Vector fields in polar coordinates
Two dimensions

At any point in the plane, we can define vectors \mathbf{r}_r and \mathbf{e}_θ as shown:

\[\mathbf{r}_r = \cos(\theta) \mathbf{i} + \sin(\theta) \mathbf{j} \]
\[\mathbf{e}_\theta = -\sin(\theta) \mathbf{i} + \cos(\theta) \mathbf{j} \]
\[\mathbf{i} = \cos(\theta) \mathbf{r}_r - \sin(\theta) \mathbf{e}_\theta \]
\[\mathbf{j} = \sin(\theta) \mathbf{r}_r + \cos(\theta) \mathbf{e}_\theta \]
At any point in the plane, we can define vectors \mathbf{r}_r and \mathbf{e}_θ as shown:
Two dimensions

At any point in the plane, we can define vectors r_r and e_θ as shown:

\[e_r = \cos(\theta) i + \sin(\theta) j \]
\[e_\theta = -\sin(\theta) i + \cos(\theta) j \]

\[i = \cos(\theta) e_r - \sin(\theta) e_\theta \]
\[j = \sin(\theta) e_r + \cos(\theta) e_\theta \]
At any point in the plane, we can define vectors \mathbf{r} and \mathbf{e}_{θ} as shown:

In situations with circular symmetry, it is often more natural to describe vector fields in terms of \mathbf{e}_r and \mathbf{e}_{θ} rather than \mathbf{i} and \mathbf{j}.
Two dimensions

At any point in the plane, we can define vectors \mathbf{r}_r and \mathbf{e}_θ as shown:

\[\mathbf{e}_r = \cos(\theta)\mathbf{i} + \sin(\theta)\mathbf{j} \quad \mathbf{e}_\theta = -\sin(\theta)\mathbf{i} + \cos(\theta)\mathbf{j} \]

In situations with circular symmetry, it is often more natural to describe vector fields in terms of \mathbf{e}_r and \mathbf{e}_θ rather than \mathbf{i} and \mathbf{j}. One can translate between the two descriptions as follows:

\[\mathbf{e}_r = \cos(\theta)\mathbf{i} + \sin(\theta)\mathbf{j} \quad \mathbf{e}_\theta = -\sin(\theta)\mathbf{i} + \cos(\theta)\mathbf{j} \]
Two dimensions

At any point in the plane, we can define vectors \mathbf{r}_r and \mathbf{e}_θ as shown:

In situations with circular symmetry, it is often more natural to describe vector fields in terms of \mathbf{r}_r and \mathbf{e}_θ rather than \mathbf{i} and \mathbf{j}. One can translate between the two descriptions as follows:

\[
\mathbf{e}_r = \cos(\theta)\mathbf{i} + \sin(\theta)\mathbf{j} \quad \quad \mathbf{e}_\theta = -\sin(\theta)\mathbf{i} + \cos(\theta)\mathbf{j}
\]
\[
\mathbf{i} = \cos(\theta)\mathbf{e}_r - \sin(\theta)\mathbf{e}_\theta \quad \quad \mathbf{j} = \sin(\theta)\mathbf{e}_r + \cos(\theta)\mathbf{e}_\theta.
\]
Here are two examples of vector fields described in terms of \mathbf{e}_r and \mathbf{e}_θ:

\[\mathbf{u} = \sin(\theta)\mathbf{e}_r \]

\[\mathbf{u} = \sqrt{r}(\mathbf{e}_\theta + \mathbf{e}_r/10) \]
Div, grad and curl in polar coordinates

We will need to express the operators grad, div and curl in terms of polar coordinates.

(a) For any two-dimensional scalar field f (expressed as a function of r and θ) we have

$$\nabla (f) = \text{grad}(f) = f r e_r + r^{-1} f \theta e_\theta.$$

(b) For any 2-dimensional vector field $\mathbf{u} = m e_r + p e_\theta$ (where m and p are expressed as functions of r and θ) we have

$$\text{div}(\mathbf{u}) = r^{-1} m + m r + r^{-1} p \theta = r^{-1} (r m + p \theta).$$

$$\text{curl}(\mathbf{u}) = r^{-1} p + p r - r^{-1} m \theta = r^{-1} (r p - m \theta).$$

Note that the product rule gives $(rm)r = m + rm r$ and $(rp)r = p + rp r$.

(c) For any two-dimensional scalar field f we have

$$\nabla^2 (f) = r^{-1} f r + f_{rr} + r^{-2} f_{\theta\theta} = r^{-1} (rf r) r + r^{-2} f_{\theta\theta}.$$

Note: in the exam, if you need these formulae, they will be provided.
We will need to express the operators grad, div and curl in terms of polar coordinates.

(a) For any two-dimensional scalar field f (expressed as a function of r and θ) we have

$$\nabla(f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta.$$
Div, grad and curl in polar coordinates

We will need to express the operators grad, div and curl in terms of polar coordinates.

(a) For any two-dimensional scalar field f (expressed as a function of r and θ) we have

$$\nabla(f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta.$$

(b) For any 2-dimensional vector field $\mathbf{u} = m \mathbf{e}_r + p \mathbf{e}_\theta$ (where m and p are expressed as functions of r and θ) we have

$$\text{div}(\mathbf{u}) = r^{-1} m + m_r + r^{-1} p_\theta$$

$$\text{curl}(\mathbf{u}) = r^{-1} p + p_r - r^{-1} m_\theta$$

Note: in the exam, if you need these formulae, they will be provided.
Div, grad and curl in polar coordinates

We will need to express the operators grad, div and curl in terms of polar coordinates.

(a) For any two-dimensional scalar field f (expressed as a function of r and θ) we have

$$\nabla(f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta.$$

(b) For any 2-dimensional vector field $\mathbf{u} = m \mathbf{e}_r + p \mathbf{e}_\theta$ (where m and p are expressed as functions of r and θ) we have

$$\text{div}(\mathbf{u}) = r^{-1} m + m_r + p \quad \text{and} \quad \text{curl}(\mathbf{u}) = r^{-1} p + p_r - r^{-1} m_\theta$$

Note that the product rule gives $(rm)_r = m + r m_r$ and $(rp)_r = p + r p_r.$
Div, grad and curl in polar coordinates

We will need to express the operators grad, div and curl in terms of polar coordinates.

(a) For any two-dimensional scalar field f (expressed as a function of r and θ) we have

$$\nabla(f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta.$$

(b) For any 2-dimensional vector field $\mathbf{u} = m \mathbf{e}_r + p \mathbf{e}_\theta$ (where m and p are expressed as functions of r and θ) we have

$$\text{div}(\mathbf{u}) = r^{-1} m + m_r + r^{-1} p_\theta = r^{-1} ((rm)_r + p_\theta)$$
$$\text{curl}(\mathbf{u}) = r^{-1} p + p_r - r^{-1} m_\theta = r^{-1} ((rp)_r - m_\theta)$$

Note that the product rule gives $(rm)_r = m + r m_r$ and $(rp)_r = p + r p_r$.

Div, grad and curl in polar coordinates

We will need to express the operators grad, div and curl in terms of polar coordinates.

(a) For any two-dimensional scalar field f (expressed as a function of r and θ) we have

$$\nabla(f) = \text{grad}(f) = f_r e_r + r^{-1} f_\theta e_\theta.$$

(b) For any 2-dimensional vector field $\mathbf{u} = m e_r + p e_\theta$ (where m and p are expressed as functions of r and θ) we have

$$\text{div(}\mathbf{u}\text{)} = r^{-1} m + m_r + r^{-1} p_\theta = r^{-1} ((rm)_r + p_\theta)$$

$$\text{curl(}\mathbf{u}\text{)} = r^{-1} p + p_r - r^{-1} m_\theta = r^{-1} ((rp)_r - m_\theta)$$

$$= \frac{1}{r} \det \begin{bmatrix} \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} \\ m & rp \end{bmatrix}.$$

Note that the product rule gives $(rm)_r = m + r m_r$ and $(rp)_r = p + r p_r.$
Div, grad and curl in polar coordinates

We will need to express the operators grad, div and curl in terms of polar coordinates.

(a) For any two-dimensional scalar field f (expressed as a function of r and θ) we have

$$\nabla(f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta.$$

(b) For any 2-dimensional vector field $\mathbf{u} = m \mathbf{e}_r + p \mathbf{e}_\theta$ (where m and p are expressed as functions of r and θ) we have

$$\text{div}(\mathbf{u}) = r^{-1} m + m_r + r^{-1} p_\theta = r^{-1} ((r m)_r + p_\theta)$$

$$\text{curl}(\mathbf{u}) = r^{-1} p + p_r - r^{-1} m_\theta = r^{-1} ((r p)_r - m_\theta)$$

$$= \frac{1}{r} \det \begin{bmatrix} \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} \\ m & rp \end{bmatrix}.$$

Note that the product rule gives $(rm)_r = m + rm_r$ and $(rp)_r = p + rp_r$.

(c) For any two-dimensional scalar field f we have

$$\nabla^2(f) = r^{-1} f_r + f_{rr} + r^{-2} f_{\theta\theta}.$$
Div, grad and curl in polar coordinates

We will need to express the operators grad, div and curl in terms of polar coordinates.

(a) For any two-dimensional scalar field \(f \) (expressed as a function of \(r \) and \(\theta \)) we have

\[
\nabla(f) = \text{grad}(f) = f_r \, \mathbf{e}_r + r^{-1} f_\theta \, \mathbf{e}_\theta.
\]

(b) For any 2-dimensional vector field \(\mathbf{u} = m \mathbf{e}_r + p \mathbf{e}_\theta \) (where \(m \) and \(p \) are expressed as functions of \(r \) and \(\theta \)) we have

\[
\begin{align*}
\text{div}(\mathbf{u}) &= r^{-1} m + m_r + r^{-1} p_\theta = r^{-1} \left((rm)_r + p_\theta \right) \\
\text{curl}(\mathbf{u}) &= r^{-1} p + p_r - r^{-1} m_\theta = r^{-1} \left((rp)_r - m_\theta \right) \\
&= \frac{1}{r} \det \begin{bmatrix} \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} \\ m & rp \end{bmatrix}.
\end{align*}
\]

Note that the product rule gives \((rm)_r = m + r m_r\) and \((rp)_r = p + r p_r\).

(c) For any two-dimensional scalar field \(f \) we have

\[
\nabla^2(f) = r^{-1} f_r + f_{rr} + r^{-2} f_{\theta\theta} = r^{-1} (rf_r)_r + r^{-2} f_{\theta\theta}
\]
Div, grad and curl in polar coordinates

We will need to express the operators grad, div and curl in terms of polar coordinates.

(a) For any two-dimensional scalar field f (expressed as a function of r and θ) we have

$$\nabla(f) = \text{grad}(f) = f_r \mathbf{e}_r + \frac{1}{r} f_\theta \mathbf{e}_\theta.$$

(b) For any 2-dimensional vector field $\mathbf{u} = m \mathbf{e}_r + p \mathbf{e}_\theta$ (where m and p are expressed as functions of r and θ) we have

$$\text{div}(\mathbf{u}) = r^{-1} m + m_r + \frac{1}{r} p_\theta = r^{-1} (rm)_r + p_\theta$$

$$\text{curl}(\mathbf{u}) = r^{-1} p + p_r - \frac{1}{r} m_\theta = r^{-1} (rp)_r - m_\theta$$

$$= \frac{1}{r} \det \begin{bmatrix} \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} \\ m & rp \end{bmatrix}.$$

Note that the product rule gives $(rm)_r = m + rm_r$ and $(rp)_r = p + rp_r$.

