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A B S T R A C T

This article presents an innovative genetic ensembles of classifiers applied to classification of cardiac disorders
(17 classes) based on electrocardiography (ECG) signal analysis.
From a social point of view, it is extremely important to prevent heart diseases, which are the most common cause
of death worldwide. According to statistical data, 50 million people are at risk for cardiac diseases worldwide.
This research collected 744 fragments of ECG signals from the MIT-BIH Arrhythmia database for one lead,
MLII, from 29 patients. Novel methodology that consisted of the analysis of longer (10-s) fragments of the
ECG signal was used (an average of 13 times less classifications). To enhance the characteristic features of the
ECG signal, the power spectral density was estimated (using Welchs method and a discrete Fourier transform).
In research designed two genetic ensembles of classifiers optimized: by classes and by sets, based on: SVM
classifier, 10-fold cross-validation method, ensemble learning, layered learning, genetic selection of features
(frequency components), genetic optimization of classifiers parameters and novel genetic training (selection of
experts votes) used to combining classifiers.
The best genetic ensemble of classifiers optimized by sets, obtained a classification sensitivity of 17 heart disor-
ders (classes) at a level of 91.40% (64 errors per 744 classifications, accuracy = 98.99%, specificity = 99.46%,
time for classification of one sample = 0.0186 [s]). Against the background of the current scientific literature,
these results represent some of the best results obtained.

1. Introduction

Diagnosing heart conditions by analyzing electrocardiography
(ECG) signals has been popular for many years and is the basic method
used in the prevention of cardiovascular diseases. The wide range of
application of ECG signal analysis is due to the fact that it is a simple
and non-invasive method that provides substantial valuable informa-
tion about the function of the circulatory system.

Currently, we observe a very high incidence of cardiovascular dis-
ease and the very high mortality caused by them. Despite the preventive
measures taken, cardiovascular diseases are the leading cause of death
worldwide (17.3 million people per year, accounting for 37% of all
deaths [1–3]) and the most serious and costly health problems facing
the world today [4,5]. Circulatory system diseases are usually chronic
diseases that require long-term and expensive treatment. The tendency
for the incidence of cardiovascular diseases will increasingly intensify
due to the progressive aging of the population (the number of deaths
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will increase from 17.3 million in 2016 to 23.6 million in 2030 [1–3,6]).
The classification of cardiac disorders based on existing methods

based on the calculation of morphological and dynamic features of indi-
vidual QRS complexes (heart evolution; combination of three of the
graphical deflections seen on a typical electrocardiogram) is difficult
and error prone due to the variability of these features in different
patients [7]. For this reason, solutions currently described in the sci-
entific literature do not achieve a satisfactory efficiency [8].

This is why it is very important to develop specialized software sup-
porting medical diagnostics to more effectively identify myocardium
dysfunctions earlier and monitor the conditions of patients in real time.
The reduction in computational complexity is also an important aspect
in the context of deploying the solution in mobile devices.

In the research was applied a novel methodology [9] characterized
by: 1) analysis of longer, 10-s (time period corresponding to a stan-
dard clinical ECG examination performed by a cardiologist) ECG signal
fragments (as opposed to QRS complex classification), which contain

https://doi.org/10.1016/j.swevo.2017.10.002
Received 17 July 2017; Received in revised form 23 September 2017; Accepted 7 October 2017
Available online 20 October 2017
2210-6502/© 2017 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2017.10.002&domain=pdf
https://doi.org/10.1016/j.swevo.2017.10.002
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/swevo
mailto: plawiak@pk.edu.pl
mailto: plawiak.pawel@gmail.com
https://www.researchgate.net/profile/Pawel_Plawiak
https://doi.org/10.1016/j.swevo.2017.10.002


P. Pławiak Swarm and Evolutionary Computation 39 (2018) 192–208

multiple heart evolutions, 2) applied feature extraction based on power
spectral density estimation using Welchs method and a discrete Fourier
transform, 3) applied genetic selection of features (frequency compo-
nents), 4) not applying the QRS complex detection and segmentation of
the ECG signal, and 5) not applying signal filtering.

By analyzing longer (10-s) fragments of ECG signals, the number
of classifications has been reduced (an average of 13 times less classi-
fication, assuming that heart rate is 80 beats per minute), and elim-
inating the need for detection and segmentation of QRS complexes,
which reduces the computational complexity and opens the possibility
to use the solution in practice, in mobile devices. Also analyzing longer
ECG signal fragments give better results for recognition some disorders
(e.g. pre-excitation syndromes (e.g., Wolff-Parkinson-White syndrome -
WPW), atrio-ventricular and atrial-sinus conduction blocks, and elon-
gate PQ intervals) [9].

Ensembles of classifiers are a very popular tool recently [10–15],
used to improve obtained results. Ensembles of classifiers are a hybrid
that combines the advantages of all component classifiers and min-
imizing their disadvantages and the effect of over-fitting. With this
approach, we can increase the efficiency of the entire ensemble com-
pared to individual component classifiers. The increasing capabilities
of computers also allow development of increasingly complex systems.
The field of ensemble learning is developing very dynamically. In view
of this fact, there are a huge number of methods described in the liter-
ature: [10,16–22].

The methods for creating ensemble of classifiers include: 1) applying
different subsets with training data for the same classifier, 2) applying
different parameters to create models for the same classifier, 3) apply-
ing different classifiers, and 4) introduction of randomness in learning
process. The methods of combining ensemble of classifiers include: 1)
classifiers fusion or mixture of experts, 2) classifier selection, and 3)
cascade classifiers or multi-stage classifiers. All of the methodologies
described above assume that the classifiers group achieve a better result
than the single classifier [10,23–25]. In many cases single classifiers
give results that are deterministic but also unstable (modification of the
training set, generates significant different models). By combining dif-
ferent models generated from different training sets, we can get a signif-
icant increase in the correct classifications [26]. Ensembles can consist
of the same classifiers (e.g. Bagging and Boosting methods) or ensem-
bles can combine many different classifiers using the strengths of each.
Ensembles are classifier packages that make decisions. Rules of classi-
fiers fusion can be divided into: 1) algebraic, 2) voting, 3) probability
of belonging, 4) classifier competence, 5) meta-classifiers. It is impor-
tant to select component classifiers (ensemble members). It is worth
paying attention to three basic assumptions: 1) statistical independence
(diversity), 2) efficiency (speed), 3) quality. All of these assumptions
are difficult to meet. In practice, the greatest attention should be paid
to the statistical independence, and secondly to the quality [26]. In
addition to the advantages offered by the ensembles of classifiers in
terms of greater stability and greater recognition efficiency, their use is
burdened with the disadvantage of a much higher computational com-
plexity.

The most popular ensembles of classifiers can include: 1) Bag-
ging (Bootstrap aggregation) [27,28], 2) Boosting/AdaBoost [29,30],
3) Random Forest [27], 4) Stacked Generalization (Stacking) [31] and
5) Mixtures of Experts [32]. In the field of heart disorders recognition,
ensembles of classifiers are also popular and used with success: [33–37],
Mixture of experts [38], Negatively Correlated Learning [38], Bagging
[39]. An effective and popular tool for optimizing ensembles of classi-
fiers is the genetic algorithm (GA) [40–42] belonging to the family of
evolutionary algorithms [43].

The inspiration to undertake research on evolutionary computation
(EC) [44] was the imitation of nature in its mechanism of natural selec-
tion, inheritance and functioning. Evolutionary computation are used
to teach and solve complex tasks, mainly for optimization. It is taught
based on species, not on an individuals, that goes through the life of

many generations of individuals. As a result, generations of solutions
are generated that increasingly meet the conditions of the task (they
have better adaptation to the environment).

The Evolutionary Computation (EC) [44] include Evolutionary Algo-
rithms (EA) [43], which include: 1) Genetic Algorithm (GA) [40], 2)
Genetic Programming (GP) [45], 3) Evolutionary Programming (EP)
[46], 4) Evolution Strategy (ES) [47], 5) Differential Evolution (DE)
[48–51], and 6) Learning Classifier System (LCS) [52,53] etc. Related
techniques, also belonging to EC, are: 7) Ant Colony Optimization
(ACO) [54], 8) Artificial Bee Colony algorithm (ABC) [55], 9) Particle
Swarm Optimization (PSO) [56], 10) Artificial Immune Systems (AIS)
[57], 11) Self-organization (e.g. self-organizing maps [58]) and, 12)
Swarm Intelligence (SI) [59].

It is also worth mentioning the combination of evolutionary com-
putation with ensemble methods. Examples of such hybrid systems can
be found in the literature: 1) DE algorithm with ensemble of parame-
ters or mutation strategies [60–63], 2) data and model based ensemble
[64], 3) micro genetic algorithm [65], 4) coevolution algorithms [66],
5) parallel genetic algorithms [67], 6) GA with ensemble method [68],
7) ABC with stacking ensemble [69].

Evolutionary computation are used with success in the field of
heart disorders classification: Genetic Algorithm (GA) [70–76], Particle
Swarm Optimization (PSO) [77–83], Artificial Immune Systems (AIS)
[84], Artificial Bee Colony algorithm (ABC) [85], and Ant Colony Opti-
mization (ACO) [86].

1.1. Aims

The main aims of the research were the following:
Aim 1 Develop new and effective ensembles of classifiers for the
automatic recognition of myocardium dysfunctions based on ECG
signals.
Aim 2 Design algorithms for use in tele-medicine and mobile devices
for patient self-control and prevention applications (low computa-
tional complexity).
Aim 3 Design universal algorithms not for individuals but for the
general population.

