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The Chromatic Splitting Conjecture

The CSC (due to Hopkins) is about the structure of αn�S� � Ln�1LK�n�S .

Technical note: throughout this talk, S denotes the p-complete sphere
spectrum, and we work in the category of S-modules. Symbols like MU refer to
the p-completed versions.

We put S
d
n � LnS

d
and rSd

n � LK�n�S
d
. Given a ring spectrum R and variables zi

of odd degree di and chromatic height ni , we define

ER�z1, . . . , zm� � R 0�
i

�S 1 S
di
ni � � �

INr1,...,mx
S
<I di
minI ni

To expand this out, remember that S
i
n 0 S

j
m � S

i�j

min�n,m�.

We introduce variables xin for 0 & i $ n of height i and degree 1 � 2�n � i�.
The CSC says that there are maps xin�S

1�2�n�i�
i � αn�S� inducing

ESn�1�x0n, . . . , xn�1,n� � αn�S�.
For example:

α3�S� � L2LK�3�S � S2 0 �S 1 S
�5
0 � 0 �S 1 S

�3
1 � 0 �S 1 S

�1
2 �

� S2 1 S
�1
2 1 S

�3
1 1 S

�4
1 1 S

�5
0 1 S

�6
0 1 S

�8
0 1 S

�9
0 .
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The conjecture is false in general

Z Beaudry has proved that the CSC is false for n � p � 2.

Z It may still be true when p is large relative to n.

Z When p is large the question is in principle purely algebraic, by work
starting with Franke, later versions e.g. by Patchkoria-Pstragowski.

Z We could also take an ultraproduct over primes, following
Barthel-Schlank-Stapleton.

Z This talk will investigate a complex set of consequences that would follow
from the CSC. These appear to be internally consistent, although there are
many ways in which that could fail. This makes the CSC more interesting
and more plausible.

Z Conjecture: the resulting algebraic and combinatorial patterns are
indirectly relevant, even if CSC fails.
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Generators; Localisation relations

The extended Morava stabiliser group Γn of height n acts on WFpn with

H
��Γn;QiWFpn� � EQp

�xin ¶ 0 & i $ n� xin " H
2�n�i��1

.

These elements xin should be related via the K�n�-based Adams spectral
sequence to the elements xin in the CSC.
Also, xn�1,n�S

�1
n�1 � Ln�1LK�n�S should come from the known element

ζn�S
�1
� LK�n�S (defined using ker�det�Γn � Z�p �).

LnLm � Lmin�n,m�

LK�n�Lm � wLK�n� if n & m

0 if n % m

LnLK�m� � w? if n $ m

LK�m� if n ' m

LK�n�LK�m� �

~����������
? if n $ m

LK�n� if n � m

0 if n % m.
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The spherical category

Z Fix p and N ' 0, and assume CSC holds for n & N.

Z Let C be the closure of C1 � rS0,S1, . . . ,SN , rS1, . . . , rSNx
under (de)suspension and finite coproducts (remembering rS0 � S0).

Z Claim: C is closed under smash products and F ��,�� and LE�n� and LK�n�,
so is a closed symmetric monoidal category.

Z Sn 0 Sm � LE�n�Sm � LE�m�Sn � Smin�n,m�; also Sn 0 rSm � rSm for n ' m.

Z For n $ m we have Sn 0 rSm � Sn 0 Lm�1 rSm � �INr0,...,m�1x S
a

min�I ,n�.

Z For n $ m we have rSn 0 rSm � rSn 0 Sn 0 rSm � �INr0,...,m�1x rSn 0 S
a

min�I ,n�;

simplified further as above to give some rSn and some Si with i $ n.

Z rSn is a ring so rSn 0 rSn � rSn 1 fib�µ� rSn 0 rSn � rSn�.
Z Apply rSn 0 ��� to the chromatic fracture square

Sn Sn�1

rSn Ln�1 rSn � �I S
a

min�I ,n�1�

We find that fib�µ� is the same for rSn and Ln�1 rSn,
and is a wedge of copies of S

a

i with i $ n.
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The spherical category

Z For n ' m we have F �Sn,Sm� � Sm and F �Sn, rSm� � rSm.

Z For n $ m both Sn and rSn are K�m�-acyclic, so
F �Sn, rSm� � F � rSn, rSm� � 0.

Z For n $ m, apply F �Sn,�� to the chromatic fracture square for Sm, giving
F �Sn,Sm� � �Ijo F �Sn,S

a�1
min�I ,m�1��; then repeat recursively.

Z Similar methods give F � rSn,Sm� and F � rSn, rSm�.
Z Recall X is strongly dualisable iff F �X ,SN� 0 X � F �X ,X � is iso.

This only holds if X is a wedge of copies of S
a

N .

