrightarrow{z^{\prime}} S_{u_{r}}^{2 u_{r}}=S_{n}^{2 n}
$$

The element z_{u} can be multiplied by variables $x_{i, u_{j}}$ of filtration 1 and degree $1-2\left(u_{j}-i\right)$ for $u_{j-1}<i<u_{j}$
> The resulting products form a "basis" for $\mathrm{gr}_{*}\left(S_{n}\right)$.

- From this we can obtain spectral sequences converging to invariants of S_{n}, or adjusted spectral sequences converging to 0 .
\Rightarrow There is shared combinatorics with the calculation of $F(-,-)$; not yet understood.

Associated graded of the filtration of S_{n}

The associated graded object $\mathrm{gr}_{*}\left(S_{n}\right)$ is conjecturally as follows:
\rightarrow For any sequence $u=\left(u_{0}<u_{1}<\cdots<u_{r}=n\right)$ we have $z_{u}: \hat{S}_{u_{0}}^{2\left(u_{0}-n\right)} \rightarrow \operatorname{gr}_{r}\left(S_{n}\right)$.
\checkmark There is a fibration $S_{n} \rightarrow S_{n-1} \vee \hat{S}_{n} \rightarrow \alpha_{n}(S) \xrightarrow{\delta_{n}} S_{n}^{1}$.

Then z_{u} is related to the composite

\rightarrow The element z_{u} can be multiplied by variables $x_{i, u_{j}}$ of filtration 1 and degree $1-2\left(u_{j}-i\right)$ for $u_{j-1}<i<u_{j}$
$>$ The resulting products form a "basis" for $\mathrm{gr}_{*}\left(S_{n}\right)$.

- From this we can obtain spectral sequences converging to invariants of S_{n}, or adjusted spectral sequences converging to 0 .
$>$ There is shared combinatorics with the calculation of $F(-,-)$; not yet understood.

Associated graded of the filtration of S_{n}

The associated graded object $\mathrm{gr}_{*}\left(S_{n}\right)$ is conjecturally as follows:
\rightarrow For any sequence $u=\left(u_{0}<u_{1}<\cdots<u_{r}=n\right)$ we have $z_{u}: \hat{S}_{u_{0}}^{2\left(u_{0}-n\right)} \rightarrow \operatorname{gr}_{r}\left(S_{n}\right)$.
\checkmark There is a fibration $S_{n} \rightarrow S_{n-1} \vee \hat{S}_{n} \rightarrow \alpha_{n}(S) \xrightarrow{\delta_{n}} S_{n}^{1}$. Put

$$
z_{i j}^{\prime}=\Sigma^{2 j-1}\left(S_{i}^{1-2(j-i)} \xrightarrow{x_{i j}} \alpha_{j}(S) \xrightarrow{\delta_{j}} S_{j}^{1}\right): S_{i}^{2 i} \rightarrow S_{j}^{2 j}
$$

Then z_{u} is related to the composite

The element z_{u} can be multiplied by variables $x_{i, u_{j}}$ of filtration 1 and degree $1-2\left(u_{j}-i\right)$ for $u_{j-1}<i<u_{j}$.
> The resulting products form a "basis" for $\mathrm{gr}_{*}\left(S_{n}\right)$.

- From this we can obtain spectral sequences converging to invariants of S_{n}, or adjusted spectral sequences converging to 0 .
$>$ There is shared combinatorics with the calculation of $F(-,-)$; not yet understood.

Associated graded of the filtration of S_{n}

The associated graded object $\mathrm{gr}_{*}\left(S_{n}\right)$ is conjecturally as follows:
\rightarrow For any sequence $u=\left(u_{0}<u_{1}<\cdots<u_{r}=n\right)$ we have $z_{u}: \hat{S}_{u_{0}}^{2\left(u_{0}-n\right)} \rightarrow \mathrm{gr}_{r}\left(S_{n}\right)$.
\checkmark There is a fibration $S_{n} \rightarrow S_{n-1} \vee \widehat{S}_{n} \rightarrow \alpha_{n}(S) \xrightarrow{\delta_{n}} S_{n}^{1}$.
Put

$$
z_{i j}^{\prime}=\Sigma^{2 j-1}\left(S_{i}^{1-2(j-i)} \xrightarrow{x_{i j}} \alpha_{j}(S) \xrightarrow{\delta_{j}} S_{j}^{1}\right): S_{i}^{2 i} \rightarrow S_{j}^{2 j}
$$