(c) For any two-dimensional scalar field f we have

$$\nabla^2(f) = r^{-1} f_r + f_{rr} + \frac{1}{r} f_{\theta\theta} = r^{-1} (rf_r)_r + r^{-2} f_{\theta\theta}$$

Note: in the exam, if you need these formulae, they will be provided.
For any two-dimensional scalar field \(f \) (as a function of \(r \) and \(\theta \)) we have

\[
\nabla(f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta.
\]
Grad in polar coordinates

For any two-dimensional scalar field \(f \) (as a function of \(r \) and \(\theta \)) we have

\[
\nabla (f) = \text{grad}(f) = f_r e_r + r^{-1} f_\theta e_\theta.
\]

Justification: Consider the field \(u = f_r e_r + r^{-1} f_\theta e_\theta \); we show that this is the same as \(\text{grad}(f) \).

\[
\text{Justification: } \quad \text{Consider the field } u = f_r e_r + r^{-1} f_\theta e_\theta; \text{ we show that this is the same as } \text{grad}(f).
\]
Grad in polar coordinates

For any two-dimensional scalar field f (as a function of r and θ) we have

$$\nabla(f) = \text{grad}(f) = f_r e_r + r^{-1} f_\theta e_\theta.$$

Justification: Consider the field $u = f_r e_r + r^{-1} f_\theta e_\theta$; we show that this is the same as $\text{grad}(f)$. Two-variable chain rule: suppose we make a small change δr to r.

\[\text{Two-variable chain rule: suppose we make a small change } \delta r \text{ to } r.\]
Grad in polar coordinates

For any two-dimensional scalar field \(f \) (as a function of \(r \) and \(\theta \)) we have

\[
\nabla(f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta.
\]

Justification: Consider the field \(u = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta \); we show that this is the same as \(\text{grad}(f) \). Two-variable chain rule: suppose we make a small change \(\delta r \) to \(r \). This causes a change \(\delta x \simeq x_r \delta r \) to \(x \).
Grad in polar coordinates

For any two-dimensional scalar field f (as a function of r and θ) we have

$$\nabla(f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta.$$

Justification: Consider the field $u = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta$; we show that this is the same as $\text{grad}(f)$. Two-variable chain rule: suppose we make a small change δr to r. This causes a change $\delta x \simeq x_r \delta r$ to x, which in turn causes a change $\simeq f_x \delta x \simeq f_x x_r \delta r$ to f.

Grad in polar coordinates

For any two-dimensional scalar field \(f \) (as a function of \(r \) and \(\theta \)) we have

\[
\nabla(f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta.
\]

Justification: Consider the field \(\mathbf{u} = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta \); we show that this is the same as \(\text{grad}(f) \). Two-variable chain rule: suppose we make a small change \(\delta r \) to \(r \). This causes a change \(\delta x \sim x_r \delta r \) to \(x \), which in turn causes a change \(\sim f_x \delta x \sim f_x x_r \delta r \) to \(f \). At the same time, our change in \(r \) also causes a change \(\delta y \sim y_r \delta r \) to \(x \).
Grad in polar coordinates

For any two-dimensional scalar field f (as a function of r and θ) we have

$$\nabla (f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta.$$

Justification: Consider the field $u = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta$; we show that this is the same as $\text{grad}(f)$. Two-variable chain rule: suppose we make a small change δr to r. This causes a change $\delta x \simeq x_r \delta r$ to x, which in turn causes a change $\simeq f_x \delta x \simeq f_x x_r \delta r$ to f. At the same time, our change in r also causes a change $\delta y \simeq y_r \delta r$ to x, which causes a change $\simeq f_y \delta y = f_y y_r \delta r$ to f.

Grad in polar coordinates

For any two-dimensional scalar field f (as a function of r and θ) we have

$$\nabla(f) = \text{grad}(f) = f_r e_r + r^{-1} f_\theta e_\theta.$$

Justification: Consider the field $u = f_r e_r + r^{-1} f_\theta e_\theta$; we show that this is the same as $\text{grad}(f)$. Two-variable chain rule: suppose we make a small change δr to r. This causes a change $\delta x \simeq x_r \delta r$ to x, which in turn causes a change $\simeq f_x \delta x \simeq f_x x_r \delta r$ to f. At the same time, our change in r also causes a change $\delta y \simeq y_r \delta r$ to x, which causes a change $\simeq f_y \delta y = f_y y_r \delta r$ to f. Altogether, the change in f is $\delta f \simeq (f_x x_r + f_y y_r) \delta r$.

Grad in polar coordinates

For any two-dimensional scalar field \(f \) (as a function of \(r \) and \(\theta \)) we have

\[
\nabla(f) = \text{grad}(f) = f_r e_r + r^{-1} f_\theta e_\theta.
\]

Justification: Consider the field \(u = f_r e_r + r^{-1} f_\theta e_\theta \); we show that this is the same as \(\text{grad}(f) \). Two-variable chain rule: suppose we make a small change \(\delta r \) to \(r \). This causes a change \(\delta x \simeq x_r \delta r \) to \(x \), which in turn causes a change \(\simeq f_x \delta x \simeq f_x x_r \delta r \) to \(f \). At the same time, our change in \(r \) also causes a change \(\delta y \simeq y_r \delta r \) to \(x \), which causes a change \(\simeq f_y \delta y = f_y y_r \delta r \) to \(f \). Altogether, the change in \(f \) is \(\delta f \simeq (f_x x_r + f_y y_r) \delta r \). By passing to the limit \(\delta r \to 0 \), we get

\[
f_r = f_x x_r + f_y y_r.
\]
For any two-dimensional scalar field f (as a function of r and θ) we have

$$\nabla(f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta.$$

Justification: Consider the field $u = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta$; we show that this is the same as grad(f). Two-variable chain rule: suppose we make a small change δr to r. This causes a change $\delta x \simeq x_r \delta r$ to x, which in turn causes a change $\simeq f_x \delta x \simeq f_x x_r \delta r$ to f. At the same time, our change in r also causes a change $\delta y \simeq y_r \delta r$ to x, which causes a change $\simeq f_y \delta y = f_y y_r \delta r$ to f. Altogether, the change in f is $\delta f \simeq (f_x x_r + f_y y_r) \delta r$. By passing to the limit $\delta r \to 0$, we get $f_r = f_x x_r + f_y y_r$. Similarly, $f_\theta = f_x x_\theta + f_y y_\theta$.
Grad in polar coordinates

For any two-dimensional scalar field f (as a function of r and θ) we have

$$\nabla(f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta.$$

Justification: Consider the field $\mathbf{u} = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta$; we show that this is the same as $\text{grad}(f)$. Two-variable chain rule: suppose we make a small change δr to r. This causes a change $\delta x \simeq x_r \delta r$ to x, which in turn causes a change $\simeq f_x \delta x \simeq f_x x_r \delta r$ to f. At the same time, our change in r also causes a change $\delta y \simeq y_r \delta r$ to x, which causes a change $\simeq f_y \delta y = f_y y_r \delta r$ to f. Altogether, the change in f is $\delta f \simeq (f_x x_r + f_y y_r)\delta r$. By passing to the limit $\delta r \to 0$, we get $f_r = f_x x_r + f_y y_r$. Similarly, $f_\theta = f_x x_\theta + f_y y_\theta$. Moreover, we can differentiate the formulae

$$x = r \cos(\theta) \quad y = r \sin(\theta)$$
Grad in polar coordinates

For any two-dimensional scalar field \(f \) (as a function of \(r \) and \(\theta \)) we have

\[
\nabla(f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta.
\]

Justification: Consider the field \(\mathbf{u} = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta \); we show that this is the same as \(\text{grad}(f) \). Two-variable chain rule: suppose we make a small change \(\delta r \) to \(r \). This causes a change \(\delta x \simeq x_r \delta r \) to \(x \), which in turn causes a change \(\simeq f_x \delta x \simeq f_x x_r \delta r \) to \(f \). At the same time, our change in \(r \) also causes a change \(\delta y \simeq y_r \delta r \) to \(x \), which causes a change \(\simeq f_y \delta y = f_y y_r \delta r \) to \(f \). Altogether, the change in \(f \) is \(\delta f \simeq (f_x x_r + f_y y_r) \delta r \). By passing to the limit \(\delta r \to 0 \), we get \(f_r = f_x x_r + f_y y_r \). Similarly, \(f_\theta = f_x x_\theta + f_y y_\theta \). Moreover, we can differentiate the formulae

\[
\begin{align*}
 x &= r \cos(\theta) \\
y &= r \sin(\theta)
\end{align*}
\]

to get

\[
\begin{align*}
x_r &= \cos(\theta) \\
x_\theta &= -r \sin(\theta) \\
y_r &= \sin(\theta) \\
y_\theta &= r \cos(\theta)
\end{align*}
\]
Grad in polar coordinates

For any two-dimensional scalar field f (as a function of r and θ) we have

$$\nabla(f) = \text{grad}(f) = f_r e_r + r^{-1} f_\theta e_\theta.$$

Justification: Consider the field $u = f_r e_r + r^{-1} f_\theta e_\theta$; we show that this is the same as $\text{grad}(f)$. Two-variable chain rule: suppose we make a small change δr to r. This causes a change $\delta x \approx x_r \delta r$ to x, which in turn causes a change $\approx f_x \delta x \approx f_x x_r \delta r$ to f. At the same time, our change in r also causes a change $\delta y \approx y_r \delta r$ to x, which causes a change $\approx f_y \delta y = f_y y_r \delta r$ to f. Altogether, the change in f is $\delta f \approx (f_x x_r + f_y y_r) \delta r$. By passing to the limit $\delta r \to 0$, we get $f_r = f_x x_r + f_y y_r$. Similarly, $f_\theta = f_x x_\theta + f_y y_\theta$. Moreover, we can differentiate the formulae

$$x = r \cos(\theta) \quad y = r \sin(\theta)$$

to get

$$x_r = \cos(\theta) \quad y_r = \sin(\theta)$$

$$x_\theta = -r \sin(\theta) \quad y_\theta = r \cos(\theta), \text{ so}$$

$$f_r = f_x x_r + f_y y_r$$
Grad in polar coordinates

For any two-dimensional scalar field f (as a function of r and θ) we have

$$\nabla(f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta.$$

Justification: Consider the field $\mathbf{u} = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta$; we show that this is the same as $\text{grad}(f)$. Two-variable chain rule: suppose we make a small change δr to r. This causes a change $\delta x \simeq x_r \delta r$ to x, which in turn causes a change $\simeq f_x \delta x \simeq f_x x_r \delta r$ to f. At the same time, our change in r also causes a change $\delta y \simeq y_r \delta r$ to x, which causes a change $\simeq f_y \delta y = f_y y_r \delta r$ to f. Altogether, the change in f is $\delta f \simeq (f_x x_r + f_y y_r) \delta r$. By passing to the limit $\delta r \to 0$, we get $f_r = f_x x_r + f_y y_r$. Similarly, $f_\theta = f_x x_\theta + f_y y_\theta$. Moreover, we can differentiate the formulae

$$x = r \cos(\theta) \quad y = r \sin(\theta)$$

to get

$$x_r = \cos(\theta) \quad y_r = \sin(\theta)$$

$$x_\theta = -r \sin(\theta) \quad y_\theta = r \cos(\theta), \text{ so}$$

$$f_r = f_x x_r + f_y y_r = \cos(\theta) f_x + \sin(\theta) f_y$$
Grad in polar coordinates

For any two-dimensional scalar field f (as a function of r and θ) we have

$$\nabla(f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta.$$

Justification: Consider the field $u = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta$; we show that this is the same as grad(f). Two-variable chain rule: suppose we make a small change δr to r. This causes a change $\delta x \simeq x_r \delta r$ to x, which in turn causes a change $\simeq f_x \delta x \simeq f_x x_r \delta r$ to f. At the same time, our change in r also causes a change $\delta y \simeq y_r \delta r$ to x, which causes a change $\simeq f_y \delta y = f_y y_r \delta r$ to f. Altogether, the change in f is $\delta f \simeq (f_x x_r + f_y y_r) \delta r$. By passing to the limit $\delta r \to 0$, we get $f_r = f_x x_r + f_y y_r$. Similarly, $f_\theta = f_x x_\theta + f_y y_\theta$. Moreover, we can differentiate the formulae

$$x = r \cos(\theta) \quad \quad \quad y = r \sin(\theta)$$

to get

$$x_r = \cos(\theta) \quad \quad \quad y_r = \sin(\theta)$$
$$x_\theta = -r \sin(\theta) \quad \quad \quad y_\theta = r \cos(\theta),$$

$$f_r = f_x x_r + f_y y_r = \cos(\theta) f_x + \sin(\theta) f_y$$
$$f_\theta = f_x x_\theta + f_y y_\theta$$
Grad in polar coordinates

For any two-dimensional scalar field \(f \) (as a function of \(r \) and \(\theta \)) we have

\[
\nabla(f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta.
\]