1.2. Novelty

Based on a literature review e.g. Refs. [8,87,88], it can be stated
that the innovative elements of this research include the following:

Genetic ensembles of classifiers – based on: SVM classifier, 10-
fold cross-validation method, ensemble learning, layered learning,
genetic selection of features (frequency components), genetic opti-
mization of classifiers parameters and novel genetic training (selec-
tion of experts votes) used to combining classifiers:
optimized by classes (GECC) – designed a two-layer ensemble of
classifiers, consisting of: 17 SVM classifiers (nu-SVC, corresponding
to 17 classes) + 1 SVM classifier (C-SVC), and
optimized by sets (GECS) – designed a two-layer ensemble of clas-
sifiers, consisting of: 10 SVM classifiers (nu-SVC, corresponding to
10 combinations of training and test sets) + 1 SVM classifier (C-
SVC), modified Bagging method.

2. Materials and methods

2.1. Assumptions

The adopted research methodology consisted of the following
assumptions:
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Table 1
A description of the database with the selected ECG signals along with the allocation of signals to the training and test sets for 10-fold cross-validation method.

No. Class Fragments number Patients number 10-fold cross-validation

Groups 1–9 Group 10

Training set Test set Training set Test set

1 Normal sinus rhythm 193 14 174 19 171 22
2 Atrial premature beat 58 8 53 5 45 13
3 Atrial flutter 17 2 16 1 9 8
4 Atrial fibrillation 93 3 84 9 81 12
5 Supraventricular tachyarrhythmia 11 3 10 1 9 2
6 Pre-excitation (WPW) 21 1 19 2 18 3
7 Premature ventricular contraction 78 9 71 7 63 15
8 Ventricular bigeminy 44 4 40 4 36 8
9 Ventricular trigeminy 13 4 12 1 9 4
10 Ventricular tachycardia 10 3 9 1 9 1
11 Idioventricular rhythm 10 1 9 1 9 1
12 Ventricular flutter 10 1 9 1 9 1
13 Fusion of ventricular and normal beat 11 3 10 1 9 2
14 Left bundle branch block beat 88 2 80 8 72 16
15 Right bundle branch block beat 47 2 43 4 36 11
16 Second-degree heart block 10 1 9 1 9 1
17 Pacemaker rhythm 30 1 27 3 27 3

Sum 744 29 675 69 621 123

Fig. 1. Subsequent stages of processing and analysis of the ECG signals.

A1 Analysis of longer (10-s) ECG signal fragments, which contain
multiple heart evolutions.
A2 Not applying signal filtering due to both the use of Welch’s
method and the genetic selection of features.
A3 Not applying the QRS complex detection and segmentation of
the ECG signal.
A4 Analyzing ECG signal fragments that contain one class type
(except of normal sinus rhythm).
A5 Applying a 10-fold cross-validation method that is more con-
sistent with the subject-oriented validation scheme (inter-patient
paradigm; the selection of elements for training and test sets
based on signals from other patients) than class-oriented validation
scheme (intra-patient paradigm) [8,89,90].
A6 The classification of the samples was based on the Winner-Takes-
All (WTA) rule.

2.2. Materials

2.2.1. ECG database
For research purposes, the ECG signals were obtained from the Phy-

sioNet [91] service from the MIT-BIH Arrhythmia [92] database. The
created database with ECG signals is described below.

• The ECG signals were from 29 patients.
• The ECG signals contained 17 classes: normal sinus rhythm, pace-

maker rhythm, and 15 types of cardiac dysfunctions (for each of
which at least 10 signal fragments were collected).

• All ECG signals were recorded at a sampling frequency of 360 [Hz]
and a gain of 200 [adu/mV].

• For the analysis, 744, 10-s (3600 samples) fragments of the ECG
signal (not overlapping) were randomly selected.

• Only signals derived from one lead, the MLII, were used.

A description of the collected signals is given in Table 1, which
presents the analyzed heart disorders, number of signal fragments col-
lected for each disorder, number of patients from whom the ECG data
were derived, and division of signal fragments into training and test
sets for 10-fold cross-validation method.

An important aspect is the appropriate balance of data. In the
research used a proportional number of ECG signal fragments for each
class (from 1.34% to 25.94%, Table 1), which prevents the over-fitting
effect and do not artificial increase the recognition efficiency.

Obtaining a greater number of suitable ECG signal fragments, from
greater number of patients, for the rarest disorders (10 or 11 ECG signal
fragments in Table 1) from the MIT-BIH Arrhythmia database for the
MLII lead was not possible.
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Table 2
Detailed information about genetic ensembles of classifiers optimized by classes or sets. All data are given in a sequence order: first, for GECC method, and then for GECS method.

Feature selection and classifier parameters optimization
The genetic algorithm coupled with the 10-fold cross-validation method was used for feature selection and classifier parameters optimization

GENETIC ALGORITHM • Number of individuals in the population: 50 in first layer and 200 in second layer;

• Type of gene representation: floating-point vectors in first layer and string of bits in second layer;

• Chromosome construction of individual: In first layer: floating point vector of the form: [g1, g2, f1, … , f4001] for SVM, where g1 – the first
gene, which determines the value of the first parameter, 𝛾 (−g), g2 – the second gene, which determines the value of the second parameter,
𝜈 (−n), and f1,… , f4001 – 4001 genes, with values in the range of [0,1], which determine the feature selection, rounded to the values 1 –
acceptance of a feature – or 0 – rejection of a feature; In second layer: bits vector of the form: [f1,… , f289∨170], consisting of 289 or 170
genes, with values from the set: {0,1}, where: 1 – acceptance of a feature – or 0 – rejection of a feature.

• Initial population: random, uniform;

• Range of the gene values for the initial population: In first layer: the local range of gene values for each classifier parameter, consistent with
the information given in the line Optimized parameters, experimentally selected based on the global (broader) range. For feature selection,
the range is [0,1]; In second layer: from the set: {0,1};

• Target value of fitness function: 0;

• Maximum number of generations: 30 in first layer and 100 in second layer;

• Type of crossover: intermediate in first layer and scattered in second layer; Probability of crossover: 0.7 in first layer and 0.9 in second layer;

• Type of mutation: uniform; Probability of mutation: 0.3 in first layer and 0.1 in second layer;

• Number of individuals in the current generation that are guaranteed to survive to the next generation: 3 in first layer and 10 in second layer;

• Method of scaling the value of the fitness function: ranking;

• Method of parent selection: tournament;

• Fitness function of individuals calculated based on the following formulas:

First layer:

ERR1L = wl · (wz · errLZsum + errLsum) + wt · (wz · errTZsum + errTsum) + wf ·
Fa
F

(1)

Second layer:

ERR2L = wl · errLsum + wt · errTsum + wf ·
Fa
F

(2)

where:
wl = 1 – weight for errors from the training set;
wt = 1 – weight for errors from the test sets;
wf = 1 – weight for acceptance feature coefficient;
wz = 100 – weight for priority class, for a given classifier, for GECC, or weight for the priority combination of sets, for GECS;
errLZsum – number of incorrect classifications only for priority class Z, for a given classifier, in 10 training sets, for GECC, or number of
incorrect classifications only in priority training set Z, for a given classifier, for GECS;
errLsum – total number of errors, for all classes, except for class Z, in 10 training sets, for GECC, or total number of errors, in 9 training
sets, except training set Z, for GECS;
errTZsum – number of incorrect classifications only for priority class Z, for a given classifier, in 10 test sets, for GECC, or number of incorrect
classifications only in priority test set Z, for a given classifier, for GECS;
errTsum – total number of errors, for all classes, except for class Z, in 10 test sets, for GECC, or total number of errors, in 9 test sets, except
test set Z, for GECS;
Fa
F

– acceptance feature coefficient: the ratio of the number of acceptance features, Fa , to the total number of features, F;

• As a result of the feature selection, the length of the feature vector was on average reduced twice in first layer to approximately 2000 of
4001 features (frequency components of the ECG signal) and over 13-fold to value: 22 of 289 features, or over 4-fold to value: 38 of 170
features in second layer - Tables 4 and 5;

Classifiers

In first layer: 17 trained, tested and optimized classifiers:
In second layer: 1 trained, tested and optimized classifier:

Basic parameters

SVM • Type: nu-SVC in first layer and C-SVC in second layer;

• Kernel function type: RBF (radial, Gaussian type) in first layer and linear in second layer;

• Number of outputs: 17, from the set: {0,1} in first layer and 1, from the set: 1,… , 17 in second layer;

Optimized parameters

Only for first layer, the final parameter ranges were selected experimentally based on a broader range

SVM • The parameter 𝛾 (−g) determines the spread of the radial basis function (RBF) of the kernel from the range [2 ⋅ 10−6; 2 ⋅ 10−4], with resolution
10−14, 50 ⋅ 30 = 1500 values;

• The parameter 𝜈 (−n) determines the width of the margins from the range [0.001; 0.05], with resolution 10−14, 50 ⋅ 30 = 1500 values;

195



P. Pławiak Swarm and Evolutionary Computation 39 (2018) 192–208

Table 3
A comparison of the obtained results. In all training sets, in all cases, the sum of the errors equals zero.