Then z_{u} is related to the composite

$$
S_{u_{0}}^{2 u_{0}} \xrightarrow{z^{\prime}} S_{u_{1}}^{2 u_{1}} \xrightarrow{z^{\prime}} \cdots \xrightarrow{z^{\prime}} S_{u_{r}}^{2 u_{r}}=S_{n}^{2 n} .
$$

The element z_{u} can be multiplied by variables $x_{i, u_{j}}$ of filtration 1 and degree $1-2\left(u_{j}-i\right)$ for $u_{j-1}<i<u_{j}$.
$>$ The resulting products form a "basis" for $\mathrm{gr}_{*}\left(S_{n}\right)$.

- From this we can obtain spectral sequences converging to invariants of S_{n}, or adjusted spectral sequences converging to 0 .
$>$ There is shared combinatorics with the calculation of $F(-,-)$; not yet understood.

Associated graded of the filtration of S_{n}

The associated graded object $\operatorname{gr}_{*}\left(S_{n}\right)$ is conjecturally as follows:

- For any sequence $u=\left(u_{0}<u_{1}<\cdots<u_{r}=n\right)$ we have $z_{u}: \widehat{S}_{u_{0}}^{2\left(u_{0}-n\right)} \rightarrow \operatorname{gr}_{r}\left(S_{n}\right)$.
- There is a fibration $S_{n} \rightarrow S_{n-1} \vee \hat{S}_{n} \rightarrow \alpha_{n}(S) \xrightarrow{\delta_{n}} S_{n}^{1}$.

Put

$$
z_{i j}^{\prime}=\Sigma^{2 j-1}\left(S_{i}^{1-2(j-i)} \xrightarrow{x_{i j}} \alpha_{j}(S) \xrightarrow{\delta_{j}} S_{j}^{1}\right): S_{i}^{2 i} \rightarrow S_{j}^{2 j} .
$$

Then z_{u} is related to the composite

$$
S_{u_{0}}^{2 u_{0}} \xrightarrow{\prime^{\prime}} S_{u_{1}}^{2 u_{1}} \xrightarrow{z^{\prime}} \cdots \xrightarrow{i^{\prime}} S_{u_{r}}^{2 u_{r}}=S_{n}^{2 n} .
$$

- The element z_{u} can be multiplied by variables $x_{i, u_{j}}$ of filtration 1 and degree $1-2\left(u_{j}-i\right)$ for $u_{j-1}<i<u_{j}$.
The resulting products form a "basis" for $\mathrm{gr}_{*}\left(S_{n}\right)$.
- From this we can obtain spectral sequences converging to invariants of S_{n}, or adjusted spectral sequences converging to 0 .

Associated graded of the filtration of S_{n}

The associated graded object $\operatorname{gr}_{*}\left(S_{n}\right)$ is conjecturally as follows:

- For any sequence $u=\left(u_{0}<u_{1}<\cdots<u_{r}=n\right)$ we have $z_{u}: \widehat{S}_{u_{0}}^{2\left(u_{0}-n\right)} \rightarrow \operatorname{gr}_{r}\left(S_{n}\right)$.
- There is a fibration $S_{n} \rightarrow S_{n-1} \vee \hat{S}_{n} \rightarrow \alpha_{n}(S) \xrightarrow{\delta_{n}} S_{n}^{1}$.

Put

$$
z_{i j}^{\prime}=\Sigma^{2 j-1}\left(S_{i}^{1-2(j-i)} \xrightarrow{x_{i j}} \alpha_{j}(S) \xrightarrow{\delta_{j}} S_{j}^{1}\right): S_{i}^{2 i} \rightarrow S_{j}^{2 j} .
$$

Then z_{u} is related to the composite

$$
S_{u_{0}}^{2 u_{0}} \xrightarrow{1^{\prime}} S_{u_{1}}^{2 u_{1}} \xrightarrow{1^{\prime}} \cdots \xrightarrow{z^{\prime}} S_{u_{r}}^{2 u_{r}}=S_{n}^{2 n} .
$$

- The element z_{u} can be multiplied by variables $x_{i, \nu_{j}}$ of filtration 1 and degree $1-2\left(u_{j}-i\right)$ for $u_{j-1}<i<u_{j}$.
- The resulting products form a "basis" for $\mathrm{gr}_{*}\left(S_{n}\right)$.