Justification: Consider the field \(u = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta \); we show that this is the same as \(\text{grad}(f) \). Two-variable chain rule: suppose we make a small change \(\delta r \) to \(r \). This causes a change \(\delta x \simeq x_r \delta r \) to \(x \), which in turn causes a change \(\simeq f_x \delta x \simeq f_x x_r \delta r \) to \(f \). At the same time, our change in \(r \) also causes a change \(\delta y \simeq y_r \delta r \) to \(x \), which causes a change \(\simeq f_y \delta y = f_y y_r \delta r \) to \(f \). Altogether, the change in \(f \) is \(\delta f \simeq (f_x x_r + f_y y_r) \delta r \). By passing to the limit \(\delta r \to 0 \), we get \(f_r = f_x x_r + f_y y_r \). Similarly, \(f_\theta = f_x x_\theta + f_y y_\theta \). Moreover, we can differentiate the formulae

\[
\begin{align*}
x &= r \cos(\theta) \\
y &= r \sin(\theta)
\end{align*}
\]

to get

\[
\begin{align*}
x_r &= \cos(\theta) \\
x_\theta &= -r \sin(\theta) \\
y_r &= \sin(\theta) \\
y_\theta &= r \cos(\theta), \text{ so}
\end{align*}
\]

\[
\begin{align*}
f_r &= f_x x_r + f_y y_r = \cos(\theta)f_x + \sin(\theta)f_y \\
f_\theta &= f_x x_\theta + f_y y_\theta = -r \sin(\theta)f_x + r \cos(\theta)f_y
\end{align*}
\]
Grad in polar coordinates

For any two-dimensional scalar field f (as a function of r and θ) we have
\[
\nabla(f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta.
\]

Justification: Consider the field $u = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta$; we show that this is the same as $\text{grad}(f)$. Two-variable chain rule: suppose we make a small change δr to r. This causes a change $\delta x \simeq x_r \delta r$ to x, which in turn causes a change $\simeq f_x \delta x \simeq f_x x_r \delta r$ to f. At the same time, our change in r also causes a change $\delta y \simeq y_r \delta r$ to x, which causes a change $\simeq f_y \delta y = f_y y_r \delta r$ to f. Altogether, the change in f is $\delta f \simeq (f_x x_r + f_y y_r) \delta r$. By passing to the limit $\delta r \to 0$, we get $f_r = f_x x_r + f_y y_r$. Similarly, $f_\theta = f_x x_\theta + f_y y_\theta$. Moreover, we can differentiate the formulae
\[
x = r \cos(\theta) \quad \quad \quad \quad \quad \quad \quad y = r \sin(\theta)
\]
and get
\[
x_r = \cos(\theta) \quad \quad \quad \quad \quad \quad \quad y_r = \sin(\theta)
\]
\[
x_\theta = -r \sin(\theta) \quad \quad \quad \quad \quad \quad \quad y_\theta = r \cos(\theta), \text{ so}
\]
\[
f_r = f_x x_r + f_y y_r = \cos(\theta) f_x + \sin(\theta) f_y
\]
\[
f_\theta = f_x x_\theta + f_y y_\theta = -r \sin(\theta) f_x + r \cos(\theta) f_y
\]
\[
u = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta
\]
Grad in polar coordinates

For any two-dimensional scalar field \(f \) (as a function of \(r \) and \(\theta \)) we have

\[
\nabla(f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta.
\]

Justification: Consider the field \(u = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta \); we show that this is the same as \(\text{grad}(f) \). Two-variable chain rule: suppose we make a small change \(\delta r \) to \(r \). This causes a change \(\delta x \simeq x_r \delta r \) to \(x \), which in turn causes a change \(\simeq f_x \delta x \simeq f_x x_r \delta r \) to \(f \). At the same time, our change in \(r \) also causes a change \(\delta y \simeq y_r \delta r \) to \(x \), which causes a change \(\simeq f_y \delta y \simeq f_y y_r \delta r \) to \(f \). Altogether, the change in \(f \) is \(\delta f \simeq (f_x x_r + f_y y_r)\delta r \). By passing to the limit \(\delta r \to 0 \), we get \(f_r = f_x x_r + f_y y_r \). Similarly, \(f_\theta = f_x x_\theta + f_y y_\theta \). Moreover, we can differentiate the formulae

\[
\begin{align*}
x &= r \cos(\theta) \\
y &= r \sin(\theta)
\end{align*}
\]

to get

\[
\begin{align*}
x_r &= \cos(\theta) \\
x_\theta &= -r \sin(\theta) \\
y_r &= \sin(\theta) \\
y_\theta &= r \cos(\theta),
\end{align*}
\]

\[
\begin{align*}
f_r &= f_x x_r + f_y y_r = \cos(\theta) f_x + \sin(\theta) f_y \\
f_\theta &= f_x x_\theta + f_y y_\theta = -r \sin(\theta) f_x + r \cos(\theta) f_y \\
u &= f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta = f_x \cos(\theta) \mathbf{e}_r + f_y \sin(\theta) \mathbf{e}_r - f_x \sin(\theta) \mathbf{e}_\theta + f_y \cos(\theta) \mathbf{e}_\theta
\end{align*}
\]
For any two-dimensional scalar field \(f \) (as a function of \(r \) and \(\theta \)) we have

\[
\nabla(f) = \text{grad}(f) = f_r e_r + r^{-1} f_\theta e_\theta.
\]

Justification: Consider the field \(u = f_r e_r + r^{-1} f_\theta e_\theta \); we show that this is the same as \(\text{grad}(f) \). Two-variable chain rule: suppose we make a small change \(\delta r \) to \(r \). This causes a change \(\delta x \simeq x_r \delta r \) to \(x \), which in turn causes a change \(\sim f_x \delta x \simeq f_x x_r \delta r \) to \(f \). At the same time, our change in \(r \) also causes a change \(\delta y \simeq y_r \delta r \) to \(x \), which causes a change \(\sim f_y \delta y = f_y y_r \delta r \) to \(f \). Altogether, the change in \(f \) is \(\delta f \simeq (f_x x_r + f_y y_r) \delta r \). By passing to the limit \(\delta r \to 0 \), we get

\[
f_r = f_x x_r + f_y y_r. \quad \text{Similarly,} \quad f_\theta = f_x x_\theta + f_y y_\theta. \quad \text{Moreover, we can differentiate the formulae}
\]

\[
x = r \cos(\theta) \quad y = r \sin(\theta)
\]

\[
x_r = \cos(\theta) \quad y_r = \sin(\theta)
\]

\[
x_\theta = -r \sin(\theta) \quad y_\theta = r \cos(\theta), \quad \text{so}
\]

\[
f_r = f_x x_r + f_y y_r = \cos(\theta) f_x + \sin(\theta) f_y
\]

\[
f_\theta = f_x x_\theta + f_y y_\theta = -r \sin(\theta) f_x + r \cos(\theta) f_y
\]

\[
u = f_r e_r + r^{-1} f_\theta e_\theta = f_x \cos(\theta)e_r + f_y \sin(\theta)e_r - f_x \sin(\theta)e_\theta + f_y \cos(\theta)e_\theta
\]

\[
= f_x (\cos(\theta)e_r - \sin(\theta)e_\theta) + f_y (\sin(\theta)e_r + \cos(\theta)e_\theta)
\]
Grad in polar coordinates

For any two-dimensional scalar field f (as a function of r and θ) we have

$$\nabla (f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta.$$

Justification: Consider the field $\mathbf{u} = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta$; we show that this is the same as $\text{grad}(f)$. Two-variable chain rule: suppose we make a small change δr to r. This causes a change $\delta x \simeq x_r \delta r$ to x, which in turn causes a change $\simeq f_x \delta x \simeq f_x x_r \delta r$ to f. At the same time, our change in r also causes a change $\delta y \simeq y_r \delta r$ to x, which causes a change $\simeq f_y \delta y = f_y y_r \delta r$ to f. Altogether, the change in f is $\delta f \simeq (f_x x_r + f_y y_r) \delta r$. By passing to the limit $\delta r \to 0$, we get $f_r = f_x x_r + f_y y_r$. Similarly, $f_\theta = f_x x_\theta + f_y y_\theta$. Moreover, we can differentiate the formulae

$$x = r \cos(\theta) \quad \quad \quad \quad \quad \quad y = r \sin(\theta)$$

to get

$$x_r = \cos(\theta) \quad \quad \quad \quad \quad \quad y_r = \sin(\theta)$$

$$x_\theta = -r \sin(\theta) \quad \quad \quad \quad \quad \quad y_\theta = r \cos(\theta), \text{ so}$$

$$f_r = f_x x_r + f_y y_r = \cos(\theta) f_x + \sin(\theta) f_y$$
$$f_\theta = f_x x_\theta + f_y y_\theta = -r \sin(\theta) f_x + r \cos(\theta) f_y$$

$$\mathbf{u} = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta = f_x \cos(\theta) \mathbf{e}_r + f_y \sin(\theta) \mathbf{e}_r - f_x \sin(\theta) \mathbf{e}_\theta + f_y \cos(\theta) \mathbf{e}_\theta$$
$$= f_x (\cos(\theta) \mathbf{e}_r - \sin(\theta) \mathbf{e}_\theta) + f_y (\sin(\theta) \mathbf{e}_r + \cos(\theta) \mathbf{e}_\theta) = f_x \mathbf{i} + f_y \mathbf{j}$$
For any two-dimensional scalar field f (as a function of r and θ) we have

\[\nabla(f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta. \]

Justification: Consider the field $u = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta$; we show that this is the same as grad(f). Two-variable chain rule: suppose we make a small change δr to r. This causes a change $\delta x \simeq x_r \delta r$ to x, which in turn causes a change $\simeq f_x \delta x \simeq f_x x_r \delta r$ to f. At the same time, our change in r also causes a change $\delta y \simeq y_r \delta r$ to x, which causes a change $\simeq f_y \delta y = f_y y_r \delta r$ to f. Altogether, the change in f is $\delta f \simeq (f_x x_r + f_y y_r) \delta r$. By passing to the limit $\delta r \to 0$, we get $f_r = f_x x_r + f_y y_r$. Similarly, $f_\theta = f_x x_\theta + f_y y_\theta$. Moreover, we can differentiate the formulae

\[x = r \cos(\theta) \quad y = r \sin(\theta) \]

to get

\[x_r = \cos(\theta) \quad y_r = \sin(\theta) \]
\[x_\theta = -r \sin(\theta) \quad y_\theta = r \cos(\theta), \text{ so} \]

\[f_r = f_x x_r + f_y y_r = \cos(\theta) f_x + \sin(\theta) f_y \]
\[f_\theta = f_x x_\theta + f_y y_\theta = -r \sin(\theta) f_x + r \cos(\theta) f_y \]

\[u = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta = f_x \cos(\theta) \mathbf{e}_r + f_y \sin(\theta) \mathbf{e}_r - f_x \sin(\theta) \mathbf{e}_\theta + f_y \cos(\theta) \mathbf{e}_\theta \]
\[= f_x (\cos(\theta) \mathbf{e}_r - \sin(\theta) \mathbf{e}_\theta) + f_y (\sin(\theta) \mathbf{e}_r + \cos(\theta) \mathbf{e}_\theta) = f_x \mathbf{i} + f_y \mathbf{j} = \text{grad}(f). \]
Examples of polar div, grad and curl

Example: Consider \(f = r^n \).

\[
\begin{align*}
\text{Clearly } f_r &= nr^{n-1} \\
\text{and } f_\theta &= 0, \text{ so } \nabla f &= f_re_r + r^{n-1}f_\theta e_\theta \\
\text{Note also that } r &= (x, y) = (r \cos(\theta), r \sin(\theta)) = re_r, \text{ so } e_r &= r/r = 1, \text{ so we can rewrite as } \\
\nabla (r^n) &= nr^{n-1}e_r \\
\text{(Obtained earlier using rectangular coordinates.)}
\end{align*}
\]

Example: Consider \(f = \theta \).

\[
\begin{align*}
\text{Clearly } f_r &= 0 \text{ and } f_\theta &= 1, \text{ so } \nabla f &= f_re_r + r^{n-1}f_\theta e_\theta = r^{n-1}e_\theta \\
\text{(Obtained earlier using rectangular coordinates.)}
\end{align*}
\]

Example: Consider \(u = \sqrt{r} (e_\theta + e_r/10) \) from the plot above.

\[
\begin{align*}
\text{This is } u &= pe_r + qe_\theta \text{ where } p = r^{1/2}/10 \text{ and } q = r^{1/2}, \text{ so } \\
p_\theta &= q_\theta = 0 \text{ and } p_r &= r^{1/2}/20 \text{ and } q_r = r^{1/2}/2. \text{ It follows that } \\
\n\text{div} (u) &= r^{1/2}p + pr + r^{1/2}q_\theta = 3r^{1/2}/20 \\
\text{curl} (u) &= r^{1/2}q + qr - r^{1/2}p_\theta = 3r^{1/2}/2.
\end{align*}
\]
Example: Consider $f = r^n$. Clearly $f_r = nr^{n-1}$ and $f_\theta = 0$.
Examples of polar div, grad and curl

Example: Consider $f = r^n$. Clearly $f_r = nr^{n-1}$ and $f_\theta = 0$, so

\[
\text{grad}(f) = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta
\]
Examples of polar div, grad and curl

Example: Consider \(f = r^n \). Clearly \(f_r = nr^{n-1} \) and \(f_\theta = 0 \), so

\[
\text{grad}(f) = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta = nr^{n-1} \mathbf{e}_r.
\]
Examples of polar div, grad and curl

Example: Consider $f = r^n$. Clearly $f_r = n r^{n-1}$ and $f_\theta = 0$, so

$$\text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta = n r^{n-1} \mathbf{e}_r.$$

Note also that $\mathbf{r} = (x, y) = (r \cos(\theta), r \sin(\theta)) = r \mathbf{e}_r$.
Example: Consider $f = r^n$. Clearly $f_r = nr^{n-1}$ and $f_\theta = 0$, so

$$\text{grad}(f) = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta = nr^{n-1}\mathbf{e}_r.$$

Note also that $\mathbf{r} = (x, y) = (r \cos(\theta), r \sin(\theta)) = r \mathbf{e}_r$, so $\mathbf{e}_r = \mathbf{r}/r$.