Z Put R � π0�C� � N�s�1�rS0, . . . ,SN , rS1, . . . , rSNx.
Z By spelling out the combinatorics, we get a product on R and a map

F �R � R � R.

Z Fact: the product is commutative and associative and satisfies
F �x ,F �y , z�� � F �xy , z�, as predicted by CSC.

Z This is all about isomorphism classes; what about morphisms?
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The spherical category

Z The chromatic fracture square plus CSC gives a cofibration

�
I

S
a�1
min�I ,n�1�

u
�� Sn

� i
�j �
���� Sn�1 1 rSn

�η v �
������

I

S
a

min�I ,n�1�

The maps u and v have components uI �S
a

a � Sn and vI � rSn � S
a

a

Z Additional conjecture: any composite Sm
i
�� S

a

a

uI
�� Sn with m ' n is zero.

This is true but not obvious when N � 1.

Z Assuming this: we hope to determine the composition maps
F �Y ,Z� 0 F �X ,Y �� F �X ,Z�.
This is done when X ,Y ,Z involve only S

a

a and not rSaa .
Z Assuming this: we have a fully algebraic model for the wide subcategory

with morphisms generated by i�Sn � Sn�1 and j�Sn � rSn and uI and vI
(which is again closed symmetric monoidal).
Many smash products and composites are zero.
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αn�S� � ESn�1�x0n, . . . , xn�1,n�
xin has height i , target n

and dimension 1 � 2�n � i�
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α6�S� � ES5�x06, . . . , x56�



Charts

0 1 2 3 4 5 6 7 8
height

�1

�3

�5

�7

�9

�11

�13

�15

�17

dim

1 2 3 4 5 6 7 8 9target
α9�S� � ES8�x09, . . . , x89�



Charts

0 1 2 3 4 5 6 7 8
height

�1

�3

�5

�7

�9

�11

�13

�15

�17

dim

1 2 3 4 5 6 7 8 9target
Put α469 � α4 ` α6 ` α9

� L3LK�4�LK�6�LK�9�

α469�S�

α4�S�

α6�S� α9�S�

α469�S� is exterior over S3 on

9 generators indicated in black.

Circles are shadowed generators:

present but equal to zero.
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height

�1
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�5

�7

�9

�11

�13

�15

�17

dim

1 2 3 4 5 6 7 8 9target
α1�9 � LK�0�LK�1��LK�9�

α1�9�S� is exterior over S0 on

x01, x12, . . . , x89 (all degree �1)
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height

�1

�3

�5

�7

�9

�11

�13

�15

�17

dim

1 2 3 4 5 6 7 8 9target
Put ϕ469 � LK�4� ` α6 ` α9

� LK�4�LK�6�LK�9�

α69�S� �� ϕ469�S��� rS4

ϕ469�S� is exterior over rS4 on
5 generators marked in black.

Circles are shadowed generators:

present but equal to zero.

All summands in this exterior

algebra are just rSd
4 .
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height

�1

�3

�5

�7

�9

�11

�13

�15

�17

dim

1 2 3 4 5 6 7 8 9target
rS4 0 rS6 0 rS9 is a wedge of terms

indexed by admissible monomials

in the indicated generators

If only a present: term is rS4

If any more present: at least one

must be �, and the term

is Si for some i $ 4.



Chromatic fracture

The following cube of functors is homotopy cartesian
(where ϕ02 � LK�0�LK�2� etc.):

L2 ϕ0

ϕ1 ϕ01

ϕ2 ϕ02

ϕ12 ϕ012

Homotopy cartesian means:

Z L2 maps by an equivalence to the holim of the rest of the diagram; or

Z The total fibre of the cube is zero.

Rules for total fibres:

Z tfib�cube� � fib�tfib�face�� tfib�opposite face��
Z tfib�square� � fib�fib�edge�� fib�opposite edge��



Chromatic fracture

The following cube of functors is homotopy cartesian
(where ϕ02 � LK�0�LK�2� etc.):

L2 ϕ0

ϕ1 ϕ01

ϕ2 ϕ02

ϕ12 ϕ012

Homotopy cartesian means:

Z L2 maps by an equivalence to the holim of the rest of the diagram; or

Z The total fibre of the cube is zero.

Rules for total fibres:

Z tfib�cube� � fib�tfib�face�� tfib�opposite face��
Z tfib�square� � fib�fib�edge�� fib�opposite edge��



Chromatic fracture

The following cube of functors is homotopy cartesian
(where ϕ02 � LK�0�LK�2� etc.):

L2 ϕ0

ϕ1 ϕ01

ϕ2 ϕ02

ϕ12 ϕ012

Homotopy cartesian means:

Z L2 maps by an equivalence to the holim of the rest of the diagram; or

Z The total fibre of the cube is zero.