Methods

Single Classifiers Ensembles of Classifiers

kNN RBFNN PNN SVM RF EP CEC GECC GECS

Learner kNN RBFNN PNN SVM DT SVM SVM SVM SVM
nu – SVC epsilon – SVR nu – SVC nu – SVC nu – SVC

ERRsum 79 79 77 73 117 91 75 65 64
ACC 98.75% 98.75% 98.78% 98.85% 98.15% 98.56% 98.81% 98.97% 98.99%
SEN 89.38% 89.38% 89.65% 90.19% 84.27% 87.77% 89.92% 91.26% 91.40%
SPE 99.34% 99.34% 99.35% 99.39% 99.02% 99.24% 99.37% 99.45% 99.46%
𝜿 87.84% 87.84% 88.14% 88.70% 81.75% 85.94% 88.38% 89.95% 90.10%
CF 78.26% 47.86% 49.51% 49.09% 49.74% – 48.84% 46.63% 46.44%
Tt [𝐬] 0.1432 54.0503 0.3316 11.3537 43.1289 461.2191 115.8115 207.3403 115.8450
Tc [𝐬] 0.0853 0.0077 0.0055 0.0018 0.0016 0.0750 0.0186 0.0321 0.0186

2.3. Methods

As part of the research, were tested many methods used for the sub-
sequent stages of processing and analysis of ECG signals. Because of
space limitation, they have not been described in detail. The most effec-
tive path (combination of methods) shown in Fig. 1 was selected based
on obtained results for tested methods. The criteria for selecting the
best methods were: 1) the sum of errors in all classifications, and 2) the
sensitivity (SEN) coefficient 2.5. Based on them, the best methods (with
the best obtained results) were selected.

The methods used in the subsequent steps of processing and analysis
of the ECG signals:

Stage I – Preprocessing with normalization – Applied reduction of
gain and reduction of constant component, and three normalization
types were tested: 1) no normalization, 2) rescaling signal to the
range [−1,1] and 3) signal standardization (mean signal value = 0
and signal standard deviation = 1). The best results was obtained
for rescaling.
Stage II – Feature extraction – Based on the estimation of the
power spectral density (PSD) [93] of the ECG signal was performed
using the Welsh method [94] and the discrete Fourier transform
(DFT) [93]. Then, to normalize the frequency components of the
power spectral density, the transformed signal was logarithmized.
This solution has strengthen the features (frequency components
of the power spectral density of the ECG signal). To calculate the
power spectral density, 4 Hamming window widths: 128, 256, 512
and 1024 samples were applied. The best results was obtained for
Hamming window with equal to 512 samples. From a single frag-
ment of ECG signal, a feature vector with a length of 4001 frequency
components was obtained. To estimate the power spectral density,
the following parameters were used: the number of common sam-
ples for 2 adjacent signal fragments equal to half of the width of the
adopted Hamming window and a DFT vector length equal to 8000
as well as a sampling frequency equal to 360 [Hz].
Stage III – Feature selection – Were tested three methods: 1)
no selection, 2) genetic selection and 3) particle swarm optimiza-
tion (PSO [56]) selection. The best result was obtained for genetic
selection. A genetic algorithm (GA) [44,95] was used for the fea-
ture selection (frequency components of the ECG signal). The genes
in the population of individuals represented subsequent single fea-
tures/attributes of the signal entered as input for the classifiers.
Genes could take on the following values: 0 – reject a given fea-
ture or 1 – accept a given feature. GA parameters were presented in
Table 2.
Stage IV – Cross-validation – Were tested two methods: 4-fold and
10-fold cross-validation (CV) [10]. The best results obtained for 10-
fold CV method: a total of 10 combinations of training and test
sets. The test sets for the first nine groups were created by 9-fold

selection of every tenth element, for each class (disorder), from the
entire signal base. The test set for the tenth group was created from
the remaining elements. The training sets consisted of elements that
complemented the test sets for the entire signal base. Division of
signal fragments into training and test sets is presented in Table 1.
Stage V – Machine learning algorithms – The following methods
were tested: Probabilistic Neural Network (PNN [96]), Radial Basis
Function Neural Network (RBFNN [97]), Support Vector Machine
(SVM [98,99,119,120], type: nu-SVC, epsilon-SVR and nu-SVR with
RBF kernel function), k-Nearest Neighbor (kNN [100]), Decision
Trees (DT) [101], Discriminant Analysis [102], The Takagi-Sugeno
Fuzzy System [103], Multi-Layer Perceptron and Recurrent Neural
Networks [104]. The best result was obtained for SVM classifier
(nu-SVC). The article presents the results for the best 4 classifiers,
respectively: SVM (nu-SVC), PNN, RBFNN, and kNN (Table 3). SVM
parameters were presented in Table 2.
Stage VI – Parameter optimization – Three methods were tested:
1) Grid search, 2) Genetic Algorithm and 3) Particle Swarm Opti-
mization. The best result was obtained for Genetic Algorithm. GA
parameters were presented in Table 2.

2.3.1. Evolutionary-neural system
In the research, for single classifiers, the best results were obtained

for the evolutionary-neural system based on the SVM classifier. For this
reason, the SVM classifier has been used in further research concern-
ing ensemble of classifiers. An evolutionary-neural system consisted of
a classifier (e.g., SVM) optimized by a genetic algorithm. The genetic
algorithm coupled with a 10-fold cross-validation was used to select
signal features and optimize the parameters of the classifier.

2.3.2. Classical ensembles of classifiers (CEC)
Two-layered ensemble of classifiers (Bagging type): the first layer

contains 10 SVM classifiers (nu-SVC, RBF kernel function), each with
optimized parameters under one of the 10 combination of sets: training
and test (from 10-fold cross-validation). Connected, in the second layer,
using the majority voting method. Parameters of component classifiers
(SVMs) of the ensemble, were selected using a genetic algorithm.

2.3.3. Random Forest (RF)
The popular method of combining classifiers, proposed by Breiman

[27]. In this method the component classifiers of the ensemble are deci-
sion trees, connected by bootstrap aggregating technique. Optimized by
GA parameters were: 1) number of trees and 2) minimum number of
observations per tree leaf.

2.3.4. Ensemble of predictors (EP)
Two-layered ensemble of predictors: the first layer contains 17 SVM

classifiers (epsilon-SVC, RBF kernel function), each with optimized
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Fig. 2. Scheme of Genetic ensemble of classifiers optimized by classes or sets.

197



P. Pławiak Swarm and Evolutionary Computation 39 (2018) 192–208

Fig. 3. Scheme of genetic training (feature selection by GA) used to combining classifiers for exemplary chromosome of individual and a single fragment of ECG signal.

parameters under one of the 17 disorders/classes. Connected, in the
second layer, using one SVM (nu-SVC, RBF kernel function) classifier.
The final decision is taken on the based of the responses of the input
classifiers and the decision threshold. Parameters of component predic-
tors (SVMs) of the ensemble, were selected using a genetic algorithm.
Ensemble realizing the conversion: 1 output (with two values: priority
class or the rest of the class) to 17 outputs. Only in this method not
applied feature selection.

2.4. Genetic ensembles of classifiers

Genetic ensembles of classifiers are two-layered systems (modified
Stacking method) based on: SVM classifier, 10-fold cross-validation
method, ensemble learning, layered learning, genetic selection of
features (frequency components), genetic optimization of classifiers
parameters and genetic training (selection of experts votes) used to
combining classifiers.

2.4.1. Philosophy

Name
• Genetic – because in this experiment an important role was played

the genetic algorithm: applied in the first layer for feature selec-
tion (frequency components of ECG signals) and parameters opti-
mization of 17 or 10 classifiers. In the second layer, the genetic
algorithm was used for the innovative genetic training applied to
tuning the ensemble of classifiers structure. Genetic training based
on the feature selection, consisting in the elimination of incorrect
responses of “experts” (classifiers of the first layer).

• Ensemble of classifiers – because the designed systems consisted
of 18 or 11 classifiers arranged in two layers. The ensemble
of classifiers used layered learning, i.e., first applied supervised
training for 17 or 10 classifiers from the first layer. Then, based
on the responses obtained from 17 or 10 models of classifiers,
created in the first layer, the supervised genetic training of one

meta-classifier from the second layer was performed.
Cross-validation – the genetic algorithm was coupled with 10-
fold cross-validation (in the first and second layer of the ensemble
of classifiers), which meant that each individual in the population
(feature vector) was tested on all 10 training and test sets. This
approach minimizes the effect of over-fitting.

First layer
• Optimization – was performed using a genetic algorithm

(Table 2), which simultaneously selecting the input features and
optimizing the parameters of the classifiers.

• Votes - each classifier (expert) have 17 outputs, where occur only
one value “1” (according to the WTA rule), indicating the class
recognized by the classifier (expert), and on the remaining 16 out-
puts, occur values “0” (indicating the classes not recognized).

Second layer
• Genetic training – was applied in second layer, consisting of the

selection of features (votes of experts) from the first layer, based
on reference responses. The task of the genetic algorithm was to
reject the incorrect votes (responses) of classifiers from the first
layer, based on the errors in all training and test sets, and accept
only reliable votes (responses). Genetic training with conversion of
1 output to 17 outputs is a new method of combining classifiers
(ensemble combination).

2.4.2. Optimized by classes (GECC)
Two-layer ensemble of classifiers, consisting of 17 SVM classifiers

(nu-SVC, RBF, corresponding to 17 classes) + 1 SVM classifier (C-SVC,
linear). In the ensemble of classifiers, each classifier of the input layer is
optimized to maximize the efficacy of recognition of particular heart
disorders (classes). Classifier of output layer, based on the selected
responses of input classifiers, makes the final decision.

The first layer of the system consists of 17 experts, specializing in
the recognition of particular 17 classes (heart disorders). The aim of
optimization (training) for the first layer was a suitable selection of
features (frequency components of the ECG signals) in input vectors,
and determining values of the parameters: 𝛾 (-g) and 𝜈 (-n) for 17 SVM
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Table 4
The results for genetic ensemble of classifiers optimized by classes (GECC). Coefficient ERRL - indicates the sum of the errors in all training sets, coefficient
ERRP - indicates the sum of the errors for the priority class, while coefficient ERRP% - indicates the percentage error in the priority class.