From this we can obtain spectral sequences converging to invariants of S_{n}, or adjusted spectral sequences converging to 0 .

Associated graded of the filtration of S_{n}

The associated graded object $\mathrm{gr}_{*}\left(S_{n}\right)$ is conjecturally as follows:

- For any sequence $u=\left(u_{0}<u_{1}<\cdots<u_{r}=n\right)$ we have $z_{u}: \hat{S}_{u_{0}}^{2\left(u_{0}-n\right)} \rightarrow \operatorname{gr}_{r}\left(S_{n}\right)$.
\checkmark There is a fibration $S_{n} \rightarrow S_{n-1} \vee \hat{S}_{n} \rightarrow \alpha_{n}(S) \xrightarrow{\delta_{n}} S_{n}^{1}$.
Put

$$
z_{i j}^{\prime}=\Sigma^{2 j-1}\left(S_{i}^{1-2(j-i)} \xrightarrow{x_{i j}} \alpha_{j}(S) \xrightarrow{\delta_{j}} S_{j}^{1}\right): S_{i}^{2 i} \rightarrow S_{j}^{2 j}
$$

Then z_{u} is related to the composite

$$
S_{u_{0}}^{2 u_{0}} \xrightarrow{z^{\prime}} S_{u_{1}}^{2 u_{1}} \xrightarrow{z^{\prime}} \cdots \xrightarrow{z^{\prime}} S_{u_{r}}^{2 u_{r}}=S_{n}^{2 n} .
$$

The element z_{u} can be multiplied by variables $x_{i, u_{j}}$ of filtration 1 and degree $1-2\left(u_{j}-i\right)$ for $u_{j-1}<i<u_{j}$.

- The resulting products form a "basis" for $\mathrm{gr}_{*}\left(S_{n}\right)$.
- From this we can obtain spectral sequences converging to invariants of S_{n}, or adjusted spectral sequences converging to 0 .
\rightarrow There is shared combinatorics with the calculation of $F(-,-)$; not yet understood.

Associated graded of the filtration of S_{n}

The associated graded object $\mathrm{gr}_{*}\left(S_{n}\right)$ is conjecturally as follows:

- For any sequence $u=\left(u_{0}<u_{1}<\cdots<u_{r}=n\right)$ we have $z_{u}: \hat{S}_{u_{0}}^{2\left(u_{0}-n\right)} \rightarrow \operatorname{gr}_{r}\left(S_{n}\right)$.
\checkmark There is a fibration $S_{n} \rightarrow S_{n-1} \vee \hat{S}_{n} \rightarrow \alpha_{n}(S) \xrightarrow{\delta_{n}} S_{n}^{1}$.
Put

$$
z_{i j}^{\prime}=\Sigma^{2 j-1}\left(S_{i}^{1-2(j-i)} \xrightarrow{x_{i j}} \alpha_{j}(S) \xrightarrow{\delta_{j}} S_{j}^{1}\right): S_{i}^{2 i} \rightarrow S_{j}^{2 j}
$$

Then z_{u} is related to the composite

$$
S_{u_{0}}^{2 u_{0}} \xrightarrow{z^{\prime}} S_{u_{1}}^{2 u_{1}} \xrightarrow{z^{\prime}} \cdots \xrightarrow{z^{\prime}} S_{u_{r}}^{2 u_{r}}=S_{n}^{2 n} .
$$

The element z_{u} can be multiplied by variables $x_{i, u_{j}}$ of filtration 1 and degree $1-2\left(u_{j}-i\right)$ for $u_{j-1}<i<u_{j}$.

- The resulting products form a "basis" for $\mathrm{gr}_{*}\left(S_{n}\right)$.
- From this we can obtain spectral sequences converging to invariants of S_{n}, or adjusted spectral sequences converging to 0 .
- There is shared combinatorics with the calculation of $F(-,-)$; not yet understood.

Euler characteristics

\rightarrow Put $\chi_{n}(X)=\operatorname{dim}_{K(n)_{*}}\left(K(n)_{\text {even }}(X)\right)-\operatorname{dim}_{K(n)_{*}}\left(K(n)_{\text {odd }}(X)\right)$ (assuming that the dimensions are finite).
\rightarrow For the X that we have considered: $\chi_{n}(X)$ is probably 0 , occasionally 1 .
\Rightarrow Sometimes this is known unconditionally, sometimes it relies on the CSC.
\rightarrow Some aspects of the previous story can be checked for consistency using these invariants. Often we just get $0=0$ which is not very impressive, but in a few cases there are interesting patterns of cancellation.