Examples of polar div, grad and curl

Example: Consider $f = r^n$. Clearly $f_r = nr^{n-1}$ and $f_\theta = 0$, so

$$\text{grad}(f) = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta = nr^{n-1}\mathbf{e}_r.$$

Note also that $\mathbf{r} = (x, y) = (r \cos(\theta), r \sin(\theta)) = r \mathbf{e}_r$, so $\mathbf{e}_r = \mathbf{r}/r$, so we can rewrite as $\text{grad}(r^n) = nr^{n-2}\mathbf{r}$.

Examples of polar div, grad and curl

Example: Consider \(f = r^n \). Clearly \(f_r = nr^{n-1} \) and \(f_\theta = 0 \), so

\[
\text{grad}(f) = f_r \mathbf{e}_r + f_\theta \mathbf{e}_\theta = nr^{n-1} \mathbf{e}_r.
\]

Note also that \(\mathbf{r} = (x, y) = (r \cos(\theta), r \sin(\theta)) = r \mathbf{e}_r \), so \(\mathbf{e}_r = \mathbf{r}/r \), so we can rewrite as \(\text{grad}(r^n) = nr^{n-2} \mathbf{r} \). (Obtained earlier using rectangular coordinates.)
Examples of polar div, grad and curl

Example: Consider \(f = r^n \). Clearly \(f_r = nr^{n-1} \) and \(f_\theta = 0 \), so

\[
\text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta = nr^{n-1} \mathbf{e}_r.
\]

Note also that \(r = (x, y) = (r \cos(\theta), r \sin(\theta)) = r \mathbf{e}_r \), so \(\mathbf{e}_r = r / r \), so we can rewrite as \(\text{grad}(r^n) = nr^{n-2} r \). (Obtained earlier using rectangular coordinates.)

Example: Consider \(f = \theta \).
Examples of polar div, grad and curl

Example: Consider \(f = r^n \). Clearly \(f_r = nr^{n-1} \) and \(f_\theta = 0 \), so
\[
\text{grad}(f) = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta = nr^{n-1}\mathbf{e}_r.
\]

Note also that \(\mathbf{r} = (x, y) = (r \cos(\theta), r \sin(\theta)) = r \mathbf{e}_r \), so \(\mathbf{e}_r = \mathbf{r}/r \), so we can rewrite as \(\text{grad}(r^n) = nr^{n-2}\mathbf{r} \). (Obtained earlier using rectangular coordinates.)

Example: Consider \(f = \theta \). Clearly \(f_r = 0 \) and \(f_\theta = 1 \)
Examples of polar div, grad and curl

Example: Consider \(f = r^n \). Clearly \(f_r = nr^{n-1} \) and \(f_\theta = 0 \), so

\[
\text{grad}(f) = f_r e_r + r^{-1}f_\theta e_\theta = nr^{n-1}e_r.
\]

Note also that \(r = (x, y) = (r \cos(\theta), r \sin(\theta)) = r e_r \), so \(e_r = r/r \), so we can rewrite as \(\text{grad}(r^n) = nr^{n-2}r \). (Obtained earlier using rectangular coordinates.)

Example: Consider \(f = \theta \). Clearly \(f_r = 0 \) and \(f_\theta = 1 \), so

\[
\text{grad}(f) = f_r e_r + r^{-1}f_\theta e_\theta
\]
Examples of polar div, grad and curl

Example: Consider \(f = r^n \). Clearly \(f_r = nr^{n-1} \) and \(f_\theta = 0 \), so

\[
\text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta = nr^{n-1} \mathbf{e}_r.
\]

Note also that \(\mathbf{r} = (x, y) = (r \cos(\theta), r \sin(\theta)) = r \mathbf{e}_r \), so \(\mathbf{e}_r = \mathbf{r}/r \), so we can rewrite as \(\text{grad}(r^n) = nr^{n-2} \mathbf{r} \). (Obtained earlier using rectangular coordinates.)

Example: Consider \(f = \theta \). Clearly \(f_r = 0 \) and \(f_\theta = 1 \), so

\[
\text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta = r^{-1} \mathbf{e}_\theta
\]
Examples of polar div, grad and curl

Example: Consider \(f = r^n \). Clearly \(f_r = nr^{n-1} \) and \(f_\theta = 0 \), so

\[
\text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta = nr^{n-1} \mathbf{e}_r.
\]

Note also that \(\mathbf{r} = (x, y) = (r \cos(\theta), r \sin(\theta)) = r \mathbf{e}_r \), so \(\mathbf{e}_r = \mathbf{r}/r \), so we can rewrite as \(\text{grad}(r^n) = nr^{n-2} \mathbf{r} \). (Obtained earlier using rectangular coordinates.)

Example: Consider \(f = \theta \). Clearly \(f_r = 0 \) and \(f_\theta = 1 \), so

\[
\text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta = r^{-1} \mathbf{e}_\theta = r^{-2}(-r \sin(\theta), r \cos(\theta))
\]
Examples of polar div, grad and curl

Example: Consider \(f = r^n \). Clearly \(f_r = nr^{n-1} \) and \(f_\theta = 0 \), so

\[
\nabla f = f_r e_r + r^{-1}f_\theta e_\theta = nr^{n-1}e_r.
\]

Note also that \(r = (x, y) = (r \cos(\theta), r \sin(\theta)) = r e_r \), so \(e_r = r/r \), so we can rewrite as \(\nabla (r^n) = nr^{n-2}r \). (Obtained earlier using rectangular coordinates.)

Example: Consider \(f = \theta \). Clearly \(f_r = 0 \) and \(f_\theta = 1 \), so

\[
\nabla f = f_r e_r + r^{-1}f_\theta e_\theta = r^{-1}e_\theta = r^{-2}(-r \sin(\theta), r \cos(\theta)) = \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right).
\]
Examples of polar div, grad and curl

Example: Consider \(f = r^n \). Clearly \(f_r = nr^{n-1} \) and \(f_\theta = 0 \), so

\[
\nabla(f) = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta = nr^{n-1}\mathbf{e}_r.
\]

Note also that \(\mathbf{r} = (x, y) = (r \cos(\theta), r \sin(\theta)) = r \mathbf{e}_r \), so \(\mathbf{e}_r = \mathbf{r}/r \), so we can rewrite as \(\nabla(r^n) = nr^{n-2}r \). (Obtained earlier using rectangular coordinates.)

Example: Consider \(f = \theta \). Clearly \(f_r = 0 \) and \(f_\theta = 1 \), so

\[
\nabla(f) = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta = r^{-1}\mathbf{e}_\theta = r^{-2}(-r \sin(\theta), r \cos(\theta)) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right).
\]

(Obtained earlier using rectangular coordinates.)
Examples of polar div, grad and curl

Example: Consider \(f = r^n \). Clearly \(f_r = nr^{n-1} \) and \(f_\theta = 0 \), so
\[
\nabla(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta = nr^{n-1} \mathbf{e}_r.
\]

Note also that \(r = (x, y) = (r \cos(\theta), r \sin(\theta)) = r \mathbf{e}_r \), so \(\mathbf{e}_r = r/r \), so we can rewrite as \(\nabla(r^n) = nr^{n-2}r \). (Obtained earlier using rectangular coordinates.)

Example: Consider \(f = \theta \). Clearly \(f_r = 0 \) and \(f_\theta = 1 \), so
\[
\nabla(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta = r^{-1} \mathbf{e}_\theta = r^{-2}(-r \sin(\theta), r \cos(\theta)) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right).
\]
(Obtained earlier using rectangular coordinates.)

Example: Consider \(\mathbf{u} = \sqrt{r}(\mathbf{e}_\theta + \mathbf{e}_r/10) \) from the plot above.
Examples of polar div, grad and curl

Example: Consider $f = r^n$. Clearly $f_r = nr^{n-1}$ and $f_\theta = 0$, so

$$\text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta = nr^{n-1} \mathbf{e}_r.$$

Note also that $r = (x, y) = (r \cos(\theta), r \sin(\theta)) = r \mathbf{e}_r$, so $\mathbf{e}_r = r / r$, so we can rewrite as $\text{grad}(r^n) = nr^{n-2} r$. (Obtained earlier using rectangular coordinates.)

Example: Consider $f = \theta$. Clearly $f_r = 0$ and $f_\theta = 1$, so

$$\text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta = r^{-1} \mathbf{e}_\theta = r^{-2}(-r \sin(\theta), r \cos(\theta)) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right).$$

(Obtained earlier using rectangular coordinates.)

Example: Consider $u = \sqrt{r}(\mathbf{e}_\theta + \mathbf{e}_r/10)$ from the plot above. This is $u = p \mathbf{e}_r + q \mathbf{e}_\theta$ where $p = r^{1/2} / 10$ and $q = r^{1/2}$
Examples of polar div, grad and curl

Example: Consider $f = r^n$. Clearly $f_r = nr^{n-1}$ and $f_\theta = 0$, so

$$\text{grad}(f) = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta = nr^{n-1}\mathbf{e}_r.$$

Note also that $r = (x, y) = (r \cos(\theta), r \sin(\theta)) = r \mathbf{e}_r$, so $\mathbf{e}_r = r/r$, so we can rewrite as $\text{grad}(r^n) = nr^{n-2}r$. (Obtained earlier using rectangular coordinates.)

Example: Consider $f = \theta$. Clearly $f_r = 0$ and $f_\theta = 1$, so

$$\text{grad}(f) = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta = r^{-1}\mathbf{e}_\theta = r^{-2}(-r \sin(\theta), r \cos(\theta)) = \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right).$$

(Obtained earlier using rectangular coordinates.)

Example: Consider $\mathbf{u} = \sqrt{r}(\mathbf{e}_\theta + \mathbf{e}_r/10)$ from the plot above. This is $\mathbf{u} = p\mathbf{e}_r + q\mathbf{e}_\theta$ where $p = r^{1/2}/10$ and $q = r^{1/2}$, so $p_\theta = q_\theta = 0$ and $p_r = r^{-1/2}/20$ and $q_r = r^{-1/2}/2$.
Examples of polar div, grad and curl

Example: Consider \(f = r^n \). Clearly \(f_r = nr^{n-1} \) and \(f_\theta = 0 \), so

\[
\text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta = nr^{n-1} \mathbf{e}_r.
\]

Note also that \(\mathbf{r} = (x, y) = (r \cos(\theta), r \sin(\theta)) = r \mathbf{e}_r \), so \(\mathbf{e}_r = \mathbf{r} / r \), so we can rewrite as \(\text{grad}(r^n) = nr^{n-2} \mathbf{r} \). (Obtained earlier using rectangular coordinates.)

Example: Consider \(f = \theta \). Clearly \(f_r = 0 \) and \(f_\theta = 1 \), so

\[
\text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta = r^{-1} \mathbf{e}_\theta = r^{-2}(-r \sin(\theta), r \cos(\theta)) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right).
\]

(Obtained earlier using rectangular coordinates.)