Classifiers Coefficients

−g −n ERRL ERRP ERRP% ERRsum ACC SEN SPE 𝜿 CF Tt Tc To

The first layer of ensemble - 17 SVM classifiers (nu-SVC, RBF) corresponding to 17 classes - experts

SVM1 1.37e − 5 0.0213 0 34∕193 17.62% 75 98.81% 89.92% 99.37% 88.39% 49.64% 9.5704 [s] 0.0017 [s] about 100 [h]
SVM2 4.97e − 5 0.0253 0 27∕58 46.55% 75 98.81% 89.92% 99.37% 88.38% 48.81% 14.1858 [s] 0.0019 [s] about 100 [h]
SVM3 5.17e − 5 0.0250 0 1∕17 5.88% 74 98.83% 90.05% 99.38% 88.54% 46.74% 13.2816 [s] 0.0019 [s] about 100 [h]
SVM4 4.32e − 5 0.0149 0 5∕93 5.38% 74 98.83% 90.05% 99.38% 88.54% 48.19% 12.3993 [s] 0.0019 [s] about 100 [h]
SVM5 4.01e − 5 0.0200 0 5∕11 45.45% 77 98.78% 89.65% 99.35% 88.07% 48.56% 12.2145 [s] 0.0019 [s] about 100 [h]
SVM6 4.38e − 5 0.0142 0 0∕21 0.00% 78 98.77% 89.52% 99.35% 87.91% 49.61% 13.3080 [s] 0.0019 [s] about 100 [h]
SVM7 2.21e − 5 0.0240 1 26∕78 33.33% 77 98.78% 89.65% 99.35% 88.08% 48.96% 10.2691 [s] 0.0017 [s] about 100 [h]
SVM8 4.14e − 5 0.0242 0 15∕44 34.09% 79 98.75% 89.38% 99.34% 87.76% 49.59% 12.8321 [s] 0.0019 [s] about 100 [h]
SVM9 1.46e − 5 0.0051 0 3∕13 23.08% 78 98.77% 89.52% 99.35% 87.93% 50.04% 8.6842 [s] 0.0017 [s] about 100 [h]
SVM10 5.54e − 5 0.0187 0 2∕10 20.00% 79 98.75% 89.38% 99.34% 87.75% 49.44% 14.7380 [s] 0.0020 [s] about 100 [h]
SVM11 9.29e − 5 0.0201 0 0∕10 0.00% 77 98.78% 89.65% 99.35% 88.07% 49.36% 9.2320 [s] 0.0017 [s] about 100 [h]
SVM12 5.40e − 5 0.0112 0 1∕10 10.00% 77 98.78% 89.65% 99.35% 88.07% 48.04% 13.2559 [s] 0.0018 [s] about 100 [h]
SVM13 2.64e − 5 0.0183 0 7∕11 63.64% 73 98.85% 90.19% 99.39% 88.70% 49.09% 11.3613 [s] 0.0021 [s] about 100 [h]
SVM14 1.35e − 5 0.0178 0 1∕88 1.14% 78 98.77% 89.52% 99.35% 87.92% 49.54% 10.9933 [s] 0.0019 [s] about 100 [h]
SVM15 3.76e − 5 0.0255 0 2∕47 4.26% 75 98.81% 89.92% 99.37% 88.39% 49.21% 13.4814 [s] 0.0021 [s] about 100 [h]
SVM16 4.62e − 5 0.0254 0 0∕10 0.00% 75 98.81% 89.92% 99.37% 88.38% 48.89% 15.0099 [s] 0.0020 [s] about 100 [h]
SVM17 3.44e − 5 0.0163 0 0∕30 0.00% 75 98.81% 89.92% 99.37% 88.39% 48.01% 12.4855 [s] 0.0020 [s] about 100 [h]

The second layer of ensemble - 1 SVM classifier (C-SVC, linear) - judge

SVM18 – – 0 – – 65 98.97% 91.26% 99.45% 89.95% 7.61% 0.0380 [s] 4.79e − 6 [s] about 1 [h]

Summary

Ensemble – – 0 – – 65 98.97% 91.26% 99.45% 89.95% 46.63% 207.3403 [s] 0.0321 [s] about 70 [days]

classifiers. To minimize the number of errors for particular (priority)
classes/disorders (for the first classifier from first class, etc.; 1 class
on each of 17 classifiers; for the priority class, each error: FP and FN,
was calculated with a weight equals to 100, and for remaining classes
weights equal to 1, Table 2). For each of the 17 classifiers, selected
an optimal and different set of parameters values: 𝛾 (-g) and 𝜈 (-n).
At the inputs of each of the 17 classifiers, come selected fragments of
ECG signals, containing the most characteristic features of the priority
disorder - selected by the GA.

The second layer of the system consists of one judge - (SVM clas-
sifier). This one classifier was designed to evaluate the votes of experts
from the first layer. Each of the 17 classifiers (from the input layer) had
17 outputs (corresponding to 17 classes), so the vector of input features,
to the second layer, had 289 votes.

In the research also tested the solution in which the classifiers from
the first layer have two outputs (priority class or other classes) instead
of 17 outputs. However, such a solution did not improve the results.

2.4.3. Optimized by sets (GECS)
Two-layer ensemble of classifiers, consisting of 10 SVM classifiers

(nu-SVC, RBF, corresponding to 10 combinations of training and test
sets) + 1 SVM classifier (C-SVC, linear), modified Bagging method. In
the ensemble of classifiers, each classifier of the input layer is optimized
to maximize the efficacy of recognition of heart disorders for particu-
lar combinations of training and test sets. Classifier of output layer,
based on the selected responses of input classifiers, makes the final deci-
sion.

The first layer of the system consists of 10 experts, specializing in
the recognition of classes (heart disorders) from particular 10 priority
combinations of training and test sets, created by 10-fold CV method.
The aim of optimization (training) for the first layer was a suitable
selection of features (frequency components of the ECG signals) in input
vectors, and determining values of the parameters: 𝛾 (-g) and 𝜈 (-n) for
10 SVM classifiers. To minimize the number of errors for particular (pri-
ority) combinations of sets (for the first classifier in first combination
of sets: training set no. 1 and test set no. 1, etc., from Table 1; for the

priority combination of sets, each error: FP and FN, was calculated with
a weight equals to 100, and for remaining combination of sets weights
equal to 1, Table 2). For each of the 10 classifiers, selected an optimal
and different set of parameters values: 𝛾 (-g) and 𝜈 (-n). At the inputs
of each of the 10 classifiers, come selected fragments of ECG signals,
containing the most characteristic features - selected by the GA.

The second layer of the system consists of one judge - (SVM clas-
sifier). This one classifier was designed to evaluate the votes of experts
from the first layer. Each of the 10 classifiers (from the input layer) had
17 outputs (corresponding to 17 classes), so the vector of input features,
to the second layer, had 170 votes.

Fig. 2 shows the scheme of Genetic ensemble of classifiers optimized by
classes or sets. Procedure No. 1 presented Genetic ensemble of classifiers
optimized by classes or sets algorithm. In Fig. 3, scheme of genetic train-
ing (for exemplary chromosome of individual and a single fragment of
ECG signal) is presented.

As part of the research, many parameters configurations of the
genetic algorithm and SVM classifier have been tested. On this basis,
optimum values of parameters were selected. Table 2 presents infor-
mation about the genetic algorithm applied to the feature selection and
classifier parameter optimization (basic and optimized classifier param-
eters) for classifiers in first and second layer of GECC or GECS. All data
in Table 2 are given in a sequence order: first, for GECC method, and
then for GECS method.

2.5. Evaluation criteria

To evaluate the designed methods, the following coefficients were
determined [105,106]: 1) Accuracy ACC, 2) Sensitivity SEN, 3) Speci-
ficity SPE, 4) 𝜅 coefficient, and 5) Sum of errors ERRsum. These coef-
ficient were calculated based on the generated confusion matrices and
calculated values (TP – True Positive, TN – True Negative, FP – False Pos-
itive, FN – False Negative) for all experiments, methods, and classifiers.
The following coefficients were also determined: 6) Acceptance feature
coefficient CF , 7) Optimization time To, 8) Training time Tt , and 9)
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Table 5
The results for genetic ensemble of classifiers optimized by sets (GECS). Coefficient ERRL - indicates the sum of the errors in all training sets, coefficient ERRP - indicates the sum of the errors for
the priority class, while coefficient ERRP% - indicates the percentage error in the priority test set.