Euler characteristics

\rightarrow Put $\chi_{n}(X)=\operatorname{dim}_{K(n)_{*}}\left(K(n)_{\text {even }}(X)\right)-\operatorname{dim}_{K(n)_{*}}\left(K(n)_{\text {odd }}(X)\right)$ (assuming that the dimensions are finite).
\rightarrow For the X that we have considered: $\chi_{n}(X)$ is probably 0 , occasionally 1 .

- Sometimes this is known unconditionally, sometimes it relies on the CSC.
- Some aspects of the previous story can be checked for consistency using these invariants. Often we just get $0=0$ which is not very impressive, but in a few cases there are interesting patterns of cancellation.

Euler characteristics

\rightarrow Put $\chi_{n}(X)=\operatorname{dim}_{K(n)_{*}}\left(K(n)_{\text {even }}(X)\right)-\operatorname{dim}_{K(n)_{*}}\left(K(n)_{\text {odd }}(X)\right)$ (assuming that the dimensions are finite).
\rightarrow For the X that we have considered: $\chi_{n}(X)$ is probably 0 , occasionally 1 .
$>$ Sometimes this is known unconditionally, sometimes it relies on the CSC.

- Some aspects of the previous story can be checked for consistency using these invariants. Often we just get $0=0$ which is not very impressive, but in a few cases there are interesting patterns of cancellation.

Euler characteristics

\rightarrow Put $\chi_{n}(X)=\operatorname{dim}_{K(n)_{*}}\left(K(n)_{\text {even }}(X)\right)-\operatorname{dim}_{K(n)_{*}}\left(K(n)_{\text {odd }}(X)\right)$ (assuming that the dimensions are finite).
\rightarrow For the X that we have considered: $\chi_{n}(X)$ is probably 0 , occasionally 1 .

- Sometimes this is known unconditionally, sometimes it relies on the CSC.

Some aspects of the previous story can be checked for consistency using these invariants. Often we just get $0=0$ which is not very impressive, but in a few cases there are interesting patterns of cancellation.

Euler characteristics

$-\operatorname{Put} \chi_{n}(X)=\operatorname{dim}_{K(n)_{*}}\left(K(n)_{\text {even }}(X)\right)-\operatorname{dim}_{K(n)_{*}}\left(K(n)_{\text {odd }}(X)\right)$ (assuming that the dimensions are finite).
\rightarrow For the X that we have considered: $\chi_{n}(X)$ is probably 0 , occasionally 1 .

- Sometimes this is known unconditionally, sometimes it relies on the CSC.
- Some aspects of the previous story can be checked for consistency using these invariants. Often we just get $0=0$ which is not very impressive, but in a few cases there are interesting patterns of cancellation.

Further questions

\rightarrow For $U \subseteq P\{0, \ldots, N\}$ closed upwards, put $\theta_{U}(X)=\underset{L_{A \in U}}{\operatorname{holim}} \phi_{A}(X)$.

- In work with Bellumat we showed that this class of functors contains L_{n} and $L_{K(n)}$ and is closed under composition and certain homotopy limits.
- We believe that CSC implies a splitting of all $\theta_{U}(S)$, but have not completed this analysis.
- Ravenel has defined ring spectra
$S=T(0) \rightarrow T(1) \rightarrow T(2) \rightarrow \ldots \rightarrow T(\infty)=B P$
which are important for many reasons in chromatic homotopy theory.
$>$ The CSC is about $\phi_{A}(T(0))$ and $\alpha_{A}(T(0))$.
$>$ We can compute everything about $\phi_{A}(T(\infty))$ and $\alpha_{A}(T(\infty))$.
The CSC generators $x_{i n}$ map to zero here.
\rightarrow It would be useful to understand $T(n)$ for intermediate n, especially $\alpha_{k}(T(n))$ for $k \in\{n-1, n, n+1\}$.
- This is also relevant for the Telescope Conjecture.