Example: Consider \(\mathbf{u} = \sqrt{r} (\mathbf{e}_\theta + \mathbf{e}_r / 10) \) from the plot above. This is \(\mathbf{u} = p \mathbf{e}_r + q \mathbf{e}_\theta \) where \(p = r^{\frac{1}{2}} / 10 \) and \(q = r^{\frac{1}{2}} \), so \(p_\theta = q_\theta = 0 \) and \(p_r = r^{-\frac{1}{2}} / 20 \) and \(q_r = r^{-\frac{1}{2}} / 2 \). It follows that

\[
\text{div}(\mathbf{u}) = r^{-1} p + p_r + r^{-1} q_\theta
\]
Examples of polar div, grad and curl

Example: Consider \(f = r^n \). Clearly \(f_r = nr^{n-1} \) and \(f_\theta = 0 \), so

\[
\text{grad}(f) = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta = nr^{n-1} \mathbf{e}_r.
\]

Note also that \(r = (x, y) = (r \cos(\theta), r \sin(\theta)) = r \mathbf{e}_r \), so \(\mathbf{e}_r = r/r \), so we can rewrite as \(\text{grad}(r^n) = nr^{n-2}r \). (Obtained earlier using rectangular coordinates.)

Example: Consider \(f = \theta \). Clearly \(f_r = 0 \) and \(f_\theta = 1 \), so

\[
\text{grad}(f) = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta = r^{-1} \mathbf{e}_\theta = r^{-2}(-r \sin(\theta), r \cos(\theta)) = \left(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}\right).
\]

(Obtained earlier using rectangular coordinates.)

Example: Consider \(\mathbf{u} = \sqrt{r}(\mathbf{e}_\theta + \mathbf{e}_r/10) \) from the plot above. This is \(\mathbf{u} = p \mathbf{e}_r + q \mathbf{e}_\theta \) where \(p = r^{1/2}/10 \) and \(q = r^{1/2} \), so \(p_\theta = q_\theta = 0 \) and \(p_r = r^{-1/2}/20 \) and \(q_r = r^{-1/2}/2 \). It follows that

\[
\text{div}(\mathbf{u}) = r^{-1} p + p_r + r^{-1} q_\theta = r^{-1} r^{1/2}/10 + r^{-1/2}/20 + 0
\]
Examples of polar div, grad and curl

Example: Consider \(f = r^n \). Clearly \(f_r = nr^{n-1} \) and \(f_\theta = 0 \), so
\[
\text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta = nr^{n-1} \mathbf{e}_r.
\]

Note also that \(\mathbf{r} = (x, y) = (r \cos(\theta), r \sin(\theta)) = r \mathbf{e}_r \), so \(\mathbf{e}_r = \mathbf{r}/r \), so we can rewrite as \(\text{grad}(r^n) = nr^{n-2} \mathbf{r} \). (Obtained earlier using rectangular coordinates.)

Example: Consider \(f = \theta \). Clearly \(f_r = 0 \) and \(f_\theta = 1 \), so
\[
\text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta = r^{-1} \mathbf{e}_\theta = r^{-2}(-r \sin(\theta), r \cos(\theta)) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right).
\]

(Obtained earlier using rectangular coordinates.)

Example: Consider \(\mathbf{u} = \sqrt{r}(\mathbf{e}_\theta + \mathbf{e}_r/10) \) from the plot above. This is \(\mathbf{u} = p \mathbf{e}_r + q \mathbf{e}_\theta \) where \(p = r^{\frac{1}{2}}/10 \) and \(q = r^{\frac{1}{2}} \), so \(p_\theta = q_\theta = 0 \) and \(p_r = r^{-\frac{1}{2}}/20 \) and \(q_r = r^{-\frac{1}{2}}/2 \). It follows that
\[
\text{div}(\mathbf{u}) = r^{-1} p + p_r + r^{-1} q_\theta = r^{-1} r^{\frac{1}{2}}/10 + r^{-\frac{1}{2}}/20 + 0 = 3r^{-\frac{1}{2}}/20
\]
Examples of polar div, grad and curl

Example: Consider \(f = r^n \). Clearly \(f_r = nr^{n-1} \) and \(f_\theta = 0 \), so

\[
\nabla(f) = f_r \hat{e}_r + r^{-1} f_\theta \hat{e}_\theta = nr^{n-1} \hat{e}_r.
\]

Note also that \(r = (x, y) = (r \cos(\theta), r \sin(\theta)) = r \hat{e}_r \), so \(\hat{e}_r = r / r \), so we can rewrite as \(\nabla(r^n) = nr^{n-2}r \). (Obtained earlier using rectangular coordinates.)

Example: Consider \(f = \theta \). Clearly \(f_r = 0 \) and \(f_\theta = 1 \), so

\[
\nabla(f) = f_r \hat{e}_r + r^{-1} f_\theta \hat{e}_\theta = r^{-1} \hat{e}_\theta = r^{-2} (-r \sin(\theta), r \cos(\theta)) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right).
\]

(Obtained earlier using rectangular coordinates.)

Example: Consider \(u = \sqrt{r}(\hat{e}_\theta + \hat{e}_r / 10) \) from the plot above. This is \(u = p \hat{e}_r + q \hat{e}_\theta \) where \(p = r^{1/2} / 10 \) and \(q = r^{1/2} \), so \(p_\theta = q_\theta = 0 \) and \(p_r = r^{-1/2} / 20 \) and \(q_r = r^{-1/2} / 2 \). It follows that

\[
\nabla(u) = r^{-1} p + p_r + r^{-1} q_\theta = r^{-1} r^{1/2} / 10 + r^{-1/2} / 20 + 0 = 3r^{-1/2} / 20
\]

\[\text{curl}(u)\]
Examples of polar div, grad and curl

Example: Consider \(f = r^n \). Clearly \(f_r = nr^{n-1} \) and \(f_\theta = 0 \), so

\[
\nabla f = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta = nr^{n-1} \mathbf{e}_r.
\]

Note also that \(r = (x, y) = (r \cos(\theta), r \sin(\theta)) = r \mathbf{e}_r \), so \(\mathbf{e}_r = r/r \), so we can rewrite as \(\nabla(r^n) = nr^{n-2}r \). (Obtained earlier using rectangular coordinates.)

Example: Consider \(f = \theta \). Clearly \(f_r = 0 \) and \(f_\theta = 1 \), so

\[
\nabla f = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta = r^{-2}(-r \sin(\theta), r \cos(\theta)) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right).
\]

(Obtained earlier using rectangular coordinates.)

Example: Consider \(\mathbf{u} = \sqrt{r}(\mathbf{e}_\theta + \mathbf{e}_r/10) \) from the plot above. This is \(\mathbf{u} = p \mathbf{e}_r + q \mathbf{e}_\theta \) where \(p = r^{1/2}/10 \) and \(q = r^{1/2} \), so \(p_\theta = q_\theta = 0 \) and \(p_r = r^{-1/2}/20 \) and \(q_r = r^{-1/2}/2 \). It follows that

\[
\text{div}(\mathbf{u}) = r^{-1}p + p_r + r^{-1}q_\theta = r^{-1}r^{1/2}/10 + r^{-1/2}/20 + 0 = 3r^{-1/2}/20
\]

\[
\text{curl}(\mathbf{u}) = r^{-1}q + q_r - r^{-1}p_\theta
\]
Examples of polar div, grad and curl

Example: Consider \(f = r^n \). Clearly \(f_r = nr^{n-1} \) and \(f_\theta = 0 \), so

\[
\text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta = nr^{n-1} \mathbf{e}_r.
\]

Note also that \(r = (x, y) = (r \cos(\theta), r \sin(\theta)) = r \mathbf{e}_r \), so \(\mathbf{e}_r = r/r \), so we can rewrite as \(\text{grad}(r^n) = nr^{n-2}r \). (Obtained earlier using rectangular coordinates.)

Example: Consider \(f = \theta \). Clearly \(f_r = 0 \) and \(f_\theta = 1 \), so

\[
\text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\theta \mathbf{e}_\theta = r^{-1} \mathbf{e}_\theta = r^{-2}(-r \sin(\theta), r \cos(\theta)) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right).
\]

(Obtained earlier using rectangular coordinates.)

Example: Consider \(u = \sqrt{r}(\mathbf{e}_\theta + \mathbf{e}_r/10) \) from the plot above. This is \(u = p \mathbf{e}_r + q \mathbf{e}_\theta \) where \(p = r^{1/2}/10 \) and \(q = r^{1/2} \), so \(p_\theta = q_\theta = 0 \) and \(p_r = r^{-1/2}/20 \)

and \(q_r = r^{-1/2}/2 \). It follows that

\[
\text{div}(u) = r^{-1}p + p_r + r^{-1}q_\theta = r^{-1}r^{1/2}/10 + r^{-1/2}/20 + 0 = 3r^{-1/2}/20
\]

\[
\text{curl}(u) = r^{-1}q + q_r - r^{-1}p_\theta = r^{-1}r^{-1/2} + r^{-1/2}/2 - 0
\]
Examples of polar div, grad and curl

Example: Consider \(f = r^n \). Clearly \(f_r = nr^{n-1} \) and \(f_\theta = 0 \), so

\[
\text{grad}(f) = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta = nr^{n-1}\mathbf{e}_r.
\]

Note also that \(\mathbf{r} = (x, y) = (r \cos(\theta), r \sin(\theta)) = r \mathbf{e}_r \), so \(\mathbf{e}_r = \mathbf{r}/r \), so we can rewrite as \(\text{grad}(r^n) = nr^{n-2}\mathbf{r} \). (Obtained earlier using rectangular coordinates.)

Example: Consider \(f = \theta \). Clearly \(f_r = 0 \) and \(f_\theta = 1 \), so

\[
\text{grad}(f) = f_r \mathbf{e}_r + r^{-1}f_\theta \mathbf{e}_\theta = r^{-1}\mathbf{e}_\theta = r^{-2}(-r \sin(\theta), r \cos(\theta)) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right).
\]

(Obtained earlier using rectangular coordinates.)

Example: Consider \(\mathbf{u} = \sqrt{r}(\mathbf{e}_\theta + \mathbf{e}_r/10) \) from the plot above. This is

\(\mathbf{u} = p \mathbf{e}_r + q \mathbf{e}_\theta \) where \(p = r^{1/2}/10 \) and \(q = r^{1/2} \), so \(p_\theta = q_\theta = 0 \) and \(p_r = r^{-1/2}/20 \)

and \(q_r = r^{-1/2}/2. \) It follows that

\[
\text{div}(\mathbf{u}) = r^{-1}p + p_r + r^{-1}q_\theta = r^{-1}r^{1/2}/10 + r^{-1/2}/20 + 0 = 3r^{-1/2}/20
\]

\[
\text{curl}(\mathbf{u}) = r^{-1}q + q_r - r^{-1}p_\theta = r^{-1}r^{-1/2} + r^{-1/2}/2 - 0 = 3r^{-1/2}/2.
\]
In cylindrical polar coordinates we use unit vectors \mathbf{e}_r, \mathbf{e}_θ and \mathbf{e}_z as shown below:
Cylindrical polar coordinates

In cylindrical polar coordinates we use unit vectors \mathbf{e}_r, \mathbf{e}_θ and \mathbf{e}_z as shown below:

Thus, \mathbf{e}_r and \mathbf{e}_θ are the same as for two-dimensional polar coordinates, and \mathbf{e}_z is just the vertical unit vector \mathbf{k}.
In cylindrical polar coordinates we use unit vectors \(e_r \), \(e_\theta \) and \(e_z \) as shown below:

\[
\begin{align*}
\mathbf{e}_r &= \cos(\theta) \mathbf{i} + \sin(\theta) \mathbf{j} \\
\mathbf{e}_\theta &= -\sin(\theta) \mathbf{i} + \cos(\theta) \mathbf{j} \\
\mathbf{e}_z &= \mathbf{k}
\end{align*}
\]

Thus, \(e_r \) and \(e_\theta \) are the same as for two-dimensional polar coordinates, and \(e_z \) is just the vertical unit vector \(\mathbf{k} \). The equations are:
In cylindrical polar coordinates we use unit vectors \mathbf{e}_r, \mathbf{e}_θ and \mathbf{e}_z as shown below:

Thus, \mathbf{e}_r and \mathbf{e}_θ are the same as for two-dimensional polar coordinates, and \mathbf{e}_z is just the vertical unit vector \mathbf{k}. The equations are:

\[
\begin{align*}
\mathbf{e}_r &= \cos(\theta)\mathbf{i} + \sin(\theta)\mathbf{j} \\
\mathbf{e}_\theta &= -\sin(\theta)\mathbf{i} + \cos(\theta)\mathbf{j} \\
\mathbf{e}_z &= \mathbf{k} \\
\mathbf{i} &= \cos(\theta)\mathbf{e}_r - \sin(\theta)\mathbf{e}_\theta \\
\mathbf{j} &= \sin(\theta)\mathbf{e}_r + \cos(\theta)\mathbf{e}_\theta \\
\mathbf{k} &= \mathbf{e}_z.
\end{align*}
\]
The rules for div, grad and curl are as follows:

(a) For any three-dimensional scalar field f (expressed as a function of r, θ and z) we have
\[
\nabla (f) = \text{grad} (f) = f_r e_r + r^{-1} f_\theta e_\theta + f_z e_z.
\]

(b) For any three-dimensional vector field $u = me_r + pe_\theta + q e_z$ (where m, p and q are expressed as functions of r, θ and z) we have
\[
\text{div} (u) = r^{-1} m + m r + r^{-1} p_\theta + q_z = r^{-1} (mr).\]
\[
\text{curl} (u) = 1 r \det \begin{pmatrix} e_r & e_\theta & e_z \\
\partial_r & \partial_\theta & \partial_z \\
m & p & q \end{pmatrix}.
\]

(c) For any three-dimensional scalar field f we have
\[
\nabla^2 (f) = r^{-1} f_r + f_{rr} + r^{-2} f_{\theta\theta} + f_{zz} = r^{-1} (rf_r).\]
Div, grad and curl in cylindrical polar coordinates

The rules for div, grad and curl are as follows:

(a) For any three-dimensional scalar field f (expressed as a function of r, θ and z) we have

$$\nabla(f) = \text{grad}(f) = f_r e_r + r^{-1}f_\theta e_\theta + f_z e_z.$$
The rules for div, grad and curl are as follows:

(a) For any three-dimensional scalar field \(f \) (expressed as a function of \(r, \theta \) and \(z \)) we have

\[
\nabla (f) = \text{grad}(f) = f_r e_r + r^{-1} f_\theta e_\theta + f_z e_z.
\]

(b) For any three-dimensional vector field \(\mathbf{u} = m \mathbf{e}_r + p \mathbf{e}_\theta + q \mathbf{e}_z \) (where \(m, p \) and \(q \) are expressed as functions of \(r, \theta \) and \(z \)) we have

\[
\text{div}(\mathbf{u}) = r^{-1} m + m_r + r^{-1} p_\theta + q_z
\]
Div, grad and curl in cylindrical polar coordinates

The rules for div, grad and curl are as follows:

(a) For any three-dimensional scalar field f (expressed as a function of r, θ and z) we have

$$\nabla(f) = \text{grad}(f) = f_r e_r + r^{-1} f_\theta e_\theta + f_z e_z.$$

(b) For any three-dimensional vector field $u = m e_r + p e_\theta + q e_z$ (where m, p and q are expressed as functions of r, θ and z) we have

$$\text{div}(u) = r^{-1} m + m_r + r^{-1} p_\theta + q_z = r^{-1} (rm)_r + r^{-1} p_\theta + q_z.$$
Div, grad and curl in cylindrical polar coordinates

The rules for div, grad and curl are as follows:

(a) For any three-dimensional scalar field f (expressed as a function of r, θ and z) we have

\[\nabla(f) = \text{grad}(f) = f_r e_r + r^{-1} f_\theta e_\theta + f_z e_z. \]

(b) For any three-dimensional vector field $\mathbf{u} = m e_r + p e_\theta + q e_z$ (where m, p and q are expressed as functions of r, θ and z) we have

\[\text{div}(\mathbf{u}) = r^{-1} m + m_r + r^{-1} p_\theta + q_z = r^{-1} (rm)_r + r^{-1} p_\theta + q_z \]

\[\text{curl}(\mathbf{u}) = \frac{1}{r} \det \begin{bmatrix} e_r & re_\theta & e_z \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\ m & rp & q \end{bmatrix}. \]
Div, grad and curl in cylindrical polar coordinates

The rules for div, grad and curl are as follows:

(a) For any three-dimensional scalar field f (expressed as a function of r, θ and z) we have

$$\nabla(f) = \text{grad}(f) = f_r e_r + r^{-1}f_\theta e_\theta + f_z e_z.$$

(b) For any three-dimensional vector field $\mathbf{u} = m e_r + p e_\theta + q e_z$ (where m, p and q are expressed as functions of r, θ and z) we have

$$\text{div}(\mathbf{u}) = r^{-1}m + m_r + r^{-1}p_\theta + q_z = r^{-1}(rm)_r + r^{-1}p_\theta + q_z$$

$$\text{curl}(\mathbf{u}) = \frac{1}{r} \det \begin{bmatrix} e_r & re_\theta & e_z \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\ m & rp & q \end{bmatrix}.$$

(c) For any three-dimensional scalar field f we have

$$\nabla^2(f) = r^{-1}f_r + f_{rr} + r^{-2}f_{\theta\theta} + f_{zz}.$$
Div, grad and curl in cylindrical polar coordinates

The rules for div, grad and curl are as follows:

(a) For any three-dimensional scalar field f (expressed as a function of r, θ and z) we have

$$\nabla(f) = \text{grad}(f) = f_r e_r + r^{-1}f_\theta e_\theta + f_z e_z.$$

(b) For any three-dimensional vector field $u = m e_r + p e_\theta + q e_z$ (where m, p and q are expressed as functions of r, θ and z) we have

$$\text{div}(u) = r^{-1} m + m_r + r^{-1}p_\theta + q_z = r^{-1}(rm)_r + r^{-1}p_\theta + q_z$$

$$\text{curl}(u) = \frac{1}{r} \det \begin{bmatrix} e_r & re_\theta & e_z \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\ m & rp & q \end{bmatrix}.$$

(c) For any three-dimensional scalar field f we have

$$\nabla^2(f) = r^{-1}f_r + f_{rr} + r^{-2}f_{\theta\theta} + f_{zz} = r^{-1}(rf)_r + r^{-2}f_{\theta\theta} + f_{zz}.$$
Consider the vector field \mathbf{u} given in cylindrical polar coordinates by
$\mathbf{u} = r(\mathbf{e}_\theta + \mathbf{e}_z)$.

$$\text{curl}(\mathbf{u}) = \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r) - \frac{\partial}{\partial z} (0) \right) \mathbf{e}_r - \frac{\partial}{\partial r} (r) \mathbf{e}_\theta + \frac{\partial}{\partial z} (r^2) \mathbf{e}_z$$

$$= \frac{1}{r} \left(-r \mathbf{e}_\theta + 2r \mathbf{e}_z \right)$$

$$= 2 \mathbf{e}_z - \mathbf{e}_\theta.$$
Example of curl in cylindrical polar coordinates

Consider the vector field \(\mathbf{u} \) given in cylindrical polar coordinates by
\[\mathbf{u} = r(\mathbf{e}_\theta + \mathbf{e}_z). \]
This is \(\mathbf{u} = m\mathbf{e}_r + p\mathbf{e}_\theta + q\mathbf{e}_z \), where \(m = 0 \) and \(p = q = r \).
Example of curl in cylindrical polar coordinates

Consider the vector field u given in cylindrical polar coordinates by $u = r(e_\theta + e_z)$. This is $u = me_r + pe_\theta + qe_z$, where $m = 0$ and $p = q = r$, so

$$\text{curl}(u) = \frac{1}{r} \det \begin{bmatrix} e_r & re_\theta & e_z \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\ 0 & r^2 & r \end{bmatrix}$$

$$= \frac{1}{r} \begin{bmatrix} 0 & -r & 2r \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix}$$
Example of curl in cylindrical polar coordinates

Consider the vector field \(\mathbf{u} \) given in cylindrical polar coordinates by $u = r(e_\theta + e_z)$. This is $u = me_r + pe_\theta + qe_z$, where $m = 0$ and $p = q = r$, so

curl(\(u \))

$$
\begin{align*}
\mathbf{u} &= \frac{1}{r} \begin{vmatrix}
 e_r & re_\theta & e_z \\
 \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\
 0 & r^2 & r
\end{vmatrix} \\
&= \frac{1}{r} \left(\left(\frac{\partial}{\partial \theta} (r) - \frac{\partial}{\partial z} (r^2) \right) e_r - \left(\frac{\partial}{\partial r} (r) - \frac{\partial}{\partial z} (0) \right) re_\theta + \left(\frac{\partial}{\partial r} (r^2) - \frac{\partial}{\partial \theta} (0) \right) e_z \right)
\end{align*}
$$
Consider the vector field \mathbf{u} given in cylindrical polar coordinates by $\mathbf{u} = r(\mathbf{e}_\theta + \mathbf{e}_z)$. This is $\mathbf{u} = m\mathbf{e}_r + p\mathbf{e}_\theta + q\mathbf{e}_z$, where $m = 0$ and $p = q = r$, so

$$\text{curl}(\mathbf{u}) = \frac{1}{r} \det \begin{bmatrix} \mathbf{e}_r & r\mathbf{e}_\theta & \mathbf{e}_z \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\ 0 & r^2 & r \end{bmatrix}$$

$$= \frac{1}{r} \left(\left(\frac{\partial}{\partial \theta} (r) - \frac{\partial}{\partial z} (r^2) \right) \mathbf{e}_r - \left(\frac{\partial}{\partial r} (r) - \frac{\partial}{\partial z} (0) \right) r \mathbf{e}_\theta + \left(\frac{\partial}{\partial r} (r^2) - \frac{\partial}{\partial \theta} (0) \right) \mathbf{e}_z \right)$$

$$= \frac{1}{r} \left(-r \mathbf{e}_\theta + 2r \mathbf{e}_z \right)$$
Consider the vector field \(\mathbf{u} \) given in cylindrical polar coordinates by
\[
\mathbf{u} = r(e_\theta + e_z).
\]
This is \(\mathbf{u} = me_r + pe_\theta + qe_z \), where \(m = 0 \) and \(p = q = r \), so

\[
\text{curl}(\mathbf{u}) = \frac{1}{r} \begin{vmatrix}
e_r & re_\theta & e_z \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\
0 & r^2 & r
\end{vmatrix}
\]

\[
= \frac{1}{r} \left(\left(\frac{\partial}{\partial \theta} (r) - \frac{\partial}{\partial z} (r^2) \right) e_r - \left(\frac{\partial}{\partial r} (r) - \frac{\partial}{\partial z} (0) \right) re_\theta + \left(\frac{\partial}{\partial r} (r^2) - \frac{\partial}{\partial \theta} (0) \right) e_z \right)
\]

\[
= \frac{1}{r} \left(-re_\theta + 2re_z \right) = 2e_z - e_\theta.
\]
Spherical polar coordinates

In spherical polar coordinates we use unit vectors \mathbf{e}_r, \mathbf{e}_θ and \mathbf{e}_ϕ as on the right:

Note that \mathbf{e}_θ has the same meaning as it did in the cylindrical case, but \mathbf{e}_r has changed. It used to be the unit vector pointing horizontally away from the z-axis, but now it points directly away from the origin.

The vectors \mathbf{e}_r, \mathbf{e}_ϕ and \mathbf{e}_θ are related to \mathbf{i}, \mathbf{j} and \mathbf{k} as follows.

$\mathbf{e}_r = \sin(\phi) \cos(\theta) \mathbf{i} + \sin(\phi) \sin(\theta) \mathbf{j} + \cos(\phi) \mathbf{k}$

$\mathbf{e}_\phi = \cos(\phi) \cos(\theta) \mathbf{i} + \cos(\phi) \sin(\theta) \mathbf{j} - \sin(\phi) \mathbf{k}$

$\mathbf{e}_\theta = -\sin(\theta) \mathbf{i} + \cos(\theta) \mathbf{j}$
In spherical polar coordinates we use unit vectors \mathbf{e}_r, \mathbf{e}_θ and \mathbf{e}_ϕ as on the right:

Note that \mathbf{e}_θ has the same meaning as it did in the cylindrical case, but \mathbf{e}_r has changed.
In spherical polar coordinates we use unit vectors \mathbf{e}_r, \mathbf{e}_θ, and \mathbf{e}_ϕ as on the right:

Note that \mathbf{e}_θ has the same meaning as it did in the cylindrical case, but \mathbf{e}_r has changed. It used to be the unit vector pointing horizontally away from the z-axis, but now it points directly away from the origin.
Spherical polar coordinates

In spherical polar coordinates we use unit vectors e_r, e_θ and e_ϕ as on the right:

Note that e_θ has the same meaning as it did in the cylindrical case, but e_r has changed. It used to be the unit vector pointing horizontally away from the z-axis, but now it points directly away from the origin.