Classifiers Coefficient

−g −n ERRL ERRP ERRP% ERRsum 𝐀𝐂𝐂 SEN SPE 𝜿 CF Tt Tc To

The first layer of ensemble - 10 SVM classifiers (nu-SVC, RBF) corresponding to 10 combination of sets - expertsr

SVM1 1.61e − 5 0.0078 0 6∕69 8.70% 83 98.69% 88.84% 99.30% 87.14% 48.79% 9.5868 [s] 0.0019 [s] about 100 [h]
SVM2 9.03e − 6 0.0196 0 7∕69 10.15% 79 98.75% 89.38% 99.34% 87.77% 48.94% 9.5183 [s] 0.0017 [s] about 100 [h]
SVM3 2.81e − 5 0.0112 0 7∕69 10.15% 73 98.85% 90.19% 99.39% 88.70% 49.64% 11.1354 [s] 0.0019 [s] about 100 [h]
SVM4 5.64e − 5 0.0118 0 2∕69 2.06% 78 98.77% 89.52% 99.35% 87.91% 47.94% 14.1601 [s] 0.0019 [s] about 100 [h]
SVM5 8.53e − 6 0.0091 0 5∕69 7.25% 80 98.74% 89.25% 99.33% 87.60% 48.24% 8.6126 [s] 0.0017 [s] about 100 [h]
SVM6 3.09e − 5 0.0185 0 5∕69 7.25% 76 98.80% 89.79% 99.36% 88.24% 50.21% 12.6103 [s] 0.0020 [s] about 100 [h]
SVM7 3.43e − 5 0.0119 0 9∕69 13.04% 78 98.77% 89.52% 99.35% 87.93% 48.14% 11.7691 [s] 0.0019 [s] about 100 [h]
SVM8 4.22e − 5 0.0096 0 4∕69 5.80% 75 98.81% 89.92% 99.37% 88.38% 48.34% 12.9232 [s] 0.0019 [s] about 100 [h]
SVM9 4.60e − 5 0.0201 0 5∕69 7.25% 74 98.83% 90.05% 99.38% 88.54% 49.31% 13.8194 [s] 0.0019 [s] about 100 [h]
SVM10 3.33e − 5 0.0129 0 15∕123 12.20% 74 98.83% 90.05% 99.38% 88.54% 48.89% 11.7098 [s] 0.0018 [s] about 100 [h]

The second layer of ensemble - 1 SVM classifier (C-SVC, linear) - judge

SVM18 – – 0 – – 64 98.99% 91.40% 99.46% 90.10% 22.35% 0.0335 [s] 4.52e − 6 [s] about 1 [h]

Summary

Ensemble – – 0 – – 64 98.99% 91.40% 99.46% 90.10% 46.44% 115.8450 [s] 0.0186 [s] about 70 [days]
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Table 6
Indicative comparison of the results under the methods based on the subject-oriented validation scheme and the same database - MIT-BIH Arrhythmia [8].

No. Work Year # of classes Feature set Classifier Acc = SEN

1. Escalona-Moran et al. [107] 2008 5 Raw wave RC 98%
2. Huang et al. [34] 2014 5 Random projection, RR-

intervals
Ensemble of SVM 94%

3. Llamedo and Martinez [108] 2011 5 Wavelet, VCG + SFFS Weighted LD 93%
4. Lin and Yang [109] 2014 5 Normalized RR-interval Weighted LD 93%
5. Bazi et al. [110] 2013 5 Morphological, Wavelet SVM, IWKLR, DTSVM 92%
6. Soria and Martinez [111] 2009 5 RR-Intervals, VCG, mor-

phological + FFS
Weighted LD 90%

7. Mar et al. [112] 2011 5 Temporal Features, Mor-
phological, statistical fea-
tures + SFFS

Weighted LD, MLP 89%

8. Zhang and Luo [113] 2014 5 RR-intervals, morph. fea-
tures, ECG-inter. and seg-
ments, wavelet coeff.

Combined SVM 87%

9. Zhang et al. [114] 2014 5 RR-intervals, morpho-
logical features, ECG-
intervals and segments

Combined SVM 86%

10. Ye et al. [115] 2012 5 Morphological, Wavelet,
RR interval, ICA, PCA

SVM 86%

11. Park et al. [116] 2008 5 HOS, HBF Hierarchical SVM 85%
12. de Lannoy et al. [117] 2012 5 RR-intervals, ECG-

segments, morphological,
HBF, HOS

Weighted CRF 85%

13. de Chazal et al. [89] 2004 5 ECG-Intervals, Morpho-
logical

Weighted LD 83%

14. de Lannoy et al. [118] 2010 5 ECG-Intervals, mor-
phological, HOS, HBF
coefficients

Weighted SVM 83%

Pławiak 15 Frequency components
of the power spectral
density of the ECG sig-
nal

Genetic ensemble of SVM
classifiers optimized by sets

93%
17 91%

Classification time Tc.
The definitions of the calculated coefficients are as follows:

• Accuracy

ACC =

( N∑
i=1

TP + TN
TP + FP + TN + FN

)
⋅ 100%

/
N (3)

• Sensitivity

SEN =

( N∑
i=1

TP
TP + FN

)
⋅ 100%

/
N (4)

• Specificity

SPE =

( N∑
i=1

TN
FP + TN

)
⋅ 100%

/
N (5)

where:

N – Number of sets used in the cross-validation variant: 4-fold or
10-fold validation,
TP – True Positive,
TN – True Negative,
FP – False Positive, and
FN – False Negative.

• 𝜿 coefficient (Fleiss’ kappa) – a coefficient used to evaluate the
efficiency of the designed classifier/algorithm. It is used for multi-
class problems concerning the recognition of more than two classes.
A higher value indicates a better result.

𝜅 =

( N∑
i=1

M
∑n

j=1 mj,j −
∑n

j=1(GjCj)
M2 −

∑n
j=1(GjCj)

)
⋅ 100%

/
N (6)

where:

N – the number of sets used in the cross-validation variant: 4-fold
or 10-fold validation,
j – the class index,
n – the number of classes = 17,
M – the total number of classified samples that are being
compared to ground truth;
mj,j – the number of samples belonging to the ground truth class
j that have also been classified with a class j (i.e., values

found along the diagonal of the confusion matrix);
Cj – the total number of classified samples belonging to class j;
and
Gj – the total number of ground truth samples belonging to class
j.

• Sum of errors (ERRsum) – calculated on the basis of the confusion
matrix based on the number of erroneous classifications and is equal
to the sum of the off-diagonal entries of the confusion matrix per 744
classifications.

• Acceptance feature coefficient (CF) – the ratio of the number of
accepted features Fa to the total number of features F expressed as a
percentage. Determined through the use of genetic feature selection.
This coefficient is calculated according to the following formula:

CF = Fa
F

⋅ 100% (7)

where:

Fa – the number of accepted features and
F – the total number of features.

• Optimization time (To) – calculated for a given classifier as the sum
of all training and classification times for all training and test sets
for a given variant of the cross-validation method (4-fold or 10-fold
cross-validation). This time is the time required to find the optimal
parameter configuration of the given classifier or the optimal vector
of input features within the feature selection. This is used for ECG
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Fig. 4. Confusion matrix for GECC method.

Fig. 5. Comparison of coefficient values, for GECC method, for each class.

Fig. 6. Comparison of coefficient values, for GECC method, for the recognition variants
of 17 and 15 classes.

signals after pre-processing and feature extraction.
• Training time (Tt) – calculated for a given classifier as the sum of

the training times for all training sets for a given variant of cross-
validation method (4-fold or 10-fold cross-validation). This is used
for ECG signals after pre-processing and feature extraction and selec-
tion.

• Classification time (Tc) – calculated for a given classifier as the
average time for a single classification of a 10-s fragment of an ECG
signal after pre-processing and feature extraction and selection.

The above-mentioned coefficients are applied to estimate the over-
all performance of the machine learning methods used in this research
with respect to the recognition of the different classes of ECG sig-
nal fragments. To verify the efficiency of the recognition of individ-
ual classes, the same coefficients were calculated but for class S. For
this purpose, the values of TP(S), TN(S), FP(S), and FN(S) were calcu-
lated for each class. These values were calculated based on the confu-
sion matrix using the traditional method. Then, based on these values,
the values of the coefficients ACC(S), SEN(S), and SPE(S) were calcu-
lated.

In this article (Table 6), the sensitivity coefficient (SEN) is equal to
the overall accuracy coefficient (Acc) from the literature [8,89]. This
is because the WTA (Winner-Takes-All) method was used for the classi-
fiers.
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Fig. 7. Visualization of feature selection (genetic training) effects for the second layer of GECC system - accepted responses of classifiers (experts votes).

3. Results

The study utilized the MATLAB R2014b environment together with
the LIBSVM library [99]. The computations were performed on an Intel
Core i7-6700 K 4.0 GHz machine with 32 GB of RAM (only a single
core was used). The total computation times, consisting of the training,
testing, and optimization phases, are shown in Table 3 and in Tables 4
and 5.

This section presents the results of conducted experiments. On
all the training sets, the obtained recognition sensitivity (SEN) of
myocardium dysfunctions was 100% (zero errors). The ERRsum coef-
ficient equals the sum of the errors on all training and test sets per 744
classifications (in the training sets, in all cases, the sum of the errors
equals zero).

Due to the use of the WTA method and the recognition of 17 classes,
the most significant of the calculated coefficients are sensitivity (SEN)
and sum of errors (ERRsum), Table 3. The values of accuracy (ACC) and
specificity (SPE) coefficients are very high for all methods (ACC > 98%,
SPE > 99%, Table 3).

In Table 3, a comparison of the obtained results is presented for
single classifiers: kNN, RBFNN, PNN, SVM and ensembles of classifiers:
CEC, GECC, GECS.

3.1. Genetic ensembles of classifiers

3.1.1. Optimized by classes (GECC)
In Table 4, the detailed results with values of optimized parameters

for the method GECC for 17 SVM classifiers (nu-SVC, RBF) from the
first layer and 1 SVM classifier (C-SVC, linear) from the second layer
are presented.

Coefficient ERRL - indicates the sum of the errors in all training sets,
coefficient ERRP - indicates the sum of the errors for the priority class,
while coefficient ERRP% - indicates the percentage error in the priority
class.

In Figs. 4–6, the results for entire GECC method (from Table 4)
are presented. In Fig. 4, the confusion matrix is presented. In Fig. 5,
the following coefficient values are presented: the sum of errors (ERR),
accuracy (ACC), sensitivity (SEN), and specificity (SPE) for each class.
In Fig. 6, a comparison of the coefficient values: sum of errors (ERR),
accuracy (ACC), sensitivity (SEN), specificity (SPE), and 𝜅 coefficient,
for the following recognition variants is presented: 17 and 15 classes.