Further questions

- For $U \subseteq P\{0, \ldots, N\}$ closed upwards, put $\theta_{U}(X)=\operatorname{holim}_{A \in U} \phi_{A}(X)$.
- In work with Bellumat we showed that this class of functors contains L_{n} and $L_{K(n)}$ and is closed under composition and certain homotopy limits.
- We believe that CSC implies a splitting of all $\theta_{U}(S)$, but have not completed this analysis.
\rightarrow Ravenel has defined ring spectra
$S=T(0) \rightarrow T(1) \rightarrow T(2) \rightarrow \ldots \rightarrow T(\infty)=B P$
which are important for many reasons in chromatic homotopy theory.
- The CSC is about $\phi_{A}(T(0))$ and $\alpha_{A}(T(0))$.
\rightarrow We can compute everything about $\phi_{A}(T(\infty))$ and $\alpha_{A}(T(\infty))$. The CSC generators $x_{\text {in }}$ map to zero here.
- It would be useful to understand $T(n)$ for intermediate n, especially $\alpha_{k}(T(n))$ for $k \in\{n-1, n, n+1\}$
\Rightarrow This is also relevant for the Telescope Conjecture.

Further questions

- In work with Bellumat we showed that this class of functors contains L_{n} and $L_{K(n)}$ and is closed under composition and certain homotopy limits.
- We believe that CSC implies a splitting of all $\theta_{U}(S)$, but have not completed this analysis.
- Ravenel has defined ring spectra
$S=T(0) \rightarrow T(1) \rightarrow T(2) \rightarrow \ldots \rightarrow T(\infty)=B P$
which are important for many reasons in chromatic homotopy theory.
- The CSC is about $\phi_{A}(T(0))$ and $\alpha_{A}(T(0))$
\Rightarrow We can compute everything about $\phi_{A}(T(\infty))$ and $\alpha_{A}(T(\infty))$. The CSC generators $x_{i n}$ map to zero here.
\rightarrow It would be useful to understand $T(n)$ for intermediate n, especially $\alpha_{k}(T(n))$ for $k \in\{n-1, n, n+1\}$
- This is also relevant for the Telescope Conjecture.

Further questions

- For $U \subseteq P\{0, \ldots, N\}$ closed upwards, put $\theta_{U}(X)=\underset{\underbrace{}_{A \in U}}{\operatorname{holim}} \phi_{A}(X)$.
- In work with Bellumat we showed that this class of functors contains L_{n} and $L_{K(n)}$ and is closed under composition and certain homotopy limits.
- We believe that CSC implies a splitting of all $\theta_{U}(S)$, but have not completed this analysis.

```
Ravenel has defined ring spectra
S =T(0) ->T(1) ->T(2) -> .. ->T(\infty)=BP
which are important for many reasons in chromatic homotopy theory.
|The CSC is about }\mp@subsup{\phi}{A}{}(T(0))\mathrm{ and }\mp@subsup{\alpha}{A}{}(T(0))
* We can compute everything about }\mp@subsup{\phi}{A}{}(T(\infty))\mathrm{ and }\mp@subsup{\alpha}{A}{}(T(\infty))\mathrm{ .
The CSC generators }\mp@subsup{x}{in}{}\mathrm{ map to zero here.
|}\mathrm{ It would be useful to understand }T(n)\mathrm{ for intermediate n, especially
\alpha
* This is also relevant for the Telescone Conjecture.
```


Further questions

- In work with Bellumat we showed that this class of functors contains L_{n} and $L_{K(n)}$ and is closed under composition and certain homotopy limits.
- We believe that CSC implies a splitting of all $\theta_{U}(S)$, but have not completed this analysis.
- Ravenel has defined ring spectra $S=T(0) \rightarrow T(1) \rightarrow T(2) \rightarrow \ldots \rightarrow T(\infty)=B P$ which are important for many reasons in chromatic homotopy theory.
\rightarrow We can compute everything about $\phi_{A}(T(\infty))$ and $\alpha_{A}(T(\infty))$. The CSC generators $x_{i n}$ map to zero here.
\rightarrow It would be useful to understand $T(n)$ for intermediate n, especially $\alpha_{k}(T(n))$ for $k \in\{n-1, n, n+1\}$.
- This is also relevant for the Telescone Conjecture.

Further questions

\rightarrow For $U \subseteq P\{0, \ldots, N\}$ closed upwards, put $\theta_{U}(X)=\underset{L_{A \in U}}{\operatorname{holim}_{A}(X) \text {. }}$

- In work with Bellumat we showed that this class of functors contains L_{n} and $L_{K(n)}$ and is closed under composition and certain homotopy limits.
- We believe that CSC implies a splitting of all $\theta_{U}(S)$, but have not completed this analysis.
- Ravenel has defined ring spectra
$S=T(0) \rightarrow T(1) \rightarrow T(2) \rightarrow \ldots \rightarrow T(\infty)=B P$
which are important for many reasons in chromatic homotopy theory.
- The CSC is about $\phi_{A}(T(0))$ and $\alpha_{A}(T(0))$.