The vectors e_r, e_ϕ and e_θ are related to i, j and k as follows.
In spherical polar coordinates we use unit vectors \mathbf{e}_r, \mathbf{e}_θ and \mathbf{e}_ϕ as on the right:

Note that \mathbf{e}_θ has the same meaning as it did in the cylindrical case, but \mathbf{e}_r has changed. It used to be the unit vector pointing horizontally away from the z-axis, but now it points directly away from the origin.

The vectors \mathbf{e}_r, \mathbf{e}_ϕ and \mathbf{e}_θ are related to \mathbf{i}, \mathbf{j} and \mathbf{k} as follows.

\[
\begin{align*}
\mathbf{e}_r &= \sin(\phi) \cos(\theta) \mathbf{i} + \sin(\phi) \sin(\theta) \mathbf{j} + \cos(\phi) \mathbf{k} \\
\mathbf{e}_\phi &= \cos(\phi) \cos(\theta) \mathbf{i} + \cos(\phi) \sin(\theta) \mathbf{j} - \sin(\phi) \mathbf{k} \\
\mathbf{e}_\theta &= -\sin(\theta) \mathbf{i} + \cos(\theta) \mathbf{j}
\end{align*}
\]
Spherical polar coordinates

In spherical polar coordinates we use unit vectors \mathbf{e}_r, \mathbf{e}_θ and \mathbf{e}_ϕ as on the right:

Note that \mathbf{e}_θ has the same meaning as it did in the cylindrical case, but \mathbf{e}_r has changed. It used to be the unit vector pointing horizontally away from the z-axis, but now it points directly away from the origin.

The vectors \mathbf{e}_r, \mathbf{e}_ϕ and \mathbf{e}_θ are related to \mathbf{i}, \mathbf{j} and \mathbf{k} as follows.

\[
\mathbf{e}_r = \sin(\phi) \cos(\theta) \mathbf{i} + \sin(\phi) \sin(\theta) \mathbf{j} + \cos(\phi) \mathbf{k}
\]
\[
\mathbf{e}_\phi = \cos(\phi) \cos(\theta) \mathbf{i} + \cos(\phi) \sin(\theta) \mathbf{j} - \sin(\phi) \mathbf{k}
\]
\[
\mathbf{e}_\theta = -\sin(\theta) \mathbf{i} + \cos(\theta) \mathbf{j}
\]
\[
\mathbf{i} = \sin(\phi) \cos(\theta) \mathbf{e}_r + \cos(\phi) \cos(\theta) \mathbf{e}_\phi - \sin(\theta) \mathbf{e}_\theta
\]
\[
\mathbf{j} = \sin(\phi) \sin(\theta) \mathbf{e}_r + \cos(\phi) \sin(\theta) \mathbf{e}_\phi + \cos(\theta) \mathbf{e}_\theta
\]
\[
\mathbf{k} = \cos(\phi) \mathbf{e}_r - \sin(\phi) \mathbf{e}_\phi.
\]
Div, grad and curl in spherical polar coordinates

The rules for div, grad and curl in spherical polar coordinates are as follows.
Div, grad and curl in spherical polar coordinates

The rules for div, grad and curl in spherical polar coordinates are as follows.

(a) For any three-dimensional scalar field f (expressed as a function of r, ϕ and θ) we have

$$\nabla f = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\phi \mathbf{e}_\phi + (r \sin(\phi))^{-1} f_\theta \mathbf{e}_\theta.$$
The rules for div, grad and curl in spherical polar coordinates are as follows.

(a) For any three-dimensional scalar field \(f \) (expressed as a function of \(r, \phi \) and \(\theta \)) we have

\[
\nabla(f) = \text{grad}(f) = f_r \mathbf{e}_r + r^{-1} f_\phi \mathbf{e}_\phi + (r \sin(\phi))^{-1} f_\theta \mathbf{e}_\theta.
\]

(b) For any three-dimensional vector field \(\mathbf{u} = m \mathbf{e}_r + p \mathbf{e}_\phi + q \mathbf{e}_\theta \) (where \(m, p \) and \(q \) are expressed as functions of \(r, \phi \) and \(\theta \)) we have

\[
\text{div}(\mathbf{u}) = r^{-2} (r^2 m)_r + (r \sin(\phi))^{-1} (\sin(\phi) p)_\phi + (r \sin(\phi))^{-1} q_\theta
\]
The rules for div, grad and curl in spherical polar coordinates are as follows.

(a) For any three-dimensional scalar field f (expressed as a function of r, ϕ and θ) we have

$$\nabla(f) = \text{grad}(f) = f_r e_r + r^{-1} f_\phi e_\phi + (r \sin(\phi))^{-1} f_\theta e_\theta.$$

(b) For any three-dimensional vector field $u = m e_r + p e_\phi + q e_\theta$ (where m, p and q are expressed as functions of r, ϕ and θ) we have

$$\text{div}(u) = r^{-2} (m r) + (r \sin(\phi))^{-1} (\sin(\phi) p \phi) + (r \sin(\phi))^{-1} q_\theta$$

$$\text{curl}(u) = \frac{1}{r^2 \sin(\phi)} \det \begin{bmatrix} e_r & r e_\phi & r \sin(\phi) e_\theta \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial \theta} \\ m & r p & r \sin(\phi) q \end{bmatrix}.$$
The rules for div, grad and curl in spherical polar coordinates are as follows.

(a) For any three-dimensional scalar field f (expressed as a function of r, ϕ and θ) we have

$$\nabla(f) = \text{grad}(f) = f_r e_r + r^{-1} f_\phi e_\phi + (r \sin(\phi))^{-1} f_\theta e_\theta.$$

(b) For any three-dimensional vector field $u = m e_r + p e_\phi + q e_\theta$ (where m, p and q are expressed as functions of r, ϕ and θ) we have

$$\text{div}(u) = r^{-2}(r^2 m)_r + (r \sin(\phi))^{-1}(\sin(\phi)p)_\phi + (r \sin(\phi))^{-1} q_\theta$$

$$\text{curl}(u) = \frac{1}{r^2 \sin(\phi)} \det \begin{bmatrix} e_r & re_\phi & r \sin(\phi)e_\theta \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial \theta} \\ m & rp & r \sin(\phi)q \end{bmatrix}.$$

(c) For any three-dimensional scalar field f we have

$$\nabla^2(f) = r^{-2}(r^2 f_r)_r + (r^2 \sin(\phi))^{-1}(\sin(\phi)f_\phi)_\phi + (r^2 \sin^2(\phi))^{-1} f_{\theta\theta}.$$
Potential of a point charge at the origin is $V = A/r$, (A constant, $r = \sqrt{x^2 + y^2 + z^2}$).
Potential of a point charge at the origin is $V = A/r$, (A constant, $r = \sqrt{x^2 + y^2 + z^2}$). The electric field is $\mathbf{E} = \text{grad}(V)$.
Example of div, grad and curl in spherical polar coordinates

Potential of a point charge at the origin is \(V = A/r \), (\(A \) constant, \(r = \sqrt{x^2 + y^2 + z^2} \)). The electric field is \(\mathbf{E} = \nabla V \). No magnetism or other charges, so Maxwell says \(\text{div}(\mathbf{E}) = 0 \) and \(\text{curl}(\mathbf{E}) = 0 \). We will check this.
Potential of a point charge at the origin is \(V = A/r \), \((A\ \text{constant,} \ r = \sqrt{x^2 + y^2 + z^2})\). The electric field is \(\mathbf{E} = \text{grad}(V) \). No magnetism or other charges, so Maxwell says \(\text{div}(\mathbf{E}) = 0 \) and \(\text{curl}(\mathbf{E}) = 0 \). We will check this. First, we have \(V_r = -A/r^2 \)
Example of div, grad and curl in spherical polar coordinates

Potential of a point charge at the origin is $V = A/r$, (A constant, $r = \sqrt{x^2 + y^2 + z^2}$). The electric field is $\mathbf{E} = \text{grad}(V)$. No magnetism or other charges, so Maxwell says $\text{div}(\mathbf{E}) = 0$ and $\text{curl}(\mathbf{E}) = 0$. We will check this.

First, we have $V_r = -A/r^2$ and $V_\phi = V_\theta = 0$.
Potential of a point charge at the origin is $V = A/r$, (A constant, $r = \sqrt{x^2 + y^2 + z^2}$). The electric field is $E = \text{grad}(V)$. No magnetism or other charges, so Maxwell says $\text{div}(E) = 0$ and $\text{curl}(E) = 0$. We will check this. First, we have $V_r = -A/r^2$ and $V_\phi = V_\theta = 0$, so the rule

$$\text{grad}(V) = V_r \hat{e}_r + r^{-1} V_\phi \hat{e}_\phi + (r \sin(\phi))^{-1} V_\theta \hat{e}_\theta$$
Potential of a point charge at the origin is $V = A/r$, (A constant, $r = \sqrt{x^2 + y^2 + z^2}$). The electric field is $\mathbf{E} = \nabla V$. No magnetism or other charges, so Maxwell says $\text{div}(\mathbf{E}) = 0$ and $\text{curl}(\mathbf{E}) = 0$. We will check this.

First, we have $V_r = -A/r^2$ and $V_\phi = V_\theta = 0$, so the rule

$$
\nabla V = V_r \mathbf{e}_r + r^{-1} V_\phi \mathbf{e}_\phi + (r \sin(\phi))^{-1} V_\theta \mathbf{e}_\theta
$$

just gives $\mathbf{E} = \nabla V = -A r^{-2} \mathbf{e}_r$.

Potential of a point charge at the origin is $V = A/r$, (A constant, $r = \sqrt{x^2 + y^2 + z^2}$). The electric field is $\mathbf{E} = \text{grad}(V)$. No magnetism or other charges, so Maxwell says $\text{div} (\mathbf{E}) = 0$ and $\text{curl} (\mathbf{E}) = 0$. We will check this. First, we have $V_r = -A/r^2$ and $V_\phi = V_\theta = 0$, so the rule

$$\text{grad}(V) = V_r \mathbf{e}_r + r^{-1} V_\phi \mathbf{e}_\phi + (r \sin(\phi))^{-1} V_\theta \mathbf{e}_\theta$$

just gives $\mathbf{E} = \text{grad}(V) = -Ar^{-2} \mathbf{e}_r$. In other words, we have $\mathbf{E} = me_r + pe_\phi + qe_\theta$ with $m = -Ar^{-2}$ and $p = q = 0$.
Potential of a point charge at the origin is \(V = A/r \), (\(A \) constant, \(r = \sqrt{x^2 + y^2 + z^2} \)). The electric field is \(\mathbf{E} = \nabla V \). No magnetism or other charges, so Maxwell says \(\text{div}(\mathbf{E}) = 0 \) and \(\text{curl}(\mathbf{E}) = 0 \). We will check this. First, we have \(V_r = -A/r^2 \) and \(V_\phi = V_\theta = 0 \), so the rule

\[
\nabla V = V_r \mathbf{e}_r + r^{-1} V_\phi \mathbf{e}_\phi + (r \sin(\phi))^{-1} V_\theta \mathbf{e}_\theta
\]

just gives \(\mathbf{E} = \nabla V = -Ar^{-2} \mathbf{e}_r \). In other words, we have \(\mathbf{E} = m \mathbf{e}_r + p \mathbf{e}_\phi + q \mathbf{e}_\theta \) with \(m = -Ar^{-2} \) and \(p = q = 0 \). The general rule for the divergence is

\[
\text{div}(\mathbf{E}) = r^{-2}(r^2 m)_r + (r \sin(\phi))^{-1}(\sin(\phi)p)_\phi + (r \sin(\phi))^{-1} q_\theta.
\]
Potential of a point charge at the origin is $V = A/r$, (A constant, $r = \sqrt{x^2 + y^2 + z^2}$). The electric field is $E = \nabla V$. No magnetism or other charges, so Maxwell says $\text{div}(E) = 0$ and $\text{curl}(E) = 0$. We will check this.

First, we have $V_r = -A/r^2$ and $V_\phi = V_\theta = 0$, so the rule

$$\nabla V = V_r \mathbf{e}_r + r^{-1}V_\phi \mathbf{e}_\phi + (r \sin(\phi))^{-1} V_\theta \mathbf{e}_\theta$$

just gives $E = \nabla V = -Ar^{-2} \mathbf{e}_r$. In other words, we have $E = me_r + pe_\phi + qe_\theta$ with $m = -Ar^{-2}$ and $p = q = 0$. The general rule for the divergence is

$$\text{div}(E) = r^{-2}(r^2 m)_r + (r \sin(\phi))^{-1}(\sin(\phi)p)_\phi + (r \sin(\phi))^{-1} q_\theta.$$

As $p = q = 0$, the second and third terms are zero.
Potential of a point charge at the origin is $V = A/r$, (A constant, $r = \sqrt{x^2 + y^2 + z^2}$). The electric field is $\mathbf{E} = \nabla V$. No magnetism or other charges, so Maxwell says $\text{div}(\mathbf{E}) = 0$ and $\text{curl}(\mathbf{E}) = 0$. We will check this.