In Fig. 7, a visualization of feature selection (genetic training) effects,
for the second layer, is presented, by presenting the accepted features
(classifiers responses) by red points. The dashed black line separated
votes (responses) of particular 17 classifiers (experts) from the first
layer.

3.1.2. Optimized by sets (GECS)
In Table 5, the detailed results with values of optimized parameters

for the method GECS for 10 SVM classifiers (nu-SVC, RBF) from the first
layer and 1 SVM classifier (C-SVC, liniowy) from the second layer are

presented.
Coefficient ERRL - indicates the sum of the errors in all training sets,

coefficient ERRP - indicates the sum of the errors for the priority class,
while coefficient ERRP% - indicates the percentage error in the priority
test set.

In Figs. 8 and 9, and in Fig. 10, the results for entire GECS method
(from Table 5) are presented. In Fig. 8, the confusion matrix is pre-
sented. In Fig. 9, the following coefficients values are presented: the
sum of errors (ERR), accuracy (ACC), sensitivity (SEN), and specificity
(SPE) for each class. In Fig. 10, a comparison of the coefficient val-
ues: sum of errors (ERR), accuracy (ACC), sensitivity (SEN), specificity
(SPE), and 𝜅 coefficient, for the following recognition variants is pre-
sented: 17 and 15, classes.

In Fig. 11, a visualization of feature selection (genetic training)
effects, for the second layer, is presented, by presenting the accepted
features (classifiers responses) by red points. The dashed black line sep-
arated votes (responses) of particular 10 classifiers (experts) from the
first layer.

In Table 6, a summary of the results (with the highest overall accu-
racy = sensitivity in the recognition of cardiac disorders) from the
current scientific literature together with the results obtained by the
author is presented. The summary is based on the same database -
MIT-BIH Arrhythmia and the more objective subject-oriented valida-
tion scheme [8,90], includes information about the applied ECG signal
analysis methods.

The comparison of results is indicative. It is not possible to com-
pletely objectively compare the obtained results because of the different
research methodologies (proposed analysis of longer, 10-s, ECG signal
fragments vs. QRS detection and classification). However, on the basis
of the comparison, it can be stated that the obtained results are com-
petitive and promising against the background of the current scientific
literature.

4. Discussion

4.1. Hypothesis

The obtained results confirmed the hypothesis: the application of
the proposed novel genetic ensembles of classifiers will enable the
automatic, effective, universal, low computational complexity and fast
recognition of heart pathologies based on ECG signal analysis.

The confirmation of this statement is given by the obtained results,
summarized in Tables 3 and 6. The presented results show that the
recognition sensitivity of the 17 classes for the best genetic ensem-
ble of classifiers optimized by combination of sets (GECS) is SEN =
91.40% (ACC = 98.99%, SPE = 99.46%). The obtained result is one
of the best in the scientific literature, where the three best results are
Acc∕SEN = 98% [107], 94% [34] and 93% [108,109] (Table 6). It
should be noted that the results obtained by the author include the
recognition of 17 classes (a recognition sensitivity for 15 classes of
93%; Fig. 10). In contrast, the results presented in the scientific litera-
ture include the recognition of only 5 classes (for the subject-oriented
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Fig. 8. Confusion matrix for GECS method.

Fig. 9. Comparison of coefficient values, for GECS method, for each class.

Fig. 10. Comparison of coefficient values, for GECS method, for the recognition variants
of 17 and 15 classes.

validation scheme [8]).
The obtained classification time for the ECG signal fragments,

Ck = 0.0186 [s], for the best GECS method is also very important.

4.2. Feature extraction

Analysis of longer ECG signal fragments results in increased effi-
ciency. The use of the proposed feature extraction method, results in

strengthening the characteristic features of the analyzed disorders due
to the fact that the feature vector in frequency domain has more visi-
ble frequency band (characteristic of the particular disorder). It follows
from the overlapping of the same heart evolutions (for particular class)
occurring in the analyzed, longer, ECG signal fragments.

4.3. Genetic ensembles of classifiers

Obtained results from Table 6, have confirmed rightness of use
the new methods: GECC i GECS. The calculated coefficients for
the GECC and GECS methods are respectively: ERRsum = 65, 64;
SEN = 91, 26%, 91, 40%; 𝜿 = 89, 95%, 90, 10%, are better than
the coefficients obtained for the classical ensemble of classifiers (CEC):
ERRsum = 75; SEN = 89, 92%; 𝜿 = 88, 38%, and are better than the
coefficients obtained for the best single classifier - SVM: ERRsum = 73;
SEN = 90, 19%; 𝜿 = 88, 70%

4.3.1. Optimized by classes
Based on the results presented in Table 4, we find that the entire

GECC ensemble obtained better result (EERsum = 65, SEN = 91.26%)
then the best component classifier from the first layer of ensemble:
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Fig. 11. Visualization of feature selection (genetic training) effects for the second layer of GECS system - accepted responses of classifiers (experts votes).

EERsum = 73, SEN = 90.19%. The average result for all component clas-
sifiers from first layer was: EERsum = 76, SEN = 89.75%.

It should also be mentioned that, despite the fact, that the entire
ensemble consists of 18 classifiers, the classification time of a single
fragment of ECG signal is only: 0.0321[s].

4.3.2. Optimized by sets
Based on the results presented in Table 5, we find that the entire

GECS ensemble obtained better result (EERsum = 64, SEN = 91.40%)
then the best component classifier from the first layer of ensemble:
EERsum = 73, SEN = 90.19%. The average result for all component clas-
sifiers from first layer was: EERsum = 77, SEN = 89.65%.

It should also be mentioned that, despite the fact, that the entire
ensemble consists of 11 classifiers, the classification time of a single
fragment of ECG signal is only: 0.0186[s].

4.4. Component classifiers of the ensemble

Obtained results (Tables 3–5, and Figs. 4 and 8) have confirmed
the high efficiency of the GECC and GECS methods. This was achieved
by: 1) diversity of component classifiers (other classifiers make other
errors), 2) quality of the component classifiers of the ensembles and
3) applying genetic training in the second layer of ensembles (genetic
selection of votes/features from experts/classifiers of first layer of
ensemble). Worth emphasizing is the fact that the high efficiency of
genetic selection of votes was due to the conversion of 1 output to 17
outputs of each of the component classifiers.

Combining classifiers using genetic selection of features has enabled
the use of the advantages of all component classifiers, while minimizing
their disadvantages (by eliminating incorrect votes/responses of classi-
fiers from first layer). The success of designed ensembles of classifiers
has also been achieved through the use of: 1) layered learning (which
facilitated and accelerated the training), 2) genetic selection of features
(frequency components) in the first layer of ensembles, and 3) genetic
optimization of parameters (appropriate balance between exploration
and exploitation) coupled with 10-fold cross-validation, which signif-
icantly reduced the over-fitting effect and consequently increased the
efficiency of the ensembles of classifiers.

4.4.1. GECC
Based on Table 4, we can see a large diversity between the com-

ponent classifiers of the ensemble (ERRsum between 73 and 79 errors).
Noteworthy is also the fact that each of the component classifiers was
optimized to recognize another (priority) class, which increased the
diversity of the component classifiers of the ensemble.

Based on Fig. 7, it can be seen that, as a result of the selection of
votes, component classifiers corresponding to classes Nos. 5, 6, 10, 11,
12, 14, 15, 16 and 17 were completely eliminated (lack of accepted out-
puts/responses/votes; no impact on the final decision), while in com-
ponent classifiers Nos. 7, 8 and 9 only one output (one class) is taken

into account. This situation is due to the fact that the greatest diversity
and quality is brought to the ensemble by component classifiers corre-
sponding to classes Nos. 1, 2, 3 and 4. These are classes, most visually
similar to each other: normal sinus rhythm and atrial type disorders.
Other classes are more separated or difficult to recognize.

4.4.2. GECS
Based on Table 5, we can see a large diversity between the com-

ponent classifiers of the ensemble (ERRsum between 73 and 83 errors).
Noteworthy is also the fact that each of the component classifiers was
optimized to recognize another (priority) combination of training and
test sets from 10-fold cross validation, which increased the diversity of
the component classifiers of the ensemble.

Based on Fig. 11, it can be seen that no component classifiers were
eliminated as a result of the selection of votes. Only incorrect out-
puts/responses/votes from each component classifier were rejected. We
may conclude that this situation is due to the fact that in each combina-
tion of sets (corresponding to particular component classifiers) there are
important and valuable (for final decision) fragments of the ECG signal.
Therefore, all component classifiers provide important information.

4.5. Dysfunctions/classes

In Figs. 5 and 9, the recognition efficiency for each class is presented
with the GECC and GECS methods. Based on this, we can observe a high
recognition efficiency for practically all classes: SEN over 70%. The
worst results were obtained for supraventricular tachyarrhythmia (SEN
over 50%) and fusion of ventricular and normal beat (SEN over 60% and
50%).

Worse results are due to the facts that: 1) classes Nos. 5 i 13 are
among the most difficult to recognize classes (visually similar to other
classes), and 2) a small number of ECG signal fragments (11 - Table 1),
collected for these classes, which is one of the work limits.

Supraventricular tachyarrhythmia (class No. 5) has similar dynamic
features to atrial premature beat (class No. 2), which is confirmed by the
obtained results (confusion matrices) in Fig. 4 class No. 5 confused with
class No. 2 (4 times) and in Fig. 8 class No. 5 confused with class No. 2
(4 times).

Fusion of ventricular and normal beat (class No. 13) has similar mor-
phological features to normal sinus rhythm (class No. 1) and premature
ventricular contraction (class No. 7), which is confirmed by the obtained
results (confusion matrices), in Fig. 4 class No. 13 confused with class
No. 7 (3 + 4 times) and class No. 1 (1 time) and in Fig. 8 class No. 13
confused with class No. 7 (3 + 4 times) and class No. 1 (2 times).