We can compute everything about $\phi_{A}(T(\infty))$ and $\alpha_{A}(T(\infty))$. The CSC generators $x_{i n}$ map to zero here.
\rightarrow It would be useful to understand $T(n)$ for intermediate n, especially $\alpha_{k}(T(n))$ for $k \in\{n-1, n, n+1\}$

- This is also relevant for the Telescope Conjecture.

Further questions

\rightarrow For $U \subseteq P\{0, \ldots, N\}$ closed upwards, put $\theta_{U}(X)=\underset{L_{A \in U}}{\operatorname{holim}_{A}(X) \text {. }}$

- In work with Bellumat we showed that this class of functors contains L_{n} and $L_{K(n)}$ and is closed under composition and certain homotopy limits.
- We believe that CSC implies a splitting of all $\theta_{U}(S)$, but have not completed this analysis.
- Ravenel has defined ring spectra
$S=T(0) \rightarrow T(1) \rightarrow T(2) \rightarrow \ldots \rightarrow T(\infty)=B P$
which are important for many reasons in chromatic homotopy theory.
- The CSC is about $\phi_{A}(T(0))$ and $\alpha_{A}(T(0))$.
\rightarrow We can compute everything about $\phi_{A}(T(\infty))$ and $\alpha_{A}(T(\infty))$. The CSC generators $x_{i n}$ map to zero here.
\rightarrow It would be useful to understand $T(n)$ for intermediate n, especially - This is also relevant for the Telescope Conjecture.

Further questions

\rightarrow For $U \subseteq P\{0, \ldots, N\}$ closed upwards, put $\theta_{U}(X)=\underset{L_{A \in U}}{\operatorname{holim}_{A}(X) \text {. }}$

- In work with Bellumat we showed that this class of functors contains L_{n} and $L_{K(n)}$ and is closed under composition and certain homotopy limits.
- We believe that CSC implies a splitting of all $\theta_{U}(S)$, but have not completed this analysis.
- Ravenel has defined ring spectra
$S=T(0) \rightarrow T(1) \rightarrow T(2) \rightarrow \ldots \rightarrow T(\infty)=B P$ which are important for many reasons in chromatic homotopy theory.
- The CSC is about $\phi_{A}(T(0))$ and $\alpha_{A}(T(0))$.
- We can compute everything about $\phi_{A}(T(\infty))$ and $\alpha_{A}(T(\infty))$. The CSC generators $x_{i n}$ map to zero here.
- It would be useful to understand $T(n)$ for intermediate n, especially $\alpha_{k}(T(n))$ for $k \in\{n-1, n, n+1\}$.

[^1]
Further questions

\rightarrow For $U \subseteq P\{0, \ldots, N\}$ closed upwards, put $\theta_{U}(X)=\underset{L_{A \in U}}{\operatorname{holim}_{A}(X) \text {. }}$

- In work with Bellumat we showed that this class of functors contains L_{n} and $L_{K(n)}$ and is closed under composition and certain homotopy limits.
- We believe that CSC implies a splitting of all $\theta_{U}(S)$, but have not completed this analysis.
- Ravenel has defined ring spectra
$S=T(0) \rightarrow T(1) \rightarrow T(2) \rightarrow \ldots \rightarrow T(\infty)=B P$ which are important for many reasons in chromatic homotopy theory.
- The CSC is about $\phi_{A}(T(0))$ and $\alpha_{A}(T(0))$.
\rightarrow We can compute everything about $\phi_{A}(T(\infty))$ and $\alpha_{A}(T(\infty))$. The CSC generators $x_{i n}$ map to zero here.
- It would be useful to understand $T(n)$ for intermediate n, especially $\alpha_{k}(T(n))$ for $k \in\{n-1, n, n+1\}$.
- This is also relevant for the Telescope Conjecture.

[^0]: \rightarrow tfib(square) $=\mathrm{fib}(\mathrm{fib}($ edge $) \rightarrow$ fib(opposite edge) $)$

[^1]: \Rightarrow This is also relevant for the Telescope Conjecture.