Rules for total fibres:

Z tfib�cube� � fib�tfib�face�� tfib�opposite face��
Z tfib�square� � fib�fib�edge�� fib�opposite edge��



Chromatic fracture

The following cube of functors is homotopy cartesian
(where ϕ02 � LK�0�LK�2� etc.):

L2 ϕ0

ϕ1 ϕ01

ϕ2 ϕ02

ϕ12 ϕ012

Homotopy cartesian means:

Z L2 maps by an equivalence to the holim of the rest of the diagram; or

Z The total fibre of the cube is zero.

Rules for total fibres:

Z tfib�cube� � fib�tfib�face�� tfib�opposite face��
Z tfib�square� � fib�fib�edge�� fib�opposite edge��



Chromatic fracture

The following cube of functors is homotopy cartesian
(where ϕ02 � LK�0�LK�2� etc.):

L2 ϕ0

ϕ1 ϕ01

ϕ2 ϕ02

ϕ12 ϕ012

Homotopy cartesian means:

Z L2 maps by an equivalence to the holim of the rest of the diagram; or

Z The total fibre of the cube is zero.

Rules for total fibres:

Z tfib�cube� � fib�tfib�face�� tfib�opposite face��
Z tfib�square� � fib�fib�edge�� fib�opposite edge��



Chromatic fracture

The following cube of functors is homotopy cartesian
(where ϕ02 � LK�0�LK�2� etc.):

L2 ϕ0

ϕ1 ϕ01

ϕ2 ϕ02

ϕ12 ϕ012

Homotopy cartesian means:

Z L2 maps by an equivalence to the holim of the rest of the diagram; or

Z The total fibre of the cube is zero.

Rules for total fibres:

Z tfib�cube� � fib�tfib�face�� tfib�opposite face��
Z tfib�square� � fib�fib�edge�� fib�opposite edge��



Chromatic fracture

The following cube of functors is homotopy cartesian
(where ϕ02 � LK�0�LK�2� etc.):

L2 ϕ0

ϕ1 ϕ01

ϕ2 ϕ02

ϕ12 ϕ012

Homotopy cartesian means:

Z L2 maps by an equivalence to the holim of the rest of the diagram; or

Z The total fibre of the cube is zero.

Rules for total fibres:

Z tfib�cube� � fib�tfib�face�� tfib�opposite face��
Z tfib�square� � fib�fib�edge�� fib�opposite edge��



Aside on spectral sequences

The chromatic fracture cube gives a spectral sequence

E
1
pq � 5

¶A¶�p
πq�ϕA�X ��¼ 0,

where A runs over subsets of r0, 1, 2x and ϕo � L2.

For a formally similar situation, take a space X � U0 < U1 < U2, and put
U02 � U0 = U2 etc. There is a Mayer-Vietoris spectral sequence

E
pq
0 � 5

¶A¶�p
C

q�UA�, E
pq
1 � 5

¶A¶�p
H

q�UA�¼ 0.

Consider the exterior algebra E � E�e0, e1, e2� with basis reA ¶ A N r0, 1, 2xx.
We can identify E

��

0 with,A C
��UA�.eA, which is a quotient of C

��X �i E .
This is a bicomplex, using the ordinary cosimplicial differential and
multiplication by the element u � e0 � e1 � e2.
The combined differential does not satisfy the Leibniz rule, but behaves like an
operator f ( f

¬
� uf .

Spectral sequence of this type deserve further study.
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��UA�.eA, which is a quotient of C

��X �i E .
This is a bicomplex, using the ordinary cosimplicial differential and
multiplication by the element u � e0 � e1 � e2.
The combined differential does not satisfy the Leibniz rule, but behaves like an
operator f ( f

¬
� uf .

Spectral sequence of this type deserve further study.
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Chromatic splitting and chromatic fracture

α3�S� ϕ03�S�

ϕ13�S� ϕ013�S�

ϕ23�S� ϕ023�S�

ϕ123�S� ϕ0123�S�
Apply the fracture cube to rS3 to get a homotopy cartesian cube as above.
Is this consistent with the Chromatic Splitting Conjecture?



Chromatic splitting and chromatic fracture

o 23

13 13.23

03 03.23

03.13 03.13.23

S?

o 23

13 13.23

03 03.23

03.13 03.13.23

S0� rS0

o 23

13 13.23

rS1

o 01

13 01.13

23 01.23

13.23 01.13.23

S0

o 23

rS2

o 02

12 02.12

23 02.23

12.23 02.12.23

S0

o 23

12 12.23

rS1
o 01

12 01.12

23 01.23

12.23 01.12.23

S0

Notation: e.g. 01.13 � x01x13; also o � 1.
This diagram should be homotopy cartesian.
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This subdiagram consists of two copies of the fracture cube for S2 and so is
homotopy cartesian.
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We can remove that subdiagram without changing the total fibre.
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This subdiagram consists of two copies of the fracture square for S1 and so is
homotopy cartesian.
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This subdiagram consists of four copies of the fracture interval for S0 and so is
homotopy cartesian.
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After removing that subdiagram we see that the original diagram was
homotopy cartesian, as required.