Based on the obtained results presented in Figs. 5 and 9, we removed
dysfunctions with the smallest value of the SEN coefficient (below
65%). As a result, one other recognition case was considered: 15 classes
(Figs. 6 and 10) (after removing the supraventricular tachyarrhythmia
and fusion of ventricular and normal beat classes). The indicated classes
are similar to others and are included in larger groups of disorders
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(atrial and ventricular type). The number of ECG signal fragments (11
- Table 1) for these classes is also low, and for this reason they are dif-
ficult to recognize. Therefore, the analysis of this case is justified. The
best method, GECS, obtained the following sensitivity for heart dysfunc-
tion recognition for 17 and 15 classes, respectively: SEN = 91.40%,
93.04%, and 𝜿 = 90.10%, 91.92%.

5. Conclusion

The aim of the conducted research was to develop a new ensem-
bles of classifiers that enables the efficient recognition of heart dis-
orders (17 classes: normal sinus rhythm + pacemaker rhythm + 15
heart disorders), based on analysis of 10-s fragments of ECG signals.
In this research, 744 fragments of ECG signals were analyzed from the
MIH-BIH Arrhythmia database for one lead, MLII, from 29 patients.
In research designed two innovative genetic ensembles of classifiers
optimized: by classes and by sets, based on: support vector machines
classifier, 10-fold cross-validation method, ensemble learning, layered
learning, genetic selection of features (frequency components), genetic
optimization of classifiers parameters and novel genetic training (selec-
tion of experts votes) used to combining classifiers.

The best genetic ensemble of classifiers optimized by sets
(GECS), obtained a recognition sensitivity of 17 myocardium dysfunc-
tions at a level of 91.40% (64 errors per 744 classifications, accu-
racy = 98.99%, specificity = 99.46%, time for classification of one sam-
ple = 0.0186 [s]). Against the background of the current scientific
literature, these results are some of the best results to date.

The following should be emphasized: the recognition of 17
classes, application of 10-fold cross-validation (analogous to subject-
oriented validation scheme) and correct balance of data for all
classes. This raises the level of the conducted research and strengthens
the value of the obtained results.

The obtained results confirm the validity of the conducted research
and prove that the aims (Section No. 1.1) was realized - we developed
a novel ensembles of classifiers for the automatic, efficient (Table 6),
universal (Table 1), low computational complexity (Section No. 1) and
fast (Table 3) recognition of myocardium dysfunctions.

To the advantages of the proposed solution we can include: 1)
recognition of 17 classes, 2) high efficiency/sensitivity, 3) possibility
to implement on mobile devices: lower computational complexity (an
average of 13 times less classifications) and only one lead, 4) elabora-
tion of new machine learning method - Genetic Ensemble of Classifiers
and 5) elaboration of new genetic training used to combining classifiers.

This research is worth continuing in order to: increase the recogni-
tion sensitivity for heart disorders and overcome the limitations (small
number of ECG signal fragments for the most rare classes - Table 1).
Therefore, further research will focus on: 1) testing and modifying deep
learning methods, and 2) collecting more number of appropriate ECG
signal fragments, especially for the most rare classes.
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[84] M. Bereta, T. Burczyński, Comparing binary and real-valued coding in hybrid
immune algorithm for feature selection and classification of ECG signals, Eng.
Appl. Artif. Intell. 20 (5) (2007) 571–585. soft Computing Applications. http://
www.sciencedirect.com/science/article/pii/S0952197606002077.

[85] S. Dilmac, M. Korurek, ECG heart beat classification method based on modified
ABC algorithm, Appl. Soft Comput. 36 (2015) 641–655. http://www.
sciencedirect.com/science/article/pii/S1568494615004408.

[86] M. Korurek, A. Nizam, A new arrhythmia clustering technique based on ant
colony optimization, J. Biomed. Inf. 41 (6) (2008) 874–881. http://www.
sciencedirect.com/science/article/pii/S153204640800021X.

[87] E. J. da S. Luz, T.M. Nunes, V.H.C. de Albuquerque, J.P. Papa, D. Menotti, ECG
arrhythmia classification based on optimum-path forest, Expert Syst. Appl. 40 (9)
(2013) 3561–3573. http://www.sciencedirect.com/science/article/pii/
S0957417412013048.

[88] P. Augustyniak, R. Tadeusiewicz, Ubiquitous Cardiology - Emerging Wireless
Telemedical Application, IGI Global, Hershey - New York, 2009, pp. 11–71. Ch.
Background 1: ECG Interpretation: Fundamentals of Automatic Analysis
Procedures.

[89] P. de Chazal, M. O’Dwyer, R.B. Reilly, Automatic classification of heartbeats
using ECG morphology and heartbeat interval features, IEEE Trans. Biomed. Eng.
51 (7) (2004) 1196–1206.

207

http://www.sciencedirect.com/science/article/pii/S0031320304002766
http://www.sciencedirect.com/science/article/pii/S0031320304002766
http://www.sciencedirect.com/science/article/pii/S026322410700070X
http://www.sciencedirect.com/science/article/pii/S026322410700070X
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref37
http://www.sciencedirect.com/science/article/pii/S1746809412001127
http://www.sciencedirect.com/science/article/pii/S1746809412001127
https://doi.org/10.1007/s00521-012-1232-7
https://doi.org/10.1007/s00521-012-1232-7
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref40
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref41
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref42
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref43
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref44
http://dl.acm.org/citation.cfm?id=645511.657085
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref46
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref47
https://doi.org/10.1023/A:1008202821328
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref49
http://www.sciencedirect.com/science/article/pii/S2210650217305321
http://www.sciencedirect.com/science/article/pii/S2210650217305321
http://www.sciencedirect.com/science/article/pii/S2210650216300268
http://www.sciencedirect.com/science/article/pii/S2210650216300268
https://doi.org/10.1007/s12065-007-0003-3
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref53
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref54
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref56
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref57
https://doi.org/10.1007/BF00337288
https://doi.org/10.1007/978-3-642-58069-7_38
https://doi.org/10.1007/978-3-642-58069-7_38
http://www.sciencedirect.com/science/article/pii/S1568494610001043
http://www.sciencedirect.com/science/article/pii/S1568494610001043
http://www.sciencedirect.com/science/article/pii/S1568494615002458
http://www.sciencedirect.com/science/article/pii/S1568494615002458
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref62
http://www.sciencedirect.com/science/article/pii/S0020025515006635
http://www.sciencedirect.com/science/article/pii/S0020025515006635
https://doi.org/10.1117/12.969927
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref66
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref67
https://doi.org/10.1007/11596448_36
http://www.sciencedirect.com/science/article/pii/S2210650213000199
http://www.sciencedirect.com/science/article/pii/S2210650213000199
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref70
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref71
http://www.sciencedirect.com/science/article/pii/S0010482512000972
http://www.sciencedirect.com/science/article/pii/S0010482512000972
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref73
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref74
http://www.sciencedirect.com/science/article/pii/S1746809410000546
http://www.sciencedirect.com/science/article/pii/S1746809410000546
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref76
http://www.sciencedirect.com/science/article/pii/S0167865506002327
http://www.sciencedirect.com/science/article/pii/S0167865506002327
http://www.sciencedirect.com/science/article/pii/S0957417407003752
http://www.sciencedirect.com/science/article/pii/S0957417407003752
http://www.sciencedirect.com/science/article/pii/S1746809411000772
http://www.sciencedirect.com/science/article/pii/S1746809411000772
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref80
http://www.sciencedirect.com/science/article/pii/S0957417410003878
http://www.sciencedirect.com/science/article/pii/S0957417410003878
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref82
http://www.sciencedirect.com/science/article/pii/S1746809415001743
http://www.sciencedirect.com/science/article/pii/S1746809415001743
http://www.sciencedirect.com/science/article/pii/S0952197606002077
http://www.sciencedirect.com/science/article/pii/S0952197606002077
http://www.sciencedirect.com/science/article/pii/S1568494615004408
http://www.sciencedirect.com/science/article/pii/S1568494615004408
http://www.sciencedirect.com/science/article/pii/S153204640800021X
http://www.sciencedirect.com/science/article/pii/S153204640800021X
http://www.sciencedirect.com/science/article/pii/S0957417412013048
http://www.sciencedirect.com/science/article/pii/S0957417412013048
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref88
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref89


P. Pławiak Swarm and Evolutionary Computation 39 (2018) 192–208

[90] R.G. Afkhami, G. Azarnia, M.A. Tinati, Cardiac arrhythmia classification using
statistical and mixture modeling features of ECG signals, Pattern Recognit. Lett.
70 (2016) 45–51, http://www.sciencedirect.com/science/article/pii/
S0167865515004043.

[91] A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark,
J.E. Mietus, G.B. Moody, C.-K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit,
and PhysioNet: components of a new research resource for complex physiologic
signals, Circulation 101 (23) (2000 (June 13)) https://doi.org/10.1161/01.CIR.
101.23.e215. e215–e220, circulation Electronic Pages http://circ.ahajournals.
org/content/101/23/e215.full, PMID:1085218.

[92] G.B. Moody, R.G. Mark, The impact of the mit-bih arrhythmia database, IEEE
Eng. Med. Biol. Mag. 20 (3) (2001) 45–50.

[93] S. Smith, Digital Signal Processing: a Practical Guide for Engineers and Scientists,
Newnes, 2002.