First, we have $V_r = -A/r^2$ and $V_\phi = V_\theta = 0$, so the rule

$$\nabla V = V_r \mathbf{e}_r + r^{-1} V_\phi \mathbf{e}_\phi + (r \sin(\phi))^{-1} V_\theta \mathbf{e}_\theta$$

just gives $\mathbf{E} = \nabla V = -Ar^{-2} \mathbf{e}_r$. In other words, we have $\mathbf{E} = m \mathbf{e}_r + p \mathbf{e}_\phi + q \mathbf{e}_\theta$ with $m = -Ar^{-2}$ and $p = q = 0$. The general rule for the divergence is

$$\text{div}(\mathbf{E}) = r^{-2}(r^2 m)_r + (r \sin(\phi))^{-1}(\sin(\phi)p)_\phi + (r \sin(\phi))^{-1} q_\theta.$$

As $p = q = 0$, the second and third terms are zero. In the first term, we have $r^2 m = -A$, which is constant
Example of div, grad and curl in spherical polar coordinates

Potential of a point charge at the origin is \(V = A/r \), \((A\ \text{constant}, \ r = \sqrt{x^2 + y^2 + z^2})\). The electric field is \(\mathbf{E} = \text{grad}(V) \). No magnetism or other charges, so Maxwell says \(\text{div}(\mathbf{E}) = 0 \) and \(\text{curl}(\mathbf{E}) = 0 \). We will check this. First, we have \(V_r = -A/r^2 \) and \(V_\phi = V_\theta = 0 \), so the rule

\[
\text{grad}(V) = V_r \mathbf{e}_r + r^{-1}V_\phi \mathbf{e}_\phi + (r \sin(\phi))^{-1} V_\theta \mathbf{e}_\theta
\]

just gives \(\mathbf{E} = \text{grad}(V) = -Ar^{-2} \mathbf{e}_r \). In other words, we have \(\mathbf{E} = m \mathbf{e}_r + p \mathbf{e}_\phi + q \mathbf{e}_\theta \) with \(m = -Ar^{-2} \) and \(p = q = 0 \). The general rule for the divergence is

\[
\text{div}(\mathbf{E}) = r^{-2}(r^2 m)_r + (r \sin(\phi))^{-1}(\sin(\phi)p)_\phi + (r \sin(\phi))^{-1} q_\theta.
\]

As \(p = q = 0 \), the second and third terms are zero. In the first term, we have \(r^2 m = -A \), which is constant, so \((r^2 m)_r = 0 \) as well.
Potential of a point charge at the origin is $V = A/r$, (A constant, $r = \sqrt{x^2 + y^2 + z^2}$). The electric field is $\mathbf{E} = \text{grad}(V)$. No magnetism or other charges, so Maxwell says $\text{div}(\mathbf{E}) = 0$ and $\text{curl}(\mathbf{E}) = 0$. We will check this.

First, we have $V_r = -A/r^2$ and $V_\phi = V_\theta = 0$, so the rule

$$\text{grad}(V) = V_r \mathbf{e}_r + r^{-1} V_\phi \mathbf{e}_\phi + (r \sin(\phi))^{-1} V_\theta \mathbf{e}_\theta$$

just gives $\mathbf{E} = \text{grad}(V) = -Ar^{-2} \mathbf{e}_r$. In other words, we have $\mathbf{E} = m \mathbf{e}_r + p \mathbf{e}_\phi + q \mathbf{e}_\theta$ with $m = -Ar^{-2}$ and $p = q = 0$. The general rule for the divergence is

$$\text{div}(\mathbf{E}) = r^{-2}(r^2 m)_r + (r \sin(\phi))^{-1}(\sin(\phi)p)_\phi + (r \sin(\phi))^{-1} q_\theta.$$

As $p = q = 0$, the second and third terms are zero. In the first term, we have $r^2 m = -A$, which is constant, so $(r^2 m)_r = 0$ as well. This means that $\text{div}(\mathbf{E}) = 0$ as expected.
Potential of a point charge at the origin is $V = A/r$, (A constant, $r = \sqrt{x^2 + y^2 + z^2}$). The electric field is $\mathbf{E} = \nabla V$. No magnetism or other charges, so Maxwell says $\text{div}(\mathbf{E}) = 0$ and $\text{curl}(\mathbf{E}) = 0$. We will check this.

First, we have $V_r = -A/r^2$ and $V_\phi = V_\theta = 0$, so the rule

$$\nabla V = V_r \mathbf{e}_r + r^{-1}V_\phi \mathbf{e}_\phi + (r \sin(\phi))^{-1}V_\theta \mathbf{e}_\theta$$

just gives $\mathbf{E} = \nabla V = -Ar^{-2} \mathbf{e}_r$. In other words, we have $\mathbf{E} = me_r + p\mathbf{e}_\phi + q\mathbf{e}_\theta$ with $m = -Ar^{-2}$ and $p = q = 0$. The general rule for the divergence is

$$\text{div}(\mathbf{E}) = r^{-2}(r^2 m)_r + (r \sin(\phi))^{-1}(\sin(\phi)p)_\phi + (r \sin(\phi))^{-1}q_\theta.$$

As $p = q = 0$, the second and third terms are zero. In the first term, we have $r^2 m = -A$, which is constant, so $(r^2 m)_r = 0$ as well. This means that $\text{div}(\mathbf{E}) = 0$ as expected. Finally, $\text{curl}(\mathbf{E})$ is

$$\frac{1}{r^2 \sin(\phi)} \det \begin{bmatrix} \mathbf{e}_r & r \mathbf{e}_\phi & r \sin(\phi) \mathbf{e}_\phi \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial \theta} \\ m & rp & r \sin(\phi) q \end{bmatrix}$$
Potential of a point charge at the origin is $V = A/r$, (A constant, $r = \sqrt{x^2 + y^2 + z^2}$). The electric field is $\mathbf{E} = \text{grad}(V)$. No magnetism or other charges, so Maxwell says $\text{div}(\mathbf{E}) = 0$ and $\text{curl}(\mathbf{E}) = 0$. We will check this.

First, we have $V_r = -A/r^2$ and $V\phi = V\theta = 0$, so the rule

$$\text{grad}(V) = V_r \mathbf{e}_r + r^{-1} V\phi \mathbf{e}_\phi + (r \sin(\phi))^{-1} V\theta \mathbf{e}_\theta$$

just gives $\mathbf{E} = \text{grad}(V) = -Ar^{-2} \mathbf{e}_r$. In other words, we have $\mathbf{E} = m\mathbf{e}_r + p\mathbf{e}_\phi + q\mathbf{e}_\theta$ with $m = -Ar^{-2}$ and $p = q = 0$. The general rule for the divergence is

$$\text{div}(\mathbf{E}) = r^{-2}(r^2 m)_r + (r \sin(\phi))^{-1}(\sin(\phi)p)_\phi + (r \sin(\phi))^{-1} q_\theta.$$

As $p = q = 0$, the second and third terms are zero. In the first term, we have $r^2 m = -A$, which is constant, so $(r^2 m)_r = 0$ as well. This means that $\text{div}(\mathbf{E}) = 0$ as expected. Finally, $\text{curl}(\mathbf{E})$ is

$$\frac{1}{r^2 \sin(\phi)} \det \begin{bmatrix} e_r & re_\phi & r \sin(\phi) e_\phi \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial \theta} \\ m & rp & r \sin(\phi) q \end{bmatrix} = \frac{1}{r^2 \sin(\phi)} \det \begin{bmatrix} e_r & re_\phi & r \sin(\phi) e_\phi \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial \theta} \\ -Ar^{-2} & 0 & 0 \end{bmatrix}.$$
Potential of a point charge at the origin is $V = A/r$, (A constant, $r = \sqrt{x^2 + y^2 + z^2}$). The electric field is $E = \nabla V$. No magnetism or other charges, so Maxwell says $\text{div}(E) = 0$ and $\text{curl}(E) = 0$. We will check this. First, we have $V_r = -A/r^2$ and $V_\phi = V_\theta = 0$, so the rule

$$\nabla V = V_r \mathbf{e}_r + r^{-1}V_\phi \mathbf{e}_\phi + (r \sin(\phi))^{-1}V_\theta \mathbf{e}_\theta$$

just gives $E = \nabla V = -Ar^{-2} \mathbf{e}_r$. In other words, we have $E = m \mathbf{e}_r + p \mathbf{e}_\phi + q \mathbf{e}_\theta$ with $m = -Ar^{-2}$ and $p = q = 0$. The general rule for the divergence is

$$\text{div}(E) = r^{-2}(r^2 m)_r + (r \sin(\phi))^{-1}(\sin(\phi)p)_\phi + (r \sin(\phi))^{-1}q_\theta.$$

As $p = q = 0$, the second and third terms are zero. In the first term, we have $r^2 m = -A$, which is constant, so $(r^2 m)_r = 0$ as well. This means that $\text{div}(E) = 0$ as expected. Finally, $\text{curl}(E)$ is

$$\frac{1}{r^2 \sin(\phi)} \det \begin{bmatrix} \mathbf{e}_r & r \mathbf{e}_\phi & r \sin(\phi) \mathbf{e}_\phi \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial \theta} \\ m & rp & r \sin(\phi)q \end{bmatrix} = \frac{1}{r^2 \sin(\phi)} \det \begin{bmatrix} \mathbf{e}_r & r \mathbf{e}_\phi & r \sin(\phi) \mathbf{e}_\phi \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial \theta} \\ -Ar^{-2} & 0 & 0 \end{bmatrix}.$$

As $\frac{\partial}{\partial \phi}(-Ar^{-2}) = \frac{\partial}{\partial \theta}(-Ar^{-2}) = 0$, all terms vanish.
Potential of a point charge at the origin is $V = A/r$, (A constant, $r = \sqrt{x^2 + y^2 + z^2}$). The electric field is $\mathbf{E} = \text{grad}(V)$. No magnetism or other charges, so Maxwell says $\text{div}(\mathbf{E}) = 0$ and $\text{curl}(\mathbf{E}) = 0$. We will check this. First, we have $V_r = -A/r^2$ and $V_\phi = V_\theta = 0$, so the rule

$$\text{grad}(V) = V_r \mathbf{e}_r + r^{-1} V_\phi \mathbf{e}_\phi + (r \sin(\phi))^{-1} V_\theta \mathbf{e}_\theta$$

just gives $\mathbf{E} = \text{grad}(V) = -Ar^{-2} \mathbf{e}_r$. In other words, we have $\mathbf{E} = m \mathbf{e}_r + p \mathbf{e}_\phi + q \mathbf{e}_\theta$ with $m = -Ar^{-2}$ and $p = q = 0$. The general rule for the divergence is

$$\text{div}(\mathbf{E}) = r^{-2}(r^2 m)_r + (r \sin(\phi))^{-1}(\sin(\phi)p)_\phi + (r \sin(\phi))^{-1} q_\theta.$$

As $p = q = 0$, the second and third terms are zero. In the first term, we have $r^2 m = -A$, which is constant, so $(r^2 m)_r = 0$ as well. This means that $\text{div}(\mathbf{E}) = 0$ as expected. Finally, $\text{curl}(\mathbf{E})$ is

$$\frac{1}{r^2 \sin(\phi)} \det \begin{bmatrix} \mathbf{e}_r & r \mathbf{e}_\phi & r \sin(\phi) \mathbf{e}_\phi \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial \theta} \\ m & rp & r \sin(\phi)q \end{bmatrix} = \frac{1}{r^2 \sin(\phi)} \det \begin{bmatrix} \mathbf{e}_r & r \mathbf{e}_\phi & r \sin(\phi) \mathbf{e}_\phi \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial \theta} \\ -Ar^{-2} & 0 & 0 \end{bmatrix}.$$

As $\frac{\partial}{\partial \phi} (-Ar^{-2}) = \frac{\partial}{\partial \theta} (-Ar^{-2}) = 0$, all terms vanish so $\text{curl}(\mathbf{E}) = 0$ as well.