Chromatic splitting and chromatic fracture

o 23

13 13.23

03 03.23

03.13 03.13.23

S?

o 23

13 13.23

03 03.23

03.13 03.13.23

S0� rS0

o 23

13 13.23

rS1

o 01

13 01.13

23 01.23

13.23 01.13.23

S0

o 23

rS2

o 02

12 02.12

23 02.23

12.23 02.12.23

S0

o 23

12 12.23

rS1
o 01

12 01.12

23 01.23

12.23 01.12.23

S0

Similarly, CSC implies that the chromatic fracture hypercube for
αA�S� � Ln�1�ϕA�S�� is a sum of the hypercubes for various S

d
m.



Chromatic splitting and chromatic fracture

S2 rS0

rS1
E rS0�x01�

rS2
E rS0�x02, x12�

E rS1�x12� E rS0�x01, x12�
Z According to CSC we should have a homotopy cartesian cube as above.

Z Dotted arrows are defined using CSC. Solid arrows exist unconditionally.

Z Everything but S2 has a decreasing filtration by powers of the ideal
generated by all xin. There is a compatible filtration of S2.

Z gr0�S2� � rS2; gr1�S2� � rS�40 1 rS�21 ; gr2�S2� � rS�50 1 rS�40

Z In general, the CSC implies that Sn has a finite decreasing filtration where
the associated graded is a wedge of K�m�-local spheres which can be
described combinatorially. Multiplicative properties are unclear.
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Chromatic splitting and chromatic fracture

gr1�S2� 0
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rS�11 .x12 rS�10 .x011 rS
�1
0 .x12
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Associated graded of the filtration of Sn

The associated graded object gr
�
�Sn� is conjecturally as follows:

Z For any sequence u � �u0 $ u1 $� $ ur � n� we have

zu� rS2�u0�n�
u0 � grr�Sn�.

Z There is a fibration Sn �� Sn�1 1 rSn �� αn�S� δn
�� S

1
n .

Put

z
¬

ij � Σ
2j�1�S1�2�j�i�

i

xij
�� αj�S� δj

�� S
1
j ��S2i

i � S
2j
j .

Then zu is related to the composite

S
2u0
u0

z
¬

�� S
2u1
u1

z
¬

���
z
¬

�� S
2ur
ur � S

2n
n .

Z The element zu can be multiplied by variables xi,uj of filtration 1 and
degree 1 � 2�uj � i� for uj�1 $ i $ uj .

Z The resulting products form a “basis” for gr
�
�Sn�.

Z From this we can obtain spectral sequences converging to invariants of Sn,
or adjusted spectral sequences converging to 0.

Z There is shared combinatorics with the calculation of F ��,��; not yet
understood.
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Z The element zu can be multiplied by variables xi,uj of filtration 1 and
degree 1 � 2�uj � i� for uj�1 $ i $ uj .

Z The resulting products form a “basis” for gr
�
�Sn�.

Z From this we can obtain spectral sequences converging to invariants of Sn,
or adjusted spectral sequences converging to 0.

Z There is shared combinatorics with the calculation of F ��,��; not yet
understood.



Euler characteristics

Z Put χn�X � � dimK�n���K�n�even�X �� � dimK�n���K�n�odd�X ��
(assuming that the dimensions are finite).

Z For the X that we have considered: χn�X � is probably 0, occasionally 1.

Z Sometimes this is known unconditionally, sometimes it relies on the CSC.

Z Some aspects of the previous story can be checked for consistency using
these invariants. Often we just get 0 � 0 which is not very impressive, but
in a few cases there are interesting patterns of cancellation.
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Further questions

Z For U N Pr0, . . . ,Nx closed upwards, put θU�X � � holim
» A"U

ϕA�X �.
Z In work with Bellumat we showed that this class of functors contains Ln

and LK�n� and is closed under composition and certain homotopy limits.

Z We believe that CSC implies a splitting of all θU�S�, but have not
completed this analysis.

Z Ravenel has defined ring spectra
S � T �0�� T �1�� T �2�� . . .� T ��� � BP
which are important for many reasons in chromatic homotopy theory.

Z The CSC is about ϕA�T �0�� and αA�T �0��.
Z We can compute everything about ϕA�T ���� and αA�T ����.

The CSC generators xin map to zero here.

Z It would be useful to understand T �n� for intermediate n, especially
αk�T �n�� for k " rn � 1, n, n � 1x.

Z This is also relevant for the Telescope Conjecture.
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