[94] P. Welch, The use of fast fourier transform for the estimation of power spectra: a
method based on time averaging over short, modified periodograms, IEEE Trans.
Audio Electroacoust. 15 (2) (1967) 70–73.

[95] L. Rutkowski, Computational Intelligence: Methods and Techniques, Springer,
2008.

[96] D.F. Specht, Probabilistic neural networks, Neural Netw. 3 (1) (1990) 109–118.
[97] D. S. Broomhead, D. Lowe, Radial basis functions, multi-variable functional

interpolation and adaptive networks, Complex Systems 2.
[98] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995)

273–297. https://doi.org/10.1007/BF00994018.
[99] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, ACM

Trans. Intell. Syst. Technol. 2 (2011). 27:1–27:27, software available at: http://
www.csie.ntu.edu.tw/cjlin/libsvm.

[100] N.S. Altman, An introduction to kernel and nearest-neighbor nonparametric
regression, Am. Statistician 46 (3) (1992) 175–185.

[101] J. Quinlan, Induction of decision trees, Mach. Learn. 1 (1) (1986) 81–106. cited
By 7269. http://www.scopus.com/inward/record.uri?eid=2-s2.0-
33744584654&amp;\ignorespacesdoi=10.1023.

[102] G.J. Mclachlan, Discriminant Analysis and Statistical Pattern Recognition, (Wiley
Series in Probability and Statistics), Wiley-Interscience, 2004. http://www.
amazon.com/exec/obidos/redirect?tag=citeulike07-20&amp;path=ASIN/
0471691151.

[103] M. Sugeno, Industrial Applications of Fuzzy Control, Elsevier Science Pub. Co.,
1985.

[104] A. Prieto, B. Prieto, E.M. Ortigosa, E. Ros, F. Pelayo, J. Ortega, I. Rojas, Neural
networks: an overview of early research, current frameworks and new challenges,
Neurocomputing 214 (2016) 242–268. http://www.sciencedirect.com/science/
article/pii/S0925231216305550.

[105] T. Fawcett, An introduction to ROC analysis, Pattern Recogn. Lett. 27 (8) (2006)
861–874, https://doi.org/10.1016/j.patrec.2005.10.010.

[106] M. Sokolova, G. Lapalme, A systematic analysis of performance measures for
classification tasks, Inf. Process. Manag. 45 (4) (2009) 427–437. http://www.
sciencedirect.com/science/article/pii/S0306457309000259.

[107] M.A. Escalona-Moran, M.C. Soriano, I. Fischer, C.R. Mirasso, Electrocardiogram
classification using reservoir computing with logistic regression, IEEE J. Biomed.
Health Inf. 19 (3) (2015) 892–898.

[108] M. Llamedo, J.P. Martinez, Heartbeat classification using feature selection driven
by database generalization criteria, IEEE Trans. Biomed. Eng. 58 (3) (2011)
616–625.

[109] C.C. Lin, C.M. Yang, Heartbeat classification using normalized RR intervals and
wavelet features, in: Computer, Consumer and Control (IS3C), 2014 International
Symposium on, 2014, pp. 650–653.

[110] Y. Bazi, N. Alajlan, H. AlHichri, S. Malek, Domain adaptation methods for ECG
classification, in: Computer Medical Applications (ICCMA), 2013 International
Conference on, 2013, pp. 1–4.

[111] M.L. Soria, J. Martinez, Analysis of multidomain features for ECG classification,
Comput. Cardiol. 2009 (2009) 561–564.

[112] T. Mar, S. Zaunseder, J.P. Martineznez, M. Llamedo, R. Poll, Optimization of ECG
classification by means of feature selection, IEEE Trans. Biomed. Eng. 58 (8)
(2011) 2168–2177.

[113] Z. Zhang, X. Luo, Heartbeat classification using decision level fusion, Biomed.
Eng. Lett. 4 (4) (2014) 388–395, https://doi.org/10.1007/s13534-014-0158-7.

[114] Z. Zhang, J. Dong, X. Luo, K.-S. Choi, X. Wu, Heartbeat classification using
disease-specific feature selection, Comput. Biol. Med. 46 (2014) 79–89. http://
www.sciencedirect.com/science/article/pii/S001048251300348X.

[115] C. Ye, B.V.K.V. Kumar, M.T. Coimbra, Combining general multi-class and specific
two-class classifiers for improved customized ECG heartbeat classification, in:
Pattern Recognition (ICPR), 2012 21st International Conference on, 2012, pp.
2428–2431.

[116] K.S. Park, B.H. Cho, D.H. Lee, S.H. Song, J.S. Lee, Y.J. Chee, I.Y. Kim, S.I. Kim,
Hierarchical support vector machine based heartbeat classification using higher
order statistics and hermite basis function, Comput. Cardiol. 2008 (2008)
229–232.

[117] G. de Lannoy, D. Francois, J. Delbeke, M. Verleysen, Weighted conditional
random fields for supervised interpatient heartbeat classification, IEEE Trans.
Biomed. Eng. 59 (1) (2012) 241–247.

[118] G. de Lammoy, D. Francois, J. Delbeke, M. Verleysen, Weighted SVMs and
Feature Relevance Assessment in Supervised Heart Beat Classification,
Communications in Computer and Information Science, vol. 127, Springer, 2010,
pp. 212–223. Ch. Biomedical Engineering Systems and Technologies.

[119] Z. Krajewski, E. Tkacz, Protein structural classification based on pseudo amino
acid composition using SVM classifier, Biocybern. Biomed. Eng. 33 (2) (2013)
77–87, https://doi.org/10.1016/j.bbe.2013.03.002. ISSN 0208-5216.

[120] Z. Krajewski, E. Tkacz, Feature selection of protein structural classification using
SVM classifier, Biocybern. Biomed. Eng. 33 (1) (2013) 47–61, https://doi.org/10.
1016/S0208-5216(13)70055-X. ISSN 0208-5216.

P. Pławiak was born in Ostrowiec, Poland, in 1984. He obtained his M.Sc. degree in
Electronics and Telecommunications and his Ph.D degree with honors in Biocybernetics
and Biomedical Engineering at the AGH University of Science and Technology, Cracow,
Poland, in 2012 and 2016, respectively. He is an Assistant Professor with the Institute
of Telecomputing, Cracow University of Technology, Cracow, Poland. His research inter-
ests include machine learning algorithms and computational intelligence methods (e.g.,
artificial neural networks, genetic algorithms, fuzzy systems, support vector machines,
k-nearest neighbors, and hybrid systems), ensemble learning, deep learning, evolutionary
computation, pattern recognition, signal processing and analysis, data analysis and data
mining, sensor techniques, medicine, biocybernetics, and biomedical engineering.

208

http://www.sciencedirect.com/science/article/pii/S0167865515004043
http://www.sciencedirect.com/science/article/pii/S0167865515004043
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.1161/01.CIR.101.23.e215
http://circ.ahajournals.org/content/101/23/e215.full
http://circ.ahajournals.org/content/101/23/e215.full
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref92
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref93
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref94
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref95
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref96
https://doi.org/10.1007/BF00994018
http://www.csie.ntu.edu.tw/cjlin/libsvm
http://www.csie.ntu.edu.tw/cjlin/libsvm
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref100
http://www.scopus.com/inward/record.uri?eid=2-s2.0-33744584654&amp; ignorespaces doi=10.1023
http://www.scopus.com/inward/record.uri?eid=2-s2.0-33744584654&amp; ignorespaces doi=10.1023
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&amp;path=ASIN/0471691151
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&amp;path=ASIN/0471691151
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&amp;path=ASIN/0471691151
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref103
http://www.sciencedirect.com/science/article/pii/S0925231216305550
http://www.sciencedirect.com/science/article/pii/S0925231216305550
https://doi.org/10.1016/j.patrec.2005.10.010
http://www.sciencedirect.com/science/article/pii/S0306457309000259
http://www.sciencedirect.com/science/article/pii/S0306457309000259
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref107
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref108
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref109
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref110
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref111
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref112
https://doi.org/10.1007/s13534-014-0158-7
http://www.sciencedirect.com/science/article/pii/S001048251300348X
http://www.sciencedirect.com/science/article/pii/S001048251300348X
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref115
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref116
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref117
http://refhub.elsevier.com/S2210-6502(17)30605-3/sref118
https://doi.org/10.1016/j.bbe.2013.03.002
https://doi.org/10.1016/S0208-5216(13)70055-X
https://doi.org/10.1016/S0208-5216(13)70055-X

	Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals
	1. Introduction
	1.1. Aims
	1.2. Novelty

	2. Materials and methods
	2.1. Assumptions
	2.2. Materials
	2.2.1. ECG database

	2.3. Methods
	2.3.1. Evolutionary-neural system
	2.3.2. Classical ensembles of classifiers (CEC)
	2.3.3. Random Forest (RF)
	2.3.4. Ensemble of predictors (EP)

	2.4. Genetic ensembles of classifiers
	2.4.1. Philosophy
	2.4.2. Optimized by classes (GECC)
	2.4.3. Optimized by sets (GECS)

	2.5. Evaluation criteria

	3. Results
	3.1. Genetic ensembles of classifiers
	3.1.1. Optimized by classes (GECC)
	3.1.2. Optimized by sets (GECS)


	4. Discussion
	4.1. Hypothesis
	4.2. Feature extraction
	4.3. Genetic ensembles of classifiers
	4.3.1. Optimized by classes
	4.3.2. Optimized by sets

	4.4. Component classifiers of the ensemble
	4.4.1. GECC
	4.4.2. GECS

	4.5. Dysfunctions/classes

	5. Conclusion
	Acknowledgments
	Appendix A. Supplementary data
	